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Preface
Automation via feedback is not new. Early application of automatic control prin
ciples appeared in antiquity, and widespread use of automation began in the nine
teenth century when machinery was becoming the dominant method for manu
facturing goods. Great advances have been made in theory and practice so that
automation is now used in systems as commonplace as room heating and as excit
ing as the navigation of interplanetary exploration and telecommunications. The
great change over the recent years is the integral—at times essential—role of au
tomation in our daily lives and industrial systems.

Process control is a sub-discipline of automatic control that involves tailoring
methods for the efficient operation of chemical processes. Proper application of
process control can improve the safety and profitability of a process, while main
taining consistently high product quality. The automation of selected functions
has relieved plant personal of tedious, routine tasks, providing them with time and
data to monitor and supervise operations. Essentially every chemical engineer de
signing or operating plants is involved with and requires a background in process
control. This book provides an introduction to process control with emphasis on
topics that are of use to the general chemical engineer as well as the specialist.

GOALS OF THE BOOK
The intent of this book is to present fundamental principles with clear ties to
applications and with guidelines on their reduction to practice. The presentation
is based on four basic tenets.
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V l l l Fundamentals
First, engineers should master control technology fundamentals, since there is noPrefo* set of heuristics or guidelines that can serve them through their careers. Since
these fundamentals must be presented with rigor, needed mathematical tools are
presented to assist the student. It may be worth recalling that these principles were
selected because they provide the simplest approaches for solving meaningful
problems.

Practice
Second, we are not efficient if we "start from scratch" every time we encounter
a problem; similar situations can be analyzed to develop guidelines for a defined
set of applications. Also, the fundamental concepts can be best reinforced and
enriched through the presentation of good engineering practice. With this per
spective, important design guidelines and enhancements are presented as logical
conclusions and extensions to the basic principles. Coverage of implementation
issues includes pitfalls with the straightforward "textbook" approaches along with
modifications for practical application.

Complexity
Third, the presentation in this book follows the guideline "Everything should be
made as simple as possible, and no simpler." Naturally, many issues are easily
resolved using straightforward analysis methods. However, the engineer must un
derstand the complexity of automating a system, even when a closed-form solution
does not exist at the present time.

Design
Fourth, design is a capstone topic that enables engineers to specify, build and oper
ate equipment that satisfies predetermined goals. Currently, closed-form solutions
do not exist for this activity; thus, a comprehensive design method for managing
the numerous interlocking design tasks is presented along with a step-by-step ap
proach to guide the engineer through problem definition, preliminary analysis of
degrees of freedom and controllability, and selecting process and control structures.
Many guidelines, checklists, and examples aid the student in making well-directed
initial decisions and refining them through iterations to achieve the design goals.

THE READERS
Hopefully, readers with different backgrounds will find value in this treatment of
process control. A few comments are now addressed to the three categories of
likely readers of this book: university students, instructors, and practitioners.

Students
Many students find process control to be one of the most interesting and enjoyable
courses in the curriculum, because they apply the skills built in fluid mechanics,
heat transfer, thermodynamics, mass transfer, and reactor design. This presentation



emphasizes the central role of the process in the performance of control systems. ix
Therefore, dynamic process modelling is introduced early and applied throughout i—^i^ia
the book. To help students, realistic process systems are studied in solved examples. Computer Tools and

The student may notice two important differences from other courses. First, Learning Aids
process control is often concerned with operating plants in which process equip
ment has been built. Thus, the proper answer to the question "how can the exchanger
outlet temperature be raised to 56°C?" is not "increase the heat transfer area"; per
haps, the modification to operation would be "increase the heating medium flow
rate." Second, process control must operate over a wide range of conditions in
which the process behavior will change; thus, the engineer must design controls
for good performance with an imperfect knowledge of the plant. Deciding op
erating policies for imperfectly known, non-linear processes is challenging but
provides an excellent opportunity to apply skills from previous courses, while
building expertise in process control.

Instructors
The book is flexible enough to enable each instructor to structure a course covering
basic concepts and containing the instructor's special insights, perhaps placing
more emphasis on instrumentation, mathematical analysis, or a special process
type, such as pulp and paper or polymer processing. The fundamental topics have
been selected to enable subsequent study of many processes, and the organization
of the last three parts of the book allows the selection of material most suited for
a particular course.

The material in this course certainly exceeds that necessary for a single-
semester course. In a typical first course, instructors will cover most of Parts I—III
along with selected topics from the remainder of the book. A second semester
course can be built on the multivariable and design material, along with some non
linear simulations of chemical process like binary distillation. Finally, some of the
topics in this book should be helpful in other courses. In particular, topics in Parts
IV-VI (e.g., selection of sensors, manipulated variables and inferential variables)
could be integrated into the process design course. In addition, the analyses of
operating windows, degrees of freedom, and controllability are facilitated by the
use of flowsheeting programs used in a design course.

Practit ioner
This book should be useful to practitioners who are building their skills in process
control, because fundamental concepts are reduced to practice throughout. The
development of practical correlations, design rules, and guidelines are explained
so that the engineer understands the basis, correct application and limitations of
each. These topics should provide a foundation for developing advanced expertise
in empirical model building, loop pairing, centralized Model Predictive Control,
statistical process monitoring and optimization.

COMPUTER TOOLS AND LEARNING AIDS
Computers find extensive application in process control education, because many
calculations in process control education are too time-consuming to be performed



by hand. To enable students to concentrate on principles and investigate multiple
cases, the Software Laboratory has been developed to complement the topics in
this book. The software is based on the popular MATLAB™ system. A User's
Manual provides documentation on the programs and provides extra problems
that students can solve using the software.

Computers can also provide the opportunity for interactive learning tools,
which pose questions, give students hints, and provide solutions. The Process
Control Interactive Learning Modules have been developed to help students en
hance their knowledge through self-study. This is available via the WEB.

To learn about these and other complementary learning materials, visit the
Internet site established at McMaster University for process control education,
http://www.pc-education.mcmaster.ca.
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Symbols and
Acronyms

Process control uses many symbols in equations and drawings. The equation sym
bols are presented here, and the drawing symbols are presented along with common
process sketches in Appendix A. The symbols selected for this Table are used mul
tiple times in the book and explained only where they are first used. If a symbol is
used only once and explained where used, it is not included in this table. Each entry
gives a short description and where appropriate, a reference is given to enable the
reader to quickly find further explanation of the symbol and related technology.

Symbol Description and reference
A Cross-sectional area of a vessel
At Fraction of component i
AR Amplitude ratio, equations (4.70) and (4.72)
A/D Analog to digital signal conversion, Figure 11.1
C Concentration (mol/m3); subscript indicates component
CDF Control design form, Table 24.1
cP Heat capacity at constant pressure

Process capability, equation (26.7)
Cpk Process capability, equation (26.8)
cv Heat capacity at constant volume

Valve characteristic relating pressure, orifice opening, and flow
through an orifice, equation (16.13)

XXV
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Symbols and
Acronyms

Symbol
CSTR
CV
CV,
CV'

cvw
D
D(s)

DCS

DMC
DOF
D/A
E

E f
F
fc
Fc
FD
Fh
fo
Fr
/tune

Fv
A-Tmax

G(s)

Description and reference
Continuous-flow stirred-tank chemical reactor
Controlled variable
Inferential controlled variable
Future values of the controlled variable due to past changes in
manipulated variable
Measured value of the controlled variable
Disturbance to the controlled process
Denominator of transfer function, characteristic polynomial,
equation (4.42)
Digital control system in which control calculations are
performed via digital computation
Dynamic matrix control, Chapter 23
Degrees of freedom, Table 3.2
Digital-to-analog signal conversion, Figure 11.1
Error in the feedback control system, set point minus controlled
variable, Figures 8.1 and 8.2
Activation energy of chemical reaction rate constant,
k = he-E'RT
Future errors due to past manipulated variable changes
Flow; units are in volume per time unless otherwise specified
Fail close valve
Flow of coolant
Flow rate of distillate
Flow of heating medium
Fail open valve
Flow rate of reflux in distillation tower
Detuning factor for multiloop PID control, equation (21.8)
Flow rate of vapor from a reboiler
Largest expected change in flow rate, used to tune level
controllers, equations (18.12) and (18.13)
Transfer function, defined in equation (4.45) for continuous
systems and equation (L.14) for digital systems
The following are the most commonly used transfer functions:
The argument (s) denotes continuous systems. If digital, replace
with (z).
Gc(s) = feedback controller transfer function (see Figure 8.2)
Gd(s) = disturbance transfer function
Gp(s) = feedback process transfer function
Gs(s) = sensor transfer function
Gv(s) = valve (or final element) transfer function



Symbol

h
H
HSS
AHC
AHrxn
I
IAE
IE
IF
IMC
ITAE

ISE
k
kQe-E'RT
K
Kc
Ki
K i j

Kp
■̂sense

Ku

Description and reference
Gcp(s) = controller transfer function in IMC (predictive
control) structure, Figure 19.2
Gf(s) = filter transfer function which influences dynamics but
has a gain of 1.0
Gff (s) = feedforward controller, equation (15.2)
Gij(s) = transfer function between input j and output i in a
multivariable system; see Figure 20.4
Gm(s) = model transfer function in IMC (predictive control)
structure, Figure 19.2
G+(s) = noninvertible part of the process model used for
predictive control, equation (19.14)
G~ (s) = invertible part of the process model used for predictive
control, equation (19.14)
Gol(s) = "open-loop" transfer function, i.e., all elements in
the feedback loop, equation (10.24)
Film heat transfer coefficient
Enthalpy, equation (3.5)
High signal select, Figure 22.9
Heat of combustion
Heat of chemical reaction
Constant to be determined by initial condition of the problem
Integral of the absolute value of the error, equation (7.1)
Integral of the error, equation (7.4)
Integrating factor, Appendix B
Internal model control; see Section 19.3
Integral of the product of time and the absolute value of the error,
equation (7.3)
Integral of the error squared, equation (7.2)
Rate constant of chemical reaction
Rate constant of chemical reaction with temperature dependence
Matrix of gains, typically the feedback process gains
Feedback controller gain (adjustable parameter), Section 8.4
Vapor-liquid equilibrium constant for component i
Steady-state gain between input j and output i in a multivariable
system, equation (20.11)
Steady-state process gain, (Aoutput/Ainput)
An additional term to specify the sign of feedback control when
the controller gain is limited to positive numbers,
equation (12.12)
Value of the controller gain (Kc) for which the feedback system
is at the stability limit, equation (10.40)
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Symbol
L
C
LSS
ALmax

