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Solutions for Tutorial 4 
Modelling of Non-Linear Systems 

 
 
4.1 Isothermal CSTR: The chemical reactor shown in textbook Figure 3.1 and 
repeated in the following is considered in this question. The reaction occurring in the 
reactor is 
 

A → B   rA = -kCA
0.5 

 
The following assumptions are appropriate for the system. 
(i) the reactor is well mixed,  
(ii) the reactor is isothermal,  
(iii) density of the liquid in the reactor is constant,  
(iv) flow rates are constant, and  
(v) reactor volume is constant.  

 
a. Formulate the model for the dynamic response of the concentration of A in the 

reactor, CA(t). 
b. Linearize the equation(s) in (a). 
c. Solve the linearized equation analytically for a step change in the inlet 

concentration of A, ∆CA0. 
d. Sketch the dynamic behavior of CA(t). 
e. Discuss how you would evaluate the accuracy of the linearized model. 
 

 
Again, we apply the standard modelling approach, with a check for linearity. 
 
a.  Goal: Determine composition of A as a function of time. 
 
Variable: CA in the reactor 
 
System: The liquid in the reactor. 
 
Balance: Component balance on A. 
 
 Accumulation  = in - out + generation 
 
(1) ( ) ( )5.0

AA0AAtAttAA VkCFCFCtMW|VC|VCMW −−∆=−∆+  
 

 
Goal  → Variable System→ Balance → DOF → Linear? 

                   (or constitutive equation) 
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Divide by delta time and take the limit to obtain 

 
Are we done?  Let’s check the degrees of freedom. 
 
DOF  =  1  -  1  =  0  Yes! 
 
 
b.  Is the model linear?  If we decide to solve the model numerically, we do not have to 
linearize; in fact, the non-linear model would be more accurate.  However, in this 
problem we seek the insight obtained from the approximate, linear model. 
 
All terms involve a constant times a variable (linear) except for the following term, which 
is linearized using the Taylor series.. 
 
(3) ( ) ( ) ( ) sorder termhigher  CCC5.0CC AsAs

5.0
As

5.0
A

5.0
A +−+≈ −  

 
This approximation can be substituted into equation 2, and the initial steady-state model 
subtracted to obtain the following, with C’A = CA - CAS. 
 

(4) A
5.0

AsA0A
A 'C)C5.0(Vk)'FC'C(F

dt
'dC

V −−−=  

 
This linear, first order ordinary differential equation model can be arranged into the 
standard form, given in the following. 
 

 
c.  Let’s solve this equation using the Laplace transform method.  We can take the 
Laplace transform of equation (5) to obtain 
 
(6) ( ) )s('KC)s('C|)t('C)s('sC 0AA0tAA =+−τ =  
 
Note that equation (6) is general for any function CA0(t).  We can rearrange this equation 
and substitute the Laplace transform of the step change in feed composition 
(C’A0(s)=∆CA0/s to give. 
 

(7) 
s

C
1s

K)s('C 0A
A

∆
+τ

=  

 

 

(2) 5.0
AA0A

A VkC)FCC(F
dt

dC
V −−=  

(5) 0AA
A 'KC'C

dt
'dC

=+τ  with 5.0
AsVkC5.0F

V
−+

=τ   5.0
AsVkC5.0F

FK
−+

=  
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We can take the inverse Laplace transform using entry 5 in textbook Table 4.1 to give 
 

 
d. A typical sketch is given here.  We already have experience with the step response to a 
linear, first order system.  We know that 
 
- the output changes immediately after the step 

is introduced. 
- the maximum slope appears when the step is 

introduced 
- the curve has a smooth (non-oscillatory 

response) 
- 63% of the change occurs when  
  t = τ (past the step) 
- the final steady state is K(∆input) 
 
 
 
e. We should always investigate the accuracy of our mathematical models!  We can 
estimate the accuracy of the parameters used based on 
 
Laboratory data used in developing the 
constitutive model 

- Is the rate expression accurate 
- uncertainty in k 

Construction of equipment V (cross sectional area) 
Accuracy of measurements used to achieve 
desired values 

V (level) and F (flow) 

 
In addition, we should estimate the error introduced by the linearization.  No error is 
introduced if the process stays exactly at the initial steady state, and the errors generally 
increase as the process deviates further from the initial steady state.  Here, two methods 
are suggested.  (Remember, we do not seek highly accurate models – we seek simple, 
approximate models for control design, which will be explained shortly.) 
 