MIMO
MPC
MV
MW
N(s)
NE
NV
OCT
P

Pj
PB
Pu

AP
PI
PID

Q
QDMC
n
R
RDG
RGA
RVP
s
S

s2
SIS
SP
SPC

Description and reference
Level
Laplace transform operator, equation (4.1)
Low signal select, Figure 22.9
Largest allowed deviation in the level from its set point due
to a flow disturbance, used to tune level controllers, equations
(18.12) and (18.13)
Multiple input and multiple output
Model predictive control
Manipulated variable, Figure 8.2
Molecular weight
Numerator of transfer function, equation (4.42)
Number of equations
Number of variables
Octane number of gasoline, equation (26.36)
Pressure
Period of oscillation
Performance at operation (interval) j, equation (2.3)
Proportional band, Section 12.4
Ultimate period of oscillation of feedback system at its stability
limit, equation (10.40)
Pressure difference
Proportional-integral control algorithm; see Section 8.7
Proportional-integral-derivative control algorithm; see
Section 8.7
Heat transferred
Quadratic Dynamic Matrix Control
Rate of formation of component i via chemical reaction
Gas constant
Relative disturbance gain, equation (21.11)
Relative gain array, equation (20.25)
Reid vapor pressure of gasoline, equation (26.3a)
Laplace variable, equation (4.1)
Maximum slope of system output during process reaction curve
experiment, Figure 6.3
Variance (square of standard deviation) for a sample
Safety interlock system, Section 24.8
set point for the feedback controller, Figure 8.2
Statistical process control, Section 26.3



Symbol
/
T

Ta
Td

T,

Tu

Ti,

h%%

k3%

A t

AT
Tr
U
U(t)
UA
v
V
W

xt

XB

XD
XF
z
Z

Greek Symbols
a

Description and reference
Time

Temperature
Ambient temperature
Derivative time in proportional-integral-derivative (PID)
controller, Section 8.6

Integral time in proportional-integral-derivative (PID)
controller, Section 8.5
Lead time appearing in the numerator of the transfer function;
when applied to feedforward controller, see equation (15.4)

Lag time appearing in the denominator of the transfer function;
when applied to feedforward controller, see equation (15.4)
Time for the output of a system to attain 28% of its steady-state
value after a step input, Figure 6.4

Time for the output of a system to attain 63% of its steady-state
value after a step input, Figure 6.4

Time step in numerical solution of differential equations
(Section 3.5), time step in empirical data used for fitting
dynamic model (Section 6.4), or the execution period of a digital
controller (equation 11.6)

Temperature difference
Reset time, Section 12.4
Internal energy, equations (3.4) and (3.5)
Unit step, equation (4.6)
Product of heat transfer coefficient and area
Valve stem position, equivalent to percent open
Volume of vessel
Work
Fraction of component / (specific component shown in
subscript)
Mole fraction of light key component in distillation bottoms
product
Mole fraction of light key component in the distillate product
Mole fraction of light key component in the distillation feed

Variable in z-transform, Appendix L
Z-transform operator, Appendix L

Relative volatility
Root of the characteristic polynomial, equation (4.42)
Size of input step change in process reaction curve, Figure 6.3

XXIX

Symbols and
Acronyms



XXX Symbo l Desc r i p t i on and re fe rence
A C h a n g e i n v a r i a b l e

S y m b o l s a n d S i z e o f o u t p u t c h a n g e a t s t e a d y s t a t e i n p r o c e s s r e a c t i o n c u r v e ,
A c r o n y m s F i g u r e 6 . 3

0 Phase angle between input and output variables in frequency
response, equation (4.73) and Figure 4.9

T Dead time in discretee time steps, Section F.2, and equation (F.7)

r ) T h e r m a l e f fi c i e n c y, e q u a t i o n ( 2 6 . 1 )
A . H e a t o f v a p o r i z a t i o n

k t j R e l a t i v e g a i n , S e c t i o n 2 0 . 5
6 D e a d t i m e , E x a m p l e s 4 . 3 , 6 . 1

9d = disturbance dead time
Oij = dead time between input j and output /
9m = model dead time
0p = feedback process dead time

p D e n s i t y
a S t a n d a r d d e v i a t i o n o f p o p u l a t i o n
x T i m e c o n s t a n t

Xd = disturbance time constant
Xf = filter time constant
Xij = time constant between input j and output /
xm = model time constant
xp = feedback process time constant

a ) F r e q u e n c y i n r a d i a n s / t i m e

coc Crit ical frequency, in radians/t ime, Section 10.7
cod F requency o f d i s tu rbance s ine inpu t
£ Damping coeff ic ient for second-order dynamic system,

equation (5.5)
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There is an old adage, "If you do not know where you are going, any path will do."
In other words, a good knowledge of the goal is essential before one addresses the
details of a task. Engineers should keep this adage in mind when studying a new,
complex topic, because they can easily become too involved in the details and lose
track of the purpose of learning the topic. Process control is introduced in this first,
brief part of the book so that the reader will understand the overall goal of process
automation and appreciate the need for the technical rigor of the subsequent parts.

The study of process control introduces a new perspective to the mastery of
process systems: dynamic operation. Prior engineering courses in the typical cur
riculum concentrate on steady-state process behavior, which simplifies early study
of processes and provides a basis for establishing proper equipment sizes and de
termining the best constant operating conditions. However, no process operates at a
steady state (with all time derivatives exactly zero), because essentially all external
variables, such as feed composition or cooling medium temperature, change. Thus,
the process design must consider systems that respond to external disturbances and
maintain the process operation in a safe region that yields high-quality products in a
profitable manner. The emphasis on good operation, achieved through proper plant
design and automation, requires a thorough knowledge of the dynamic operation,
which is introduced in this part and covered thoroughly in Part II.

In addition, the study of process control introduces a major new concept: feed
back control. This concept is central to most automation systems that monitor a
process and adjust some variables to maintain the system at (or near) desired con
ditions. Feedback is one of the topics studied and employed by engineers of most

Wtfj :■£■£



subdisciplines, and chemical engineers apply these principles to heat exchang
ers, mass transfer equipment, chemical reactors, and so forth. Feedback control is

p a r t I i n t r o d u c e d i n t h i s p a r t a n d c o v e r e d i n d e t a i l i n P a r t H I .
introduction Final ly, the coverage of these topics in this part is qual i tat ive, because i t

precedes the introduction of mathematical tools. This qualitative presentation is
not a shortcoming; rather, the direct and uncomplicated presentation provides a
clear and concise discussion of some central ideas in the book. The reader is advised
to return to Part I to clarify the goals before beginning each new part of the book.



Introduction to
Process Control

1.1 ® INTRODUCTION
When observing a chemical process in a plant or laboratory, one sees flows surg
ing from vessel to vessel, liquids bubbling and boiling, viscous material being
extruded, and all key measurements changing continuously, sometimes with small
fluctuations and other times in response to major changes. The conclusion imme
diately drawn is that the world is dynamic! This simple and obvious statement
provides the key reason for process control. Only with an understanding of tran
sient behavior of physical systems can engineers design processes that perform
well in the dynamic world. In their early training, engineering students learn a
great deal about steady-state physical systems, which is natural, because steady-
state systems are somewhat easier to understand and provide appropriate learning
examples. However, the practicing engineer should have a mastery of dynamic
physical systems as well. This book provides the basic information and engineer
ing methods needed to analyze and design plants that function well in a dynamic
world.

Control engineering is an engineering science that is used in many engineering
disciplines—for example, chemical, electrical, and mechanical engineering—and
it is applied to a wide range of physical systems from electrical circuits to guided
missiles to robots. The field of process control encompasses the basic principles
most useful when applied to the physicochemical systems often encountered by
chemical engineers, such as chemical reactors, heat exchangers, and mass transfer
equipment.
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Control
calculation

Sensor

Final element
FIGURE 1.1

Example of feedback control for steering
an automobile.

j ( s e n s o r )

Thermostat Controller

Furnace Fuel Flow

(final element)
FIGURE 1.2

Example of feedback control for
controlling room temperature.

Since the principles covered in this book are basic to most tasks performed by
chemical engineers, control engineering is not a narrow specialty but an essential
topic for all chemical engineers. For example, plant designers must consider the
dynamic operation of all equipment, because the plant will never operate at steady
state (with time derivatives exactly equal to zero). Engineers charged with oper
ating plants must ensure that the proper response is made to the ever-occurring
disturbances so that operation is safe and profitable. Finally, engineers perform
ing experiments must control their equipment to obtain the conditions prescribed
by their experimental designs. In summary, the task of engineers is to design,
construct, and operate a physical system to behave in a desired manner, and an
essential element of this activity is sustained maintenance of the system at the
desired conditions—which is process control engineering.

As you might expect, process control engineering involves a vast body of ma
terial, including mathematical analysis and engineering practice. However, before
we can begin learning the specific principles and calculations, we must understand
the goals of process control and how it complements other aspects of chemi
cal engineering. This chapter introduces these issues by addressing the following
questions:

• What does a control system do?
• Why is control necessary?
• Why is control possible?
• How is control done?
• Where is control implemented?
• What does control engineering "engineer"?
• How is process control documented?
• What are some sample control strategies?

1.2 m WHAT DOES A CONTROL SYSTEM DO?
First, we will discuss two examples of control systems encountered in everyday
life. Then, we will discuss the features of these systems that are common to most
control systems and are generalized in definitions of the terms control andfeedback
control.

The first example of a control system is a person driving an automobile, as
shown in Figure 1.1. The driver must have a goal or objective; normally, this would
be to stay in a specific lane. First, the driver must determine the location of the
automobile, which she does by using her eyes to see the position of the automobile
on the road. Then, the driver must determine or calculate the change required to
maintain the automobile at its desired position on the road. Finally, the driver must
change the position of the steering wheel by the amount calculated to bring about
the necessary correction. By continuously performing these three functions, the
driver can maintain the automobile very close to its desired position as disturbances
like bumps and curves in the road are encountered.

The second example is the simple heating system shown in Figure 1.2. The
house, in a cold climate, can be maintained near a desired temperature by circulat
ing hot water through a heat exchanger. The temperature in the room is determined
by a thermostat, which compares the measured value of the room temperature to



a desired range, say 18 to 22°C. If the temperature is below 18°C, the furnace and
pump are turned on, and if the temperature is above 22°C, the furnace and pump
are turned off. If the temperature is between 18 and 22°C, the furnace and pump
statuses remain unchanged. A typical temperature history in a house in given in
Figure 1.3, which shows how the temperature slowly drifts between the upper and
lower limits. It also exceeds the limits, because the furnace and heat exchanger
cannot respond immediately. This approach is termed "on/off" control and can
be used when precise control at the desired value is not required. We will cover
better control methods, which can maintain important variables much closer to
their desired values, later in this book.

Now that we have briefly analyzed two control systems, we shall identify
some common features. The first is that each uses a specific value (or range) as a
desired value for the controlled variable. When we cover control calculations in
Part HI, we will use the term set point for the desired value. Second, the conditions
of the system are measured; that is, all control systems use sensors to measure
the physical variables that are to be maintained near their desired values. Third,
each system has a control calculation, or algorithm, which uses the measured and
the desired values to determine a correction to the process operation. The control
calculation for the room heater is very simple (on/off), whereas the calculation
used by the driver may be very complex. Finally, the results of the calculation
are implemented by adjusting some item of equipment in the system, which is
termed the final control element, such as the steering wheel or the furnace and
pump switches. These key features are shown schematically in Figure 1.4, which
can be used to represent many control systems.

Now that we have discussed some common control systems and identified key
features, we shall define the term control. The dictionary provides the definition
for the verb control as "to exercise directing influence." We will use a similar

What Does a Control
System Do?

Controlled
variable:

Room
temperature

Manipulated
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Furnace

fuel
Time

FIGURE 1.3

Typical dynamic response of the room
temperature when controlled by on/off

feedback control.
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definition that is adapted to our purposes. The following definition suits the two
physical examples and the schematic representation in Figure 1.4.

Control (verb): To maintain desired conditions in a physical system by adjusting
selected variables in the system.

The control examples have an additional feature that is extremely important.
This is feedback, which is defined as follows:

Feedback control makes use of an output of a system to influence an input to the
same system.

For example, the temperature of the room is used, through the thermostat on/off
decision, to influence the hot water flow to the exchanger. When feedback is em
ployed to reduce the magnitude of the difference between the actual and desired
values, it is termed "negative feedback." Unless stated otherwise, we will always
be discussing negative feedback and will not use the modifier negative. In the so
cial sciences and general vernacular, the phrase "negative feedback" indicates an
undesirable change, because most people do not enjoy receiving a signal that tells
them to correct an error. Most people would rather receive "positive feedback,"
a signal telling them to continue a tendency to approach the desired condition.
This difference in terminology is unfortunate; we will use the terminology for
automatic control, with "negative" indicating a change that tends to approach the
desired value, throughout this book without exception.

The importance of feedback in control systems can be seen by considering the
alternative without feedback. For example, an alternative approach for achieving
the desired room temperature would set the hot water flow based on the measured
outside temperature and a model of the heat loss of the house. (This type of predic
tive approach, termedfeedforward, will be encountered later in the book, where its
use in combination with feedback will be explained.) The strategy without feedback
would not maintain the room near the desired value if the model had errors—as
it always would. Some causes of model error might be changes in external wind
velocity and direction or inflows of air through open windows. On the other hand,
feedback control can continually manipulate the final element to achieve the de
sired value. Thus, feedback provides the powerful feature of enabling a control
system to maintain the measured value near its desired value without requiring an
exact plant model.

Before we complete this section, the terms input and output are clarified.
When used in discussing control systems, they do not necessarily refer to material
moving into and out of the system. Here, the term input refers to a variable that
causes an output. In the steering example, the input is the steering wheel position,
and the output is the position of the automobile. In the room heating example, the
input is the fuel to the furnace, and the output is the room temperature. It is essential



to recognize that the input causes the output and that this relationship cannot be
inverted. The causal relationship inherent in the physical process forces us to select
the input as the manipulated variable and the output as the measured variable.
Numerous examples with selections of controlled and manipulated variables are
presented in subsequent chapters.

Therefore, the answer to the first question about the function of control is, "A
feedback control system maintains specific variables near their desired values by
applying the four basic features shown in Figure 1.4." Understanding and designing
feedback control systems is a major emphasis of this book.

1.3 B WHY IS CONTROL NECESSARY?
A natural second question involves the need for control. There are two major
reasons for control, which are discussed with respect to the simple stirred-tank
heat exchanger shown in Figure 1.5. The process fluid flows into the tank from a
pipe and flows out of the tank by overflow. Thus, the volume of the tank is constant.
The heating fluid flow can be changed by adjusting the opening of the valve in the
heating medium line. The temperature in the tank is to be controlled.

The first reason for control is to maintain the temperature at its desired value
when disturbances occur. Some typical disturbances for this process occur in the
following variables: inlet process fluid flow rate and temperature, heating fluid
temperature, and pressure of the heating fluid upstream of the valve. As an exercise,
you should determine how the valve should be adjusted (opened or closed) in
response to an increase in each of these disturbance variables.

The second reason for control is to respond to changes in the desired value. For
example, if the desired temperature in the stirred-tank heat exchanger is increased,
the heating valve percent opening would be increased. The desired values are
based on a thorough analysis of the plant operation and objectives. This analysis
is discussed in Chapter 2, where the main issues are arranged in seven categories:

Why Is Control
Possible?

Feed Temperature

u Product

f
Heating medium

FIGURE 1.5
Schematic drawing of a stirred-tank

heating process.

1. Safety
2. Environmental protection
3. Equipment protection
4. Smooth plant operation and production rate
5. Product quality
6. Profit optimization
7. Monitoring and diagnosis

These issues are translated to values of variables—temperatures, pressures, flows,
and so forth—which are to be controlled.

1.4 a WHY IS CONTROL POSSIBLE?
The proper design of plant equipment is essential for control to be possible and for
control to provide good dynamic performance. Therefore, the control and dynamic
operation is an important factor in plant design. Based on the key features of
feedback control shown in Figure 1.4, the plant design must include adequate
sensors of plant output variables and appropriate final control elements. The sensors
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must respond rapidly so that the control action can be taken in real time. Sensors
using various physical principles are available for the basic process variables (flow,
temperature, pressure, and level), compositions (e.g., mole fraction) and physical
properties (e.g., density, viscosity, heat of combustion). Many of these sensors are
inserted into the process equipment, with a shield protecting them from corrosive
effects of the streams. Others require a sample to be taken periodically from the
process; note that this sampling can be automated so that a new sensor result is
available at frequent intervals. The final control elements in chemical processes are
usually valves that affect fluid flows, but they could be other manipulated variables,
such as power to an electric motor or speed of a conveyor belt.

Another important consideration is the capacity of the process equipment.
The equipment must have a large enough maximum capacity to respond to all
expected disturbances and changes in desired values. For the stirred-tank heat
exchanger, the maximum duty, as influenced by temperature, area, and heating
medium flow rate, must be large enough to maintain the tank temperature for
all anticipated disturbances. This highest heat duty corresponds to the the highest
outlet temperature, the highest process fluid flow, the lowest inlet fluid temperature,
and the highest heat loss to the environment. Each process must be analyzed to
ensure that adequate capacity exists. Further discussion of this topic appears in the
next two chapters.

Therefore, the answer to why control is possible is that we anticipate the
expected changes in plant variables and provide adequate equipment when the plant
is designed. The adequate equipment design for control must be calculated based
on expected changes; merely adding extra capacity, say 20 percent, to equipment
sizing is not correct. In some cases, this would result in waste; in other cases, the
equipment capacity would not be adequate. If this analysis is not done properly
or changes outside the assumptions occur, achieving acceptable plant operation
through manipulating final control elements may not be possible.

1.5 s HOW IS CONTROL DONE?
As we have seen in the automobile driving example, feedback control by human
actions is possible. In some cases, this approach is appropriate, but the continuous,
repetitious actions are tedious for a person. In addition, some control calculations
are too complex or must be implemented too rapidly to be performed by a person.
Therefore, most feedback control is automated, which requires that the key func
tions of sensing, calculating, and manipulating be performed by equipment and
that each element communicate with other elements in the control system. Cur
rently, most automatic control is implemented using electronic equipment, which
uses levels of current or voltage to represent values to be communicated. As would
be expected, many of the computing and some of the communication functions
are being performed increasingly often with digital technology. In some cases
control systems use pneumatic, hydraulic, or mechanical mechanisms to calcu
late and communicate; in these systems, the signals are represented by pressure
or physical position. A typical process plant will have examples of each type of
instrumentation and communication.

Since an essential aspect of process control is instrumentation, this book intro
duces some common sensors and valves, but proper selection of this equipment for
plant design requires reference to one of the handbooks in this area for additional



details. Readers are encouraged to be aware of and use the general references listed
at the end of this chapter.

Obviously, the other key element of process control is a device to perform the Where Is Control
calculations. For much of the history of process plants (up to the 1960s), control cal- implemented?
culations were performed by analog computation. Analog computing devices are
implemented by building a physical system, such as an electrical circuit or mechan
ical system, that obeys the same equations as the desired control calculation. As
you can imagine, this calculation approach was inflexible. In addition, complex cal
culations were not possible. However, some feedback control is still implemented
in this manner, for reasons of cost and reliability in demanding plant conditions.