1. Evaluate the key parameters over the range of operation.  We can evaluate the gain 
(K) and the time constant (τ) at different values over the range of operation.  If these 
parameters do not change much, the linearization would be deemed accurate. 
 
2. Steady-state prediction.  Compare the steady-state output values from the non-linear 
model with steady-state output values from the linearized model (K∆input).  This method 
will check the gain only, not the time constant. 

(8) ( )τ−−∆= /t
0AA e1KC)t('C  

Time

Time

C’A0

C’A
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4.2 Controlling the Reactor Concentration by Feed Flow Rate: The reactor in 
question 3.1 above is considered again in this question.  Component A is pumped to the 
reactor from the feed tank.  The inlet concentration of A, CA0, is constant, and the feed 
flow rate varies with time. 
 
a. Develop the dynamic model to predict the concentration of A. 
b. Linearize the equation and solve the linearized equation analytically for a step 

change in the feed flow rate, ∆F. 
c. Sketch the dynamic behavior of the effluent concentration, CA(t). 
d. Describe the equipment required to maintain the feed flow rate at a desired value. 
 

Figure 3.1 
 

 
a.  We begin by applying our standard method for modelling. 
 
a.  Goal: Determine composition of A as a function of time. 
 
Variable: CA in the reactor 
 
System: The liquid in the reactor. 
 
Balance: Component balance on A. 
 
 Accumulation  = in - out + generation 
 
(1) ( ) ( )5.0

AA0AAtAttAA VkCFCFCtMW|VC|VCMW −−∆=−∆+  
 
Divide by delta time and take the limit to obtain 

V CA

F0

F1

CA0

Motivation: Why are we interested in this model?  Often, the feed composition
cannot be adjusted easily by mixing streams.  Therefore, we sometimes adjust the feed
flow rate to achieve the desired reaction conversion.  (We do not like to do this, because
we change both the production rate and the conversion when we adjust feed flow rate.)
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Are we done?  Let’s check the degrees of freedom. 
 
DOF  =  1  -  1  =  0  Yes! 
 
 
b.  Is the model linear?  If we decide to solve the model numerically, we do not have to 
linearize; in fact, the non-linear model would be more accurate.  However, in this 
problem we seek the insight obtained from the approximate, linear model. 
 
We see that several terms are non-linear.  In fact, when flow is a variable, we would 
usually find terms (F)(variable), where “variable” is temperature, compositions, etc.  The 
following terms will be linearized by expanding the Taylor series. 
 
(3) sorder termhigher  'FC'CF)FC(FC s0A0Ass0A0A +++≈  
 
(4) sorder termhigher  'FC'CF)FC(FC AsAssAA +++≈  
 
(5) ( ) ( ) ( ) sorder termhigher  CCC5.0CC AsAs

5.0
As

5.0
A

5.0
A +−+≈ −  

 
Substituting the approximations, subtracting the initial steady state, and rearranging gives 
the following. 
 

 
We can solve this equation for step change in flow rate by taking the Laplace transform, 
substituting F’(s) = ∆F/s, and taking the inverse Laplace transform.  The result is given in 
the following equation. 
 

 

(2) 5.0
AA0A

A VkC)FCC(F
dt

dC
V −−=  

(6) 'KF'C
dt

'dC
A

A =+τ  with 5.0
Ass VkC5.0F

V
−+

=τ  5.0
Ass

Ass0A

VkC5.0F
)CC(

K
−+

−
=  

(7) ( )τ−−∆= /t
A e1K)F()t('C  
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c. The plot and qualitative properties are the same as for other first order systems. 
 
 
 
- the output changes immediately after the step 

is introduced. 
- the maximum slope appears when the step is 

introduced 
- the curve has a smooth (non-oscillatory 

response) 
- 63% of the change occurs when  
   t = τ (past the step) 
- the final steady state is K(∆input) 
 
 
 
Does this make sense?  As we increase the feed flow, the “space time” in the reactor 
decreases.  (See Fogler (1999) or other textbook on reaction engineering for a refresher.)  
When the space time decreases, the conversion decreases, and the concentration of 
reactant increases.  Yes, the model agrees with our qualitative understanding! 
 
d. Equipment is required to control the flow is needed if we are to adjust the flow to 
achieve the desired reactor operation, e.g., conversion.  Any feedback controller requires 
a sensor and a final element.  (See Chapter 2.)  The sensor could be any of the sensors 
described in the Instrumentation Notes.  The most common sensor in the process 
industries is the orifice meter, which measures flow based on the pressure drop around an 
orifice restriction in a pipe.  The final element would be a control valve that can adjust 
the restriction to flow. 
 