With the advent of low-cost digital computers, most of the control calculations
and essentially all of the complex calculations are being performed by digital
computers. Most of the principles presented in this book can be implemented
in either analog or digital devices. When covering basic principles in this book,
we will not distinguish between analog and digital computing unless necessary,
because the distinction between analog and digital is not usually important as
long as the digital computer can perform its discrete calculations quickly. Special
aspects of digital control are introduced in Chapter 11. In all chapters after Chapter
11, the control principles are presented along with special aspects of either analog
or digital implementation; thus, both modes of performing calculations are covered
in an integrated manner.

For the purposes of this book, the answer to the question "How is control
done?" is simply, "Automatically, using instrumentation and computation that
perform all features of feedback control without requiring (but allowing) human
intervention."

1 .6 □ WHERE IS CONTROL IMPLEMENTED?

Chemical plants are physically large and complex. The people responsible for op
erating the plant on a minute-to-minute basis must have information from much of
the plant available to them at a central location. The most common arrangement of
control equipment to accommodate this need is shown in Figure l .6. Naturally, the
sensors and valves are located in the process. Signals, usually electronic, commu
nicate with the control room, where all information is displayed to the operating
personnel and where control calculations are performed. Distances between the
process and central control room range from a few hundred feet to a mile or more.
Some control is performed many miles from the process; for example, a remote oil
well can have no human present and would rely on remote automation for proper
operation.

In the control room, an individual is responsible for monitoring and operating
a section of a large, complex plant, containing up to 100 controlled variables and
400 other measured variables. Generally, the plant never operates on "automatic
pilot"; a person is always present to perform tasks not automated, to optimize
operations, and to intervene in case an unusual or dangerous situation occurs,
such as an equipment failure. Naturally, other people are present at the process
equipment, usually referred to as "in the field," to monitor the equipment and
to perform functions requiring manual intervention, such as backwashing filters.
Thus, well-automated chemical plants involve considerable interaction between
people and control calculations.
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FIGURE 1.6
Schematic representation of a typical control system showing both local
and centralized control equipment.

Other control configurations are possible and are used when appropriate. For
example, small panels with instrumentation can be placed near a critical piece of
process equipment when the operator needs to have access to the control system
while introducing some process adjustments. This arrangement would not prevent
the remainder of the plant from being controlled from a central facility. Also, many
sensors provide a visual display of the measured value, which can be seen by the
local operator, as well as a signal transmitted to the central control room. Thus,
the local operator can determine the operating conditions of a unit, but the indi
vidual local displays are distributed about the plant, not collected in a single place
for the local operator.

The short answer to the location question is

1. Sensors, local indicators, and valves are in the process.
2. Displays of all plant variables and control calculations are in a centralized

facility.

It is worth noting that increased use of digital computing makes the distribution
of the control calculation to the sensor locations practical; however, all controllers
would be connected to a computing network that would function like a single
computer for the purposes of the material in this book.

1.7 1 WHAT DOES CONTROL ENGINEERING "ENGINEER"?
What can engineers do so that plants can be maintained reliably and safely near
desired values? Most of the engineering decisions are introduced in the following
five topics.



Process Design
A key factor in engineering is the design of the process so that it can be controlled
well. We noted in the room heating example that the temperature exceeded the
maximum and minimum values because the furnace and heat exchanger were not
able to respond rapidly enough. Thus, a more "responsive" plant would be easier
to control. By responsive we mean that the controlled variable responds quickly
to adjustments in the manipulated variable. Also, a plant that is susceptible to few
disturbances would be easier to control. Reducing the frequency and magnitude
of disturbances could be achieved by many means; a simple example is placing a
large mixing tank before a unit so that feed composition upsets are attenuated by
the averaging effects of the tank. Many more approaches to designing responsive
processes with few disturbances are covered in the book.

11

What Does Control
Engineering
"Engineer"?

Measurements
Naturally, a key decision is the selection and location of sensors, because one can
control only what is measured! The engineer should select sensors that measure
important variables rapidly and with sufficient accuracy. In this book, we will
concentrate on the process analysis related to variable selection and to determining
response time and accuracy needs. Details of a few common sensors are also
presented as needed in exercises; a full review of sensor technology and commercial
equipment is available in the references at the end of this chapter.

Final Elements
The engineer must provide handles—manipulated variables that can be adjusted by
the control calculation. For example, if there were no valve on the heating fluid in
Figure 1.5, it would not be possible to control the process fluid outlet temperature.
This book concentrates on the process analysis related to final element location.
We will typically be considering control valves as the final elements, with the
percentage opening of these valves determined by a signal sent to the valve from a
controller. Specific details about the best final element to regulate flow of various
fluids—liquids, steam, slurries, and so forth—are provided by references noted at
the end of this chapter. These references also present other final elements, such as
motor speed, that are used in the process industries.

Control Structure
The engineer must decide some very basic issues in designing a control system. For
example, which valve should be manipulated to control which measurement? As
an everyday example, one could adjust either the hot or cold water valve opening
to control the temperature of water in a shower. These topics are presented in later
chapters, after a sound basis of understanding in dynamics and feedback control
principles has been built.

Control Calculations
After the variables and control structure have been selected, equation(s) are cho
sen that use the measurement and desired values in calculating the manipulated
variable. As we shall learn, only a few equations are sufficient to provide good
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control for many types of plants. After the control equations' structure is defined,
parameters that appear in the equations are adjusted to achieve the desired control
performance for the particular process.

1.8 □ HOW IS PROCESS CONTROL DOCUMENTED?

As with all activities in chemical engineering, the results are documented in many
forms. The most common are equipment specifications and sizing, operating man
uals, and technical documentation of plant experiments and control equations. In
addition, control engineering makes extensive use of drawings that concisely and
unequivocally represent many design decisions. These drawings are used for many
purposes, including designing plants, purchasing equipment, and reviewing oper
ations and safety procedures. Therefore, many people use them, and to avoid mis
understandings standard symbols have been developed by the Instrument Society
of America for use throughout the world. We shall adhere to a reduced version of
this excellent standard in this book because of its simplicity and wide application.

Sample drawings are shown in Figure 1.7. All process equipment—piping,
vessels, valves, and so forth—is drawn in solid lines. The symbols for equipment
items such as pumps, tanks, drums, and valves are simple and easily recognized.
Sensors are designated by a circle or "bubble" connected to the point in the process
where they are located. The first letter in the instrumentation symbol indicates the
type of variable measured; for example, "T" corresponds to temperature. Some of
the more common designations are the following:

A Analyzer (specific analysis is often indicated next to the symbol, for
example, p (for density) or pH)

F Flow rate
L Level of liquid or solids in a vessel
P Pressure
T Temperature

Note that the symbol does not indicate the physical principle used by the sensor.
Backup tabular documentation is required to determine such details.

The communication to the sensor is shown as a solid line. If the signal is used
only for display to the operator, the second letter in the symbol is "I" for indicator.
Often, the "I" is not used, so that a single letter refers to a measurement used for
monitoring only, not for control.

If the signal is used in a calculation, it is also shown in a circle. The second letter
in the symbol indicates the type of calculation. We consider only two possibilities
in this book: "C" for feedback control and "Y" for any other calculation, such
as addition or square root. The types of control calculations are covered later in
the book. A noncontrol calculation might use the measured flow and temperatures
around a heat exchanger to calculate the duty; that is, Q = pCpF{Tm — Toul). For
controllers, the communication to the final element is shown as a dashed line when
it is electrical, which is the mode communication considered in designs for most
of this book.

The basic symbols with their meanings are documented in Appendix A. This
simplified version of the Instrument Society of America standards is sufficient for
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(a) Continuous stirred-tank reactor with composition control, (b) Flow controller.
(c) Tank level with controller, id) Mixing process with composition control.

this textbook and will provide an adequate background for more complex drawings.
While using the standards may seem like additional work in the beginning, it should
be considered a small investment leading to accurate communication, like learning
grammar and vocabulary, used by all chemical engineers.

1.9 ® WHAT ARE SOME SAMPLE CONTROL STRATEGIES?
Some very simple example process control systems are given in Figure 1.7a
through d. Each drawing contains a process schematic, a controller (in the in
strumentation circle), and the connection between the measurement and the ma
nipulated variable. As a thought exercise, you should analyze each process control
system to verify the causal process relationship and to determine what action the
controller would take in response to a disturbance or a change in desired value (set
point). For example, in Figure 1 .la, with an increase in the inlet temperature, the
control system would sense a decrease in the outlet composition of reactant. In
response, the control system would adjust the heating coil valve, closing it slightly,
until the outlet composition returned to its desired value.

A sample of a more complex process diagram, this one without the control
design, is given in Figure 1.8. The process includes a chemical reactor, a flash
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Integrated feed tank, reactor, and separator with recycle.
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separator, heat exchangers, and associated piping. Note that a control design en
gineer must select from a large number of possible measurements and valves to
determine controller connections from an enormous number of possibilities! In
Chapter 25 you will design a control system for this process that controls the
key variables, such as reactor level and separator temperature, based on specified
control objectives.

1.10 m CONCLUSIONS
The material in this chapter has presented a qualitative introduction to process
control. You have learned the key features of feedback control along with the types
of equipment (instruments and computers) required to apply process control. The
importance of the process design on control was discussed several times in the
chapter.

Based on this introduction, we are prepared to discuss more carefully the
goals of process control in Chapter 2. Understanding the process control goals is
essential to selecting the type of analysis used in control engineering.
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QUESTIONS
1.1. Describe the four necessary components of a feedback control system.
1.2. Review the equipment sketches in Figure Ql 2a and b and explain whether

each is or is not a level feedback control system. In particular, identify the
four necessary components of feedback control, if they exist.
(a) The flow in is a function of the connecting rod position.
(b) The flow out is a function of the level (pressure at the bottom of the

tank) and the resistance to flow.

Flow in varies, cannot be adjusted

Flow out
varies, cannot
be adjusted

% valve opening depends
on the connecting rod position

(«)

Flow out depends on
the level and resistance
due to the exit constriction
and pipe

(b)
FIGURE Ql.2

1.3. Give some examples of feedback control systems in your everyday life,
government, biology, and management. The control calculations may be
automated or performed by people.