 
 

Time

Time

F’

C’A

)P

Pump to supply
the “head” for
flow

Orifice
meter

Valve with
adjustable stem
position
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4.3 Isothermal CSTR with two input changes: This question builds on the results 
from tutorial Questions 3.1 and 3.2.  Consider a CSTR with the following reaction 
occurring in the reactor 
 

A → B  -rA = kCA
0.5 

 
Assuming 1) the reactor is isothermal, 2) the reactor is well mixed, 3) density of the 
reactor content is constant, and 4) the reactor volume is constant.  
a. Derive the linearized model in deviation variables relating a change in CA0 on the 

reactor concentration, CA. 
b. Derive the linearized model in deviation variables relating a change in F on the 

reactor concentration, CA. 
c. Determine the transfer functions for the two models derived in parts a and b. 
d. Draw a block diagram relating CA0 and F to CA. 
e. The following input changes are applied to the CSTR: 

1. A step change in feed concentration, CA0, with step size ∆CA0 at tC, and 
2. A step change in feed flow rate, F, with step size ∆F at tF.> tC. 
Without solving the equations, sketch the behavior of CA(t). 

 
 
a/c.  The model for the change in CA0 (with the subscript meaning the input change 
CA0).  The model for this response has been derived in previous tutorial question 3.1, and 
the results are repeated in the following. 
 

 

(1) )s('C
1s

K
))s('C( 0A

0CA

0CA
0CAA +τ
=    transfer function  

1s
K

)s(C
))s(C(

0CA

0CA

0A

0CAA

+τ
=  

 
 

 

0A0CAA
A

0CA 'CK'C
dt

'dC
=+τ  with 

5.0
As

0CA
VkC5.0F
V

−+
=τ   5.0

As
0CA VkC5.0F

FK
−+

=  

( )0CA/t
0CA0AA e1KC)t('C τ−−∆=
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b/c.  The model for a change in F (with the subscript meaning the input change F) The 
model for this response has been derived in previous tutorial question 3.2, and the results 
are repeated in the following. 
 

 

(2) )s('F
1s

K
))s('C(

F

F
FA +τ
=   transfer function 

1s
K

)s(F
))s(C(

F

FFA

+τ
=  

 

 
 
c.  The transfer functions are given in the results above. 
 

 
Since the system is linearized, we can add the output changes in C’A to determine the 
overall affect. 
 
(3) FA0CAAA ))s('C())s('C())s('C( +=  
 
d.  The block diagram is given in the figure. 
 

 
 

 
 

( )F/t
FA e1K)F()t('C τ−−∆=  

'FK'C
dt

'dC
FA

A
F =+τ  with 

5.0
Ass

F
VkC5.0F
V

−+
=τ  

5.0
Ass

Ass0A
F

VkC5.0F
)CC(

K
−+

−
=  

Remember that a transfer function simply gives the relationship between the 
input and output. 

 
 INPUT  → TRANSFER  → OUTPUT 

     FUNCTION 

Remember that the block diagram is simply a picture of equations (1) to (3). 
 

Note that the primes (’) to designate deviation variables are not used in transfer
functions or block diagrams.  This is because transfer functions and block 
diagrams ALWAYS use deviation variables. 
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e. We can sketch the shape of the response without knowing the numerical values of 
many parameters because we understand dynamic systems.  Let’s list some aspects of the 
response that we know. 
 
1. KF is positive 
2. KCA0 is positive 
3. Both systems are first order 
4. The two time constants are equal 
5. Both systems are stable (time constants are positive) 
 
The figure below was generated with 1) a positive step change in CA0 and after a long 
time, a positive step change in F. 

 
What would the plots look like with 
a. a positive change in CA0 and a negative in F? 
b. both changes introduced at the same time? 
c. A slow ramp introduced in CA0? 
 