1.4. Discuss the advantages of having a centralized control facility. Can you
think of any disadvantages?

1.5. Review the processes sketched in Figure 1.7a through d in which the con
trolled variable is to be maintained at its desired value.
(a) From your chemical engineering background, suggest the physical

principle used by the sensor.



(b) Explain the causal relationship between the manipulated and controlled
variables.

(c) Explain whether the control valve should be opened or closed to in
crease the value of the controlled variable.

(d) Identify possible disturbances that could influence the controlled vari
able. Also, describe how the process equipment would have to be sized
to account for the disturbances.

1.6. The preliminary process designs have been prepared for the systems in
Figure Ql .6. The key variables to be controlled for the systems are (a) flow
rate, temperature, composition, and pressure for the flash system and (b)
composition, temperature, and liquid level for the continuous-flow stirred-
tank chemical reactor. For both processes, disturbances occur in the feed
temperature and composition. Answer the following questions for both
processes.
(a) Determine which sensors and final elements are required so that the

important variables can be controlled. Sketch them on the figure where
they should be located.

(b) Describe how the equipment capacities should be determined.
(c) Select controller pairings; that is, select which measured variable should

be controlled by adjusting which manipulated variable.
(These examples will be reconsidered after quantitative methods have been
introduced.)
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1.7. Consider any of the control systems shown in Figure 1.7a through d. Sug
gest a feedback control calculation that can be used to determine the proper
value of the manipulated valve position. The only values available for the
calculation are the desired value and the measured value of the controlled
variable. (Do the best you can at this point. Control algorithms for feedback
control are presented in Part III.)

1.8. Feedback control uses measurement of a system output variable to deter
mine the value of a system input variable. Suggest an alternative control
approach that uses a measured (disturbance) input variable to determine
the value of a different (manipulated) input variable, with the goal of main
taining a system output variable at its desired value. Apply your approach
to one of the systems in Figure 1.7. Can you suggest a name for your
approach?

1.9. Evaluate the potential feedback control designs in Figure Ql .9. Determine
whether each is a feedback control system. Explain why or why not, and
explain whether the control system will function correctly as shown for
disturbances and changes in desired value.

- H ^ r
& ^

-t&r— C&H-

(a) Level control (b) Level control

- C & r
Solvent

+
component oo

^

U&
do

iron
Cooling
medium
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(c) Composition control without

chemical reaction
FIGURE Q1.9

(d) Temperature control



Control
Objectives and

Benefits
2 . 1 □ I N T R O D U C T I O N

The first chapter provided an overview of process control in which the close asso
ciation between process control and plant operation was noted. As a consequence,
control objectives are closely tied to process goals, and control benefits are closely
tied to attaining these goals. In this chapter the control objectives and benefits
are discussed thoroughly, and several process examples are presented. The control
objectives provide the basis for all technology and design methods presented in
subsequent chapters of the book.

While this book emphasizes the contribution made by automatic control, con
trol is only one of many factors that must be considered in improving process
performance. Three of the most important factors are shown in Figure 2.1, which
indicates that proper equipment design, operating conditions, and process control
should all be achieved simultaneously to attain safe and profitable plant operation.
Clearly, equipment should be designed to provide good dynamic responses in addi
tion to high steady-state profit and efficiency, as covered in process design courses
and books. Also, the plant operating conditions, as well as achieving steady-state
plant objectives, should provide flexibility for dynamic operation. Thus, achiev
ing excellence in plant operation requires consideration of all factors. This book
addresses all three factors; it gives guidance on how to design processes and select
operating conditions favoring good dynamic performance, and it presents automa
tion methods to adjust the manipulated variables.

Safe,
Profitable
Plant
Operation

FIGURE 2.1
Schematic representation of three

critical elements for achieving excellent
plant performance.
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Control Objectives

1. Safety
2. Environmental Protection
3. Equipment Protection
4. Smooth Operation

and Production Rate
5. Product Quality
6. Profit
7. Monitoring and Diagnosis

2.2 B CONTROL OBJECTIVES
The seven major categories of control objectives were introduced in Chapter 1.
They are discussed in detail here, with an explanation of how each influences the
control design for the example process shown in Figure 2.2. The process separates
two components based on their different vapor pressures. The liquid feed stream,
consisting of components A and B, is heated by two exchangers in series. Then
the stream flows through a valve to a vessel at a lower pressure. As a result of
the higher temperature and lower pressure, the material forms two phases, with
most of the A in the vapor and most of the B in the liquid. The exact compositions
can be determined from an equilibrium flash calculation, which simultaneously
solves the material, energy, and equilibrium expressions. Both streams leave the
vessel for further processing, the vapor stream through the overhead line and
the liquid stream out from the bottom of the vessel. Although a simple process,
the heat exchanger with flash drum provides examples of all control objectives,
and this process is analyzed quantitatively with control in Chapter 24.

A control strategy is also shown in Figure 2.2. Since we have not yet studied
the calculations used by feedback controllers, you should interpret the controller as
a linkage between a measurement and a valve. Thus, you can think of the feedback
pressure control (PC) system as a system that measures the pressure and maintains
the pressure close to its desired value by adjusting the opening of the valve in the
overhead vapor pipe. The type of control calculation, which will be covered in
depth in later chapters, is not critical for the discussions in this chapter.

Safety
The safety of people in the plant and in the surrounding community is of paramount
importance. While no human activity is without risk, the typical goal is that working
at an industrial plant should involve much less risk than any other activity in a
person's life. No compromise with sound equipment and control safety practices
is acceptable.

Plants are designed to operate safely at expected temperatures and pressures;
however, improper operation can lead to equipment failure and release of poten
tially hazardous materials. Therefore, the process control strategies contribute to
the overall plant safety by maintaining key variables near their desired values.
Since these control strategies are important, they are automated to ensure rapid
and complete implementation. In Figure 2.2, the equipment could operate at high
pressures under normal conditions. If the pressure were allowed to increase too
far beyond the normal value, the vessel might burst, resulting in injuries or death.
Therefore, the control strategy includes a controller labelled "PC-1" that controls
the pressure by adjusting the valve position (i.e., percent opening) in the vapor line.

Another consideration in plant safety is the proper response to major incidents,
such as equipment failures and excursions of variables outside of their acceptable
bounds. Feedback strategies cannot guarantee safe operation; a very large distur
bance could lead to an unsafe condition. Therefore, an additional layer of control,
termed an emergency system, is applied to enforce bounds on key variables. Typ
ically, this layer involves either safely diverting the flow of material or shutting
down the process when unacceptable conditions occur. The control strategies are
usually not complicated; for example, an emergency control might stop the feed
to a vessel when the liquid level is nearly overflowing. Proper design of these
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Flash separation process with control strategy.

emergency systems is based on a structured analysis of hazards (Battelle Labora
tory, 1985; Warren Centre, 1986) that relies heavily on experience about expected
incidents and on the reliability of process and control equipment.

In Figure 2.2, the pressure is controlled by the element labelled "PC." Nor
mally, it maintains the pressure at or near its desired value. However, the control
strategy relies on the proper operation of equipment like the pressure sensor and
the valve. Suppose that the sensor stopped providing a reliable measurement; the
control strategy could improperly close the overhead valve, leading to an unsafe
pressure. The correct control design would include an additional strategy using
independent equipment to prevent a very high pressure. For example, the safety
valve shown in Figure 2.2 is closed unless the pressure rises above a specified
maximum; then, it opens to vent the excess vapor. It is important to recognize that
this safety relief system is called on to act infrequently, perhaps once per year
or less often; therefore, its design should include highly reliable components to
ensure that it performs properly when needed.

Environmental Protection
Protection of the environment is critically important. This objective is mostly a pro
cess design issue; that is, the process must have the capacity to convert potentially
toxic components to benign material. Again, control can contribute to the proper
operation of these units, resulting in consistently low effluent concentrations. In
addition, control systems can divert effluent to containment vessels should any
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extreme disturbance occur. The stored material could be processed at a later time
when normal operation has been restored.

In Figure 2.2, the environment is protected by containing the material within
the process equipment. Note that the safety release system directs the material for
containment and subsequent "neutralization," which could involve recycling to the
process or combusting to benign compounds. For example, a release system might
divert a gaseous hydrocarbon to a flare for combustion, and it might divert a water-
based stream to a holding pond for subsequent purification through biological
treatment before release to a water system.

Equipment Protection
Much of the equipment in a plant is expensive and difficult to replace without
costly delays. Therefore, operating conditions must be maintained within bounds
to prevent damage. The types of control strategies for equipment protection are
similar to those for personnel protection, that is, controls to maintain conditions
near desired values and emergency controls to stop operation safely when the
process reaches boundary values.

In Figure 2.2, the equipment is protected by maintaining the operating con
ditions within the expected temperatures and pressures. In addition, the pump
could be damaged if no liquid were flowing through it. Therefore, the liquid level
controller, by ensuring a reservoir of liquid in the bottom of the vessel, protects
the pump from damage. Additional equipment protection could be provided by
adding an emergency controller that would shut off the pump motor when the
level decreased below a specified value.

Smooth Operation and Production Rate
A chemical plant includes a complex network of interacting processes; thus, the
smooth operation of a process is desirable, because it results in few disturbances to
all integrated units. Naturally, key variables in streams leaving the process should
be maintained close to their desired values (i.e., with small variation) to prevent
disturbances to downstream units. In Figure 2.2, the liquid from the vessel bottoms
is processed by downstream equipment. The control strategy can be designed to
make slow, smooth changes to the liquid flow. Naturally, the liquid level will not
remain constant, but it is not required to be constant; the level must only remain
within specified limits. By the use of this control design, the downstream units
would experience fewer disturbances, and the overall plant would perform better.

There are additional ways for upsets to be propagated in an integrated plant.
For example, when the control strategy increases the steam flow to heat exchanger
E-102, another unit in the plant must respond by generating more steam. Clearly,
smooth manipulations of the steam flow require slow adjustments in the boiler
operation and better overall plant operation. Therefore, we are interested in both
the controlled variables and the manipulated variables. Ideally, we would like to
have tight regulation of the controlled variables and slow, smooth adjustment of
the manipulated variables. As we will see, this is not usually possible, and some
compromise is required.