Can you think of other types of input changes and sketch the output concentration? 

(CA(s))CA0

F(s) KF/(JFs+1)

KCA0/(JCA0s+1)

+

CA0(s)

(CA(s))F

CA(s)

time 
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4.4 Let’s consider the usefulness of the transfer functions that we just derived.  From 
the transfer function CA(s)/CA0(s), answer the following questions. 
 
a. Does a causal relationship exist? Hint: How could the process gain help? 
b. What is the order of the system? Hint: How many differential equations are 

in the model? 
c. Is the system stable? Wow: we sure need to know if a process is 

unstable! 
d. Could CA(t) exhibit oscillations 

from a step change in CA0? 
Question: Why would we like to know 
this? 

e. Would any of your answer change 
for any values of the parameters of 
the model (F, V, k, etc.)? 

Important: We can learn general types of 
behavior for some processes! 

 
a.  A causal relationship exists if the transfer function is NOT zero.  While this is not 
exactly correct, we will test for the existence of a causal relationship by evaluating the 
steady-state gain. 
 
K = 0 ⇒ no causal relationship K ≠ 0 ⇒ causal relationship 
 
We should also look at the magnitude of the gain.   
 
The answer for CA(s)/CA0(s) is yes; a causal relationship exists! 
 
Follow-up question: Can you think of a situation in which the steady-state gain is zero, 
but a causal relationship exists? 
 
b. The order of the system is the number of first order differential equations that relate the 
input to the output. 
 
One quick way to check this is to evaluate the highest power of “s” in the 
denominator of the transfer function. 
 
The answer for CA(s)/CA0(s) is one, or first order. 
 
Follow-up question: Are the order of all input/output pairs the same for any processes?  
Hint: What is the order of CB(s)/CA0(s) for the same reactor? 
 
c. The system is stable if the output is bounded for a bounded input.  (Any real input is 
bounded, but a ramp could become infinite when we overlook the physical world, where 
valves open completely and mole fractions are bounded between 0 and 1.) 
 
We determine stability by evaluating sign of the exponent relating the variable to time.  
Recall that y = A e –αt = A e –t/τ.  The value of alpha is the root(s) of the denominator of 
the transfer function! 
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α = 1/τ > 0 ⇒  stable  α = 1/τ ≤ 0 ⇒ stable 
 
The answer for CA(s)/CA0(s) is τ > 0; therefore, the system is stable. 
 
Follow-up question: If one variable in a system is stable (unstable), must all other 
variables in the system be stable (unstable)? 
 
d. The function form of the time dependence of concentration is given in the following. 
 

 
 

 
When the roots of the denominator of the transfer function are real, the system will 
be over damped (or critically damped). 
 
The answer for CA(s)/CA0(s) is no. 
 
Follow-up question: If one variable in a system is overdamped (underdamped), must all 
other variables in the system be overdamped (underdamped)? 
 
e. We can determine possible types of behavior by looking at the range of (physically 
possible) values for the parameters in a process.  (We must assume that the model 
structure, i.e., the equations, is correct.) 
 
The parameters in the model are all positive; none can change sign.  For this and the 
equations for the gain and time constant, we conclude that  
 
The answer for CA(s)/CA0(s) is no, the qualitative features (causal, first order, stable) 
cannot change. 
 
 
You can test your understanding by answering these questions for any other model 
in the course! 
 

Now, you can apply your analysis skills to another process! 

( )0CA/t
0CA0AA e1KC)t('C τ−−∆=



McMaster University 

11/05/05 Copyright © 2000 by T. Marlin 12 

4.5 Process plants contain many interconnected units.  (As we will see, a control loop 
contains many interconnected elements as well.)  Transfer functions and block diagrams 
help us combine individual models to develop an overall model of interconnected 
elements. 
 
Select some simple processes that you have studied and modelled in this course. 
a. Connect them is series. 
b. Derive an overall input-output model based on the individual models. 
c. Determine the gain, stability and damping. 
d. Sketch the response of the output variable to a step in the input variable. 
 
a. Series process - As a sample problem, we will consider the heat exchanger and reactor 
series process in the following figure.  This is a common design that provides flexibility 
by enabling changes to the reactor temperature. As we proceed in the course, we will see 
how to adjust the heating medium flow to achieve the desired reactor operation using 
feedback control. 