People who are operating a plant want a simple method for maintaining the
production rate at the desired value. We will include the important production rate



goal in this control objective. For the flash process in Figure 2.2, the natural method
for achieving the desired production rate is to adjust the feed valve located before
the flash drum so that the feed flow rate F\ has the desired value.

Product Quality
The final products from the plant must meet demanding quality specifications set
by purchasers. The specifications may be expressed as compositions (e.g., percent
of each component), physical properties (e.g., density), performance properties
(e.g., octane number or tensile strength), or a combination of all three. Process
control contributes to good plant operation by maintaining the operating condi
tions required for excellent product quality. Improving product quality control is a
major economic factor in the application of digital computers and advanced control
algorithms for automation in the process industries.

In Figure 2.2, the amount of component A, the material with the higher vapor
pressure, is to be controlled in the liquid stream. Based on our knowledge of
thermodynamics, we know that this value can be controlled by adjusting the flash
temperature or, equivalently, the heat exchanged. Therefore, a control strategy
would be designed to measure the composition in real time and adjust the heating
medium flows that exchange heat with the feed.

Profit

Naturally, the typical goal of the plant is to return a profit. In the case of a utility such
as water purification, in which no income from sales is involved, the equivalent
goal is to provide the product at lowest cost. Before achieving the profit-oriented
goal, selected independent variables are adjusted to satisfy the first five higher-
priority control objectives. Often, some independent operating variables are not
specified after the higher objectives (that is, including product quality but excepting
profit) have been satisfied. When additional variables (degrees of freedom) exist,
the control strategy can increase profit while satisfying all other objectives.

In Figure 2.2 all other control objectives can be satisfied by using exchanger
E-101, exchanger E-102, or a combination of the two, to heat the inlet stream.
Therefore, the control strategy can select the correct exchanger based on the cost
of the two heating fluids. For example, if the process fluid used in E-101 were less
costly, the control strategy would use the process stream for heating preferentially
and use steam only when required for additional heating. How the control strat
egy would implement this policy, based on a selection hierarchy defined by the
engineer, is covered in Chapter 22.

Monitoring and Diagnosis
Complex chemical plants require monitoring and diagnosis by people as well as
excellent automation. Plant control and computing systems generally provide mon
itoring features for two sets of people who perform two different functions: (1) the
immediate safety and operation of the plant, usually monitored by plant operators,
and (2) the long-term plant performance analysis, monitored by supervisors and
engineers.

The plant operators require very rapid information so that they can ensure that
the plant conditions remain within acceptable bounds. If undesirable situations
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occur—or, one hopes, before they occur—the operator is responsible for rapid
recognition and intervention to restore acceptable performance. While much of
this routine work is automated, the people are present to address complex issues
that are difficult to automate, perhaps requiring special information not readily
available to the computing system. Since the person may be responsible for a plant
section with hundreds of measured variables, excellent displays are required. These
are usually in the form of trend plots of several associated variables versus time
and of indicators in bar-chart form for easy identification of normal and abnormal
operation. Examples are shown in Figure 2.3.

Since the person cannot monitor all variables simultaneously, the control sys
tem includes an alarm feature, which draws the operator's attention to variables
that are near limiting values selected to indicate serious maloperation. For exam
ple, a high pressure in the flash separator drum is undesirable and would at the
least result in the safety valve opening, which is not desirable, because it diverts
material and results in lost profit and because it may not always reclose tightly.
Thus, the system in Figure 2.2 has a high-pressure alarm, PAH. If the alarm is ac
tivated, the operator might reduce the flows to the heat exchanger or of the feed to
reduce pressure. This operator action might cause a violation of product specifica
tions; however, maintaining the pressure within safe limits is more important than
product quality. Every measured variable in a plant must be analyzed to determine
whether an alarm should be associated with it and, if so, the proper value for the
alarm limit.

Another group of people monitors the longer-range performance of the plant
to identify opportunities for improvement and causes for poor operation. Usually,
a substantial sample of data, involving a long time period, is used in this analysis,
so that the effects of minor fluctuations are averaged out. Monitoring involves
important measured and calculated variables, including equipment performances
(e.g., heat transfer coefficients) and process performances (e.g., reactor yields and
material balances). In the example flash process, the energy consumption would be
monitored. An example trend of some key variables is given in Figure 2.4, which
shows that the ratio of expensive to inexpensive heating source had an increasing
trend. If the feed flow and composition did not vary significantly, one might suspect

TC- l
Flash

Time (many weeks)
FIGURE 2.4

Example of long-term data, showing the increased use of
expensive steam in the flash process.



that the heat transfer coefficient in the first heat exchanger, E-101, was decreasing
due to fouling. Careful monitoring would identify the problem and enable the
engineer to decide when to remove the heat exchanger temporarily for mechanical
cleaning to restore a high heat transfer coefficient.

Previously, this monitoring was performed by hand calculations, which was
a tedious and inefficient method. Now, the data can be collected, processed if ad
ditional calculations are needed, and reported using digital computers. This com
bination of ease and reliability has greatly improved the monitoring of chemical
process plants.

Note that both types of monitoring—the rapid display and the slower process
analysis—require people to make and implement decisions. This is another form of
feedback control involving personnel, sometimes referred to as having "a person
in the loop," with the "loop" being the feedback control loop. While we will
concentrate on the automated feedback system in a plant, we must never forget that
many of the important decisions in plant operation that contribute to longer-term
safety and profitability are based on monitoring and diagnosis and implemented
by people "manually."

Therefore,

All seven categories of control objectives must be achieved simultaneously; failure
to do so leads to unprofitable or, worse, dangerous plant operation.

In this section, instances of all seven goals were identified in the simple heater
and flash separator. The analysis of more complex process plants in terms of the
goals is a challenging task, enabling engineers to apply all of their chemical engi
neering skills. Often a team of engineers and operators, each with special experi
ences and insights, performs this analysis. Again, we see that control engineering
skills are needed by all chemical engineers in industrial practice.
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Control Objectives

1. Safety
2. Environmental Protection
3. Equipment Protection
4. Smooth Operation

and Production Rate
5. Product Quality
6. Profit
7. Monitoring and Diagnosis

2.3 N DETERMINING PLANT OPERATING CONDITIONS
A key factor in good plant operation is the determination of the best operating
conditions, which can be maintained within small variation by automatic control
strategies. Therefore, setting the control objectives requires a clear understanding
of how the plant operating conditions are determined. A complete study of plant
objectives requires additional mathematical methods for simulating and optimizing
the plant operation. For our purposes, we will restrict our discussion in this section
to small systems that can be analyzed graphically.

Determining the best operating conditions can be performed in two steps.
First, the region of possible operation is defined. The following are some of the
factors that limit the possible operation:

• Physical principles; for example, all concentrations > 0
• Safety, environmental, and equipment protection
• Equipment capacity; for example, maximum flow
• Product quality
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The region that satisfies all bounds is termed the feasible operating region or, more
commonly, the operating window. Any operation within the operating window is
possible. Violation of some of the limits, called soft constraints, would lead to
poor product quality or reduction of long-term equipment life; therefore, short-
term violations of soft constraints are allowed but are to be avoided. Violation of
critical bounds, called hard constraints, could lead to injury or major equipment
damage; violations of hard constraints are not acceptable under any foreseeable
circumstances. The control strategy must take aggressive actions, including shut
ting down the plant, to prevent hard constraint violations. For both hard and soft
constraints, debits are incurred for violating constraints, so the control system is
designed to maintain operation within the operating window. While any operation
within the window is possible and satisfies minimum plant goals, a great difference
in profit can exist depending on the conditions chosen. Thus, the plant economics
must be analyzed to determine the best operation within the window. The con
trol strategy should be designed to maintain the plant conditions near their most
profitable values.

The example shown in Figure 2.5 demonstrates the operating window for a
simple, one-dimensional case. The example involves a fired heater (furnace) with
a chemical reaction occurring as the fluid flows through the pipe or, as it is often
called, the coil. The temperature of the reactor must be held between minimum (no
reaction) and maximum (metal damage or excessive side reactions) temperatures.
When economic objectives favor increased conversion of feed, the profit function
monotonically increases with increasing temperature; therefore, the best operation
would be at the maximum allowable temperature. However, the dynamic data show
that the temperature varies about the desired value because of disturbances such as
those in fuel composition and pressure. Therefore, the effectiveness of the control
strategy in maximizing profit depends on reducing the variation of the temperature.
A small variation means that the temperature can be operated very close to, without
exceeding, the maximum constraint.

Another example is the system shown in Figure 2.6, where fuel and air are
mixed and combusted to provide heat for a boiler. The ratio of fuel to air is im
portant. Too little air (oxygen) means that some of the fuel is uncombusted and
wasted, whereas excess air reduces the flame temperature and, thus, the heat trans-
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FIGURE 2.5

Example of operating window for fired-heater temperature.
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fer. Therefore, the highest efficiency and most profitable operation are near the
stoichiometric ratio. (Actually, the best value is usually somewhat above the stoi
chiometric ratio because of imperfect mixing, leakage, and complex combustion
chemistry.) The maximum air flow is determined by the air compressor and is
usually not a limitation, but a large excess of air leads to extremely high fuel costs.
Therefore, the best plant operation is at the peak of the efficiency curve. An effec
tive control strategy results in a small variation in the excess oxygen in the flue
gas, allowing operation near the peak.

However, a more important factor is safety, which provides another reason
for controlling the excess air. A deficiency of oxygen could lead to a dangerous
condition because of unreacted fuel in the boiler combustion chamber. Should this
situation occur, the fuel could mix with other air (that leaks into the furnace cham
ber) and explode. Therefore, the air flow should never fall below the stoichiometric
value. Note that the control sketch in Figure 2.6 is much simpler than actual control
designs for combustion systems (for example, API, 1977).

Finally, a third example demonstrates that this analysis can be extended to
more than one dimension. We now consider the chemical reactor in Figure 2.5
with two variables: temperature and product flow. The temperature bounds are the
same, and the product flow has a maximum limitation because of erosion of the
pipe at the exit of the fired heater. The profit function, which would be calculated
based on an analysis of the entire plant, is given as contours in the operating
window in Figure 2.7. In this example, the maximum profit occurs outside the
operating window and therefore cannot be achieved. The best operation inside the
window would be at the maximum temperature and flow, which are found at the
upper right-hand corner of the operating window. As we know, the plant cannot
be operated exactly at this point because of unavoidable disturbances in variables
such as feed pressure and fuel composition (which affects heat of combustion).
However, good control designs can reduce the variation of temperature and flow
so that desired values can be selected that nearly maximize the achievable profit
while not violating the constraints. This situation is shown in Figure 2.7, where
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Example of operating window for the feed and
temperature of a fired-heater chemical reactor.

a circle defines the variation expected about the desired values (Perkins, 1990;
Narraway and Perkins, 1993). When control provides small variation, that is, a
circle of small radius, the operation can be maintained closer to the best operation.

All of these examples demonstrate that

Process control improves plant performance by reducing the variation of key vari
ables. When the variation has been reduced, the desired value of the controlled
variable can be adjusted to increase profit.

Note that simply reducing the variation does not always improve plant op
eration. The profit contours within the operating window must be analyzed to
determine the best operating conditions that take advantage of the reduced varia
tion. Also, it is important to recognize that the theoretical maximum profit cannot
usually be achieved because of inevitable variation due to disturbances. This situ
ation should be included in the economic analysis of all process designs.

2.4 m BENEFITS FOR CONTROL
The previous discussion of plant operating conditions provides the basis for cal
culating the benefits for excellent control performance. In all of the examples
discussed qualitatively in the previous section, the economic benefit resulted from



reduced variation of key variables. Thus, the calculation of benefits considers the
effect of variation on plant profit. Before the method is presented, it is emphasized
that the highest-priority control objectives—namely, safety, environmental protec
tion, and equipment protection—are not analyzed by the method described in this
section. Although the control designs for these objectives often reduce variation,
they are not selected for increasing profit but rather for providing safe, reliable
plant operation.

Once the profit function has been determined, the benefit method needs to
characterize the variation of key plant variables. This can be done through the
calculation shown schematically in Figure 2.8. The plant operating data, which is
usually given as a plot or trend versus time, can be summarized by a frequency
distribution. The frequency distribution can be determined by taking many sample
measurements of the process variable, usually separated by a constant time period,
and counting the number of measurements whose values fall in each of several
intervals within the range of data values. The total time period covered must be
long compared to the dynamics of the process, so that the effects of time correlation
in the variable and varying disturbances will be averaged out.

The resulting distribution is plotted as frequency; that is, as fraction or percent
of measurements falling within each interval versus the midpoint value of that
interval. Such a plot is called a frequency distribution or histogram. If the variable
were constant, perhaps due to perfect control or the presence of no disturbances,
the distribution would have one bar, at the constant value, rising to 1.0 (or 100%).
As the variation in the values increases, the distribution becomes broader; thus,
the frequency distribution provides a valuable summary of the variable variation.

The distribution could be described by its moments; in particular, the mean
and standard deviation are often used in describing the behavior of variables in
feedback systems (Snedecor and Cochran, 1980; Bethea and Rhinehart, 1991).
These values can be calculated from the plant data according to the following
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Schematic presentation of the method for representing the
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Normal distribution.
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(2.2)Standard deviation = sy =

where F,- = measured value of variable
sY = variance
n = number of data points

When the experimental distribution can be characterized by the standard nor
mal distribution, the variation about the mean is characterized by the standard
deviation as is shown in Figure 2.9. (Application of the central limit theorem to
data whose underlying distribution is not normal often results in the valid use
of the normal distribution.) When the number of data in the sample are large,
the estimated (sample) standard deviation is approximately equal to the popula
tion standard deviation, and the following relationships are valid for the normally
distributed variable:

About 68.2% of the variable values are within ±s of mean.
About 95.4% of the variable values are within ±2s of mean.
About 99.7% of the variable values are within ±3s of mean.

In all control performance and benefits analysis, the mean and standard de
viation can be used in place of the frequency distribution when the distribution is
normal. As is apparent, a narrow distribution is equivalent to a small standard devia
tion. Although the process data can often be characterized by a normal distribution,
the method for calculating benefits does not depend on the normal distribution,
which was introduced here to relate the benefits method to statistical terms often
used to describe the variability of data.

The empirical histogram provides how often—that is, what percentage of the
time—a variable has a certain value, with the value for each histogram entry taken
as the center of the variable interval. The performance of plant operation at each
variable value can be determined from the performance function. Depending on
the plant, the performance function could be reactor conversion, efficiency, pro
duction rate, profit, or other variable that characterizes the quality of operation.
The average performance for a set of representative data (that is, frequency dis
tribution) is calculated by combining the histogram and profit function according
to the following equation (Bozenhardt and Dybeck, 1986; Marlin et al., 1991; and
Stout and Cline, 1976).

M

P m = J 2 f j p j < 2 3 )
where Pave = average process performance

Fj = fraction of data in interval j = Nj/Nj
Nj = number of data points in interval j
Nt = total number of data points
Pj = performance measured at the midpoint of interval j
M = number of intervals in the frequency distribution
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Schematic presentation of the method for calculating the
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This calculation is schematically shown in Figure 2.10. The calculation is tedious
when done by hand but is performed easily with a spreadsheet or other computer
program.

Note that methods for predicting how improved control affects the frequency
distribution require technology covered in Part in of the book. These methods
require a sound understanding of process dynamic responses and typical control
calculations. For now, we will assume that the improved frequency distribution
can be predicted.

EXAMPLE 2.1.
This example presents data for a reactor of the type shown in Figure 2.5. The
reaction taking place is the pyrolysis of ethane to a wide range of products, one
of which is the desired product, ethylene. The goal for this example is to maximize
the conversion of feed ethane. This could be achieved by increasing the reactor
temperature, but a hard constraint, the maximum temperature of 864°C, must not
be exceeded, or damage will occur to the furnace. Control performance data is
provided in Table 2.1.

In calculating benefits for control improvement, the calculation is performed
twice. The first calculation uses the base case distribution, which represents the
plant performance with poor control. The base case reactor temperature, shown as
the top graph in Figure 2.11, might result from control via the plant operator occa
sionally adjusting the fuel flow. The second calculation uses the tighter distribution
shown in the middle graph, which results from improved control using methods de-
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scribed in Parts III and IV. The process performance correlation, which is required
to relate the temperature to conversion, is given in the bottom graph. The data for
the graphs, along with the calculations for the averages, are given in Table 2.1.

The difference between the two average performances, a conversion increase
of 4.4 percent, is the benefit for improved control. Note that the benefit is achieved
by reducing the variance and increasing the average temperature. Both are re
quired in this example; simply reducing variance with the same mean would not
be a worthwhile achievement! Naturally, this benefit must be related to dollars
and compared with the costs for equipment and personnel time when deciding
whether this investment is justified. The economic benefit would be calculated as
follows:

Aprofit = (feed flow) (A conversion) ($/kg products) (2.4)
In a typical ethylene plant, the benefits for even a small increase in conversion
would be much greater than the costs. Additional benefits would result from fewer
disturbances to downstream units and longer operating life of the fired heater due
to reduced thermal stress.

EXAMPLE 2.2.
A second example is given for the boiler excess oxygen shown in Figure 2.6. The
discussion in the previous section demonstrated that the profit is maximized when
the excess oxygen is maintained slightly above the stoichiometric ratio, where
the efficiency is at its maximum. Again, the process performance function, here
efficiency, is used to evaluate each operating value, and frequency distributions
are used to characterize the variation in performance.

The performance is calculated for the base case and an improved control
case, and the benefit is calculated as shown in Figure 2.12 for an example with

TABLE 2.1
Frequency data for Example 2.1

Data with
Initial data improved control

Temperature midpoint Conversion P.-
(°C) (%) *7 Pj*Fj F j P,*F,
842 50 0 0 0 0
844 51 0.0666 3.4 0 0
846 52 0.111 5.778 0 0
848 53 0.111 5.889 0 0
850 54 0.156 8.4 0 0
852 55 0.244 13.44 0 0
854 56 0.133 7.467 0 0
856 57 0.111 6.333 0 0
858 58 0.044 2.578 0.25 14.5
860 59 0.022 1.311 0.50 29.5
862 60 0 0 0.25 15

Average conversion (%) =■ E P j * F j = 54.6 59
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Data for Example 2.1 in which the
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realistic data. The data for the graphs, along with the calculations for the averages,
are given in Table 2.2. The average efficiency increased by almost 1 percent with
better control and would be related to profit as follows:

Aprofit = (A efficiency/100) (steam flow) (A#vap) ($/energy) (2.5)
This improvement would result in fuel savings worth tens of thousands of dollars
per year in a typical industrial boiler. In this case, the average of the process
variable (excess oxygen) is the same for the initial and improved operations, be
cause the improvement is due entirely to the reduction in the variance of the excess
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oxygen. The difference between the chemical reactor and the boiler results from
the different process performance curves. Note that the improved control case has
its desired value at an excess oxygen value slightly greater than where the maxi
mum profit occurs, so that the chance of a dangerous condition is negligibly small.

A few important assumptions in this benefits calculation method may not be
obvious, so they are discussed here. First, the frequency distributions can never
be guaranteed to remain within the operating window. If a large enough data
set were collected, some data would be outside of the operating window due to
infrequent, large disturbances. Therefore, some small probability of exceeding the
constraints always exists and must be accepted. For soft constraints, it is common
to select an average value so that no more than a few percent of the data exceeds the
constraint; often the target is two standard deviations from the limit. For important
hard constraints, an average much farther from the constraint can be selected, since
the emergency system will activate each time the system reaches a boundary.