 

 
As we proceed in the course, we will see how to adjust the heating medium flow to 
achieve the desired reactor operation using automatic feedback control. 
 
Heat exchanger: The heat exchanger model is derived in the textbook Example 3.7, page 
76.  The results of the modelling are summarized in the following, with the subscript “c” 
changed to “h”, because this problem involves heating. 
 
Energy balance: (with Cp ≈ Cv) 
 

WQ)TT(CpF
dt
dTCV 0pex −+−ρ=ρ   

In this example, the heating medium flow, Fh, (valve opening) is manipulated, and the
concentration of the reactant in the reactor, CA, is the output variable. 

F

T0

T

Fh

CA0

F

T

CA0

CA

Heat exchanger CST Reactor
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with )2/)TT(T(UAQ houthin +−=  and 
phh

b
cc

1b
c

C2/aFF
aF

UA
ρ+

=
+

 

 
Linearized model: 
 

'
cpexex FK'T

dt
'dT

=+τ  with the subscript “ex” for exchanger. 

 
Transfer function: (Taking the Laplace transform of the linearized model) 
 

)s(G
1s

K
)s(F
)s(T

ex
ex

pex

h
=

+τ
=   a first order system! 

 
Non-isothermal CSTR: The basic model of the CSTR is given in textbook equations 
(3.75) and (3.76), which represent the component material and energy balances.  They are 
repeated below, with typographical errors corrected here! 
 

A
RT/E

0A0A
A CeVk)CC(F

dt
dC

V −−−=  

 

A
RT/E

0rxncin0pp CeVk)H()TT(UA)TT(CF
dt
dTCV −∆−+−−−ρ=ρ  

 
These equations are linearized in Appendix C to give the following approximate model, 
with only input T0 varying. 
 

02522A21

12A11
A

'Ta'Ta'Ca
dt

'dT

'Ta'Ca
dt

'dC

++=

+=
 

 
We can take the Laplace transform of the linearized equations and combine them by 
eliminating the reactor temperature, T’, to give the following transfer function. 
 

)s(G
)aaaa(s)aa(s

a
)s('T
)s('C

r
211222112211

2
25

0

A =
−++−

=  a second order system 

 
Note that the reactor is a second order system because the energy balance relates inlet 
temperature to reactor temperature and the component material balance relates 
temperature to concentration, because of the effect of temperature on reaction rate. 
 
b. Combining the linearized models: The block diagram of this system is given in the 
following figure.  This is a series connection of two processes, a first order exchanger and 
a second order reactor, which gives the overall third order transfer function given in the 
following equation. 
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( ))aaaa(s)aa(s
a

)1s(
K

)s(G)s(G
)s('T
)s('C

)s('T
)s('T

)s('T
)s('C

211222112211
2

25

ex

pex
rex

A

00

A

−++−+τ
===  

 
Note that heat exchanger and reactor are a third order system. 
 
c. Model analysis –  
 
Gain: The steady-state gain can be derived from this model by setting s=0.  (Recall that 
this has meaning only if the process is stable.)  The gain in this system is none zero, as 
long as the chemical reaction depends on temperature. 
 
Damping: We cannot be sure that the roots of the denominator of the transfer function are 
real.  If fact, the analysis of the CSTR in textbook Appendix C shows that the dynamics 
can be either over or underdamped, depending on the design and operating parameters. 
 
Stability: We cannot be sure that the CSTR is stable, i.e., roots of the denominator of the 
transfer function have negative real parts.  If fact, the analysis of the CSTR in textbook 
Appendix C shows that the dynamics can be either stable or unstable, depending on the 
design and operating parameters. 
 
d. Step response: Many different responses are possible for the CSTR, and only one 

case is sketched here.  Recall the dynamic response between T0 and T1 is first order.  
Since we have copious experience with this step response, it is not given in a sketch.  
An example of the response between T0 and T3 are given in the following figure.  The 
plot is developed for an example without heat of reaction.  In this situation, the third 
order system is guaranteed to be stable and overdamped; as we expect, the response 
has an “s-shaped” output response to a step input, with the reactant concentration 
decreasing in response to an increase in heating fluid to the exchanger. 

 
 
 
 
 

Reactant concentration 
 
 
 
 
 
 

Heating fluid valve 
opening 
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