A second assumption concerns the mixing of steady-state and dynamic re
lationships. Remember that the process performance function is developed from
steady-state analysis. The frequency distribution is calculated from plant data,
which is inherently dynamic. Therefore, the two correlations cannot strictly be
used together, as they are in equation (2.3). The difficulty is circumvented if the
plant is assumed to have operated at quasi-steady state at each data point, then
varied to the next quasi-steady state for the subsequent data point. When this
assumption is valid, the plant data is essentially from a series of steady-state oper
ations, and equation (2.3) is valid, because all data and correlations are consistently
steady-state.

TABLE 2.2

Frequency data for Example 2.2
Data with

Ini t ia l data improved contro l
Excess oxygen midpoint Boiler efficiency Pj

(mol fract ion) (%) Fj P, * F, Fj P,*F j
0.25 83.88 0 0 0 0
0.75 85.70 0 0 0 0
1.25 86.85 0.04 3.47 0 0
1.75 87.50 0.12 10.50 0.250 2.19
2.25 87.70 0.24 21.05 0.475 41.66
2.75 87.54 0.12 10.50 0.475 41.58
3.25 87.10 0.20 17.42 0.025 2.18
3.75 86.48 0.04 3.46 0 0
4.25 85.76 0.08 6.86 0 0
4.75 85.02 0.04 3.40 0 0
5.25 84.36 0.08 6.75 0 0
5.75 83.86 0.04 3.35 0 0

Average efficiency (%) =■ Y , P j *Fy = 86.77 87.70
I^MM#^ftS»^#^ff.tgM^g))EJW^



Third, the approach is valid for modifying the behavior of one process variable,
with all other variables unchanged. If many control strategies are to be evaluated,
the interaction among them must be considered. The alterations to the procedure
depend on the specific plant considered but would normally require a model of the
integrated plant.
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The analysis method presented in this section demonstrates that information on the
variability of key variables is required for evaluating the performance of a process-
average values of process variables are not adequate.

The method explained in this section clearly demonstrates the importance of
understanding the goals of the plant prior to evaluating and designing the control
strategies. It also shows the importance of reducing the variation in achieving good
plant operation and is a practical way to perform economic evaluations of potential
investments.

2.5 n IMPORTANCE OF CONTROL ENGINEERING
Good control performance yields substantial benefits for safe and profitable plant
operation. By applying the process control principles in this book, the engineer
will be able to design plants and control strategies that achieve the control objec
tives. Recapitulating the material in Chapter 1, control engineering facilitates good
control by ensuring that the following criteria are satisfied.

Control Is Possible
The plant must be designed with control strategies in mind so that the appropriate
measurements and manipulated variables exist. Control of the composition of the
liquid product from the flash drum in Figure 2.2 requires the flexibility to adjust
the valves in the heating streams. Even if the valve can be adjusted, the total heat
exchanger areas and utility flows must be large enough to satisfy the demands of
the flash process. Thus, the chemical engineer is responsible for ensuring that the
process equipment and control equipment provide sufficient flexibility.

The Plant Is Easy to Control

Clearly, reduction in variation is desired. Typically, plants that are subject to few
disturbances, due to inventory (buffer) between the disturbance and the controlled
variable, are easier to control. Unfortunately, this is contradictory to many modern
designs, which include energy-saving heat integration schemes and reduced plant
inventories. Therefore, the dynamic analysis of such designs is important to deter
mine how much (undesired) variance results from the (desired) lower capital costs
and higher steady-state efficiency. Also, the plant should be "responsive"; that is,
the dynamics between the manipulated and controlled variables should be fast—the
faster the better. Plant design can influence this important factor substantially.
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Proper Control Calculations Are Used

Properly designed control calculations can improve the control performance by
reducing the variation of the controlled variable. Some of the desired characteristics
for these calculations are simplicity, generality, reliability, and flexibility. The basic
control algorithm is introduced in Chapter 8.

Control Equipment Is Properly Selected

Equipment for process control involves considerable cost and must be selected
carefully to avoid wasteful excess equipment. Information on equipment cost can
be obtained from the references in Chapter 1.
EXAMPLE 2.3.
Control performance depends on process and control equipment design. The
plant section in Figure 2.13a and b includes different designs for a packed-bed
chemical reactor and two distillation towers. The feed to the plant section experi
ences composition variation, which results in variation in the product composition,
which should be maintained as constant as possible.

The lower-cost plant design in Figure 2.13a has no extra tankage and a low-
cost analyzer that must be placed after the distillation towers. The more costly
design has a feed tank, to reduce the effects of the feed compositions through
mixing, and a more expensive analyzer located at the outlet of the reactor for faster
sensing. Thus, the design in Figure 2.13b has smaller disturbances to the reactor
and faster control. The dynamic responses show that the control performance of
the more costly plant is much better. Whether the investment is justified requires an
economic analysis of the entire plant. As this example demonstrates, good control
engineering involves proper equipment design as well as control calculations.

EXAMPLE 2.4.
Control contributes to safety by maintaining process variables near their desired
values. The chemical reactor with highly exothermic reaction in Figure 2.14 demon
strates two examples of safety through control. Many input variables, such as feed
composition, feed temperature, and cooling temperature, can vary, which could
lead to dangerous overflow of the liquid and large temperature excursions (run
away). The control design shown in Figure 2.14 maintains the level near its desired
value by adjusting the outlet flow rate, and it maintains the temperature near its
desired value by adjusting the coolant flow rate. If required, these controls could
be supplemented with emergency control systems.

EXAMPLE 2.5.
The type of control calculation can affect the dynamic performance of the process.
Consider the system in Figure 2.15a through c, which has three different control
designs, each giving a different control performance. The process involves mixing
two streams to achieve a desired concentration in the exit stream by adjusting one
of the inlet streams. The first design, in Figure 2.15a, gives the result of a very sim
ple feedback control calculation, which keeps the controlled variable from varying
too far from but does not return the controlled variable to the desired value; this
deviation is termed offset and is generally undesirable. The second design, in
Figure 2.156, uses a more complex feedback control calculation, which provides*'
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(a) Example of a process design that is difficult to control.
(b) Example of a process that is easier to control.

response to disturbances that returns the controlled variable to its desired value.
Since the second design relies on feedback principles, the controlled variable ex
periences a rather large initial deviation, which cannot be reduced by improved
feedback calculations. The third design combines feedback with a predicted cor
rection based on a measurement of the disturbance, which is called feedforward.
The third design provides even better performance by reducing the magnitude
of the initial response along with a return to the desired value. The calculations
used for these designs, along with criteria for selecting among possible designs,
are covered in later chapters. This example simply demonstrates that the type of
calculation can substantially affect the dynamic response of a control system.
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FIGURE 2.14
Control for stirred-tank reactor.
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2.6 m CONCLUSIONS
Good control design addresses a hierarchy of control objectives, ranging from
safety to product quality and profit, which depend on the operating objectives for
the plant. The objectives are determined by both steady-state and dynamic analysis
of the plant performance. The steady-state feasible operating region is defined by
the operating window; plant operation should remain within the window, because
constraint violations involve severe penalties. Within the operating window, the
condition that results in the highest profit is theoretically the best operation. How
ever, because the plant cannot be maintained at an exact value of each variable due
to disturbances, variation must be considered in selecting an operating point that
does not result in (unacceptably frequent) constraint violations yet still achieves a
high profit. Process control reduces the variation and results in consistently high
product quality and close approach to the theoretical maximum profit. Methods
for quantitatively analyzing these factors are presented in this chapter.

As we have learned, good performance provides "tight" control of key vari
ables; that is, the variables vary only slightly from their desired values. Clearly,
understanding the dynamic behavior of processes is essential in designing control
strategies. Therefore, the next part of the book addresses process dynamics and
modelling. Only with a thorough knowledge of the process dynamics can we design
control calculations that meet demanding objectives and yield large benefits.
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These questions provide exercises in relating process variability to performance.
Much of the remainder of the book addresses how process control can reduce the
variability of key variables.

QUESTIONS
2.1. For each of the following processes, identify at least one control objective in

each of the seven categories introduced in Section 2.2. Describe a feedback
approach appropriate for achieving each objective.
(a) The reactor-separator system in Figure 1.8
(b) The boiler in Figure 14.17
(c) The distillation column in Figure 15.18
(d) The fired heater in Figure 17.17

2.2. The best distribution of variable values depends strongly on the perfor
mance function of the process. Three different performance functions are
given in Figure Q2.2. In each case, the average value of the variable (xave)
must remain at the specified value, although the distribution around the av
erage is not specified. The performance function, P, can be assumed to be

ATAverage
Process variable

FIGURE Q2.2

Average
Process variable

Average
Process variable



a quadratic function of the variable, x, in every segment of the distribution.

P,=a-\-b (Xj - xave) + c (Xi - *ave)2

For each of the cases in Figure Q2.2, discuss the relationship between the
distribution and the average profit, and determine the distribution that will
maximize the average performance function. Provide quantitative justifi
cation for your result.

2.3. The fired heater example in Figure 2.11 had a hard constraint.
(a) Sketch the performance function for this situation, including the per

formance when violations occur, on the figure.
(b) Assume that the distribution of the temperature would have 0.005 frac

tion of its operation exceeding the limit of 864°C and that each time
the limit is exceeded, the plant incurs a cost of $1,000 to restart the
equipment. Can you calculate the total cost per year for exceeding the
limit?

(c) Make any additional assumptions and complete the calculation.

2.4. Sometimes there is no active hard constraint. Assume that the fired heater
in Figure 2.11 has no hard constraint, but that a side reaction forming
undesired products begins to occur significantly at 850°C. This side reaction
has an activation energy with larger magnitude than the product reaction.
Sketch the shape of the performance function for this situation. How would
you determine the best desired (average) value of the temperature and the
best temperature distribution?

2.5. Sometimes engineers use a shortcut method for determining the average
process performance. In this shortcut, the average variable value is used,
rather than the full distribution, in calculating the performance. Discuss the
assumptions implicit in this shortcut and when it is and is not appropriate.

2.6. A chemical plant produces vinyl chloride monomer for subsequent produc
tion of polyvinyl chloride. This plant can sell all monomer it can produce
within quality specifications. Analysis indicates that the plant can produce
175 tons/day of monomer with perfect operation. A two-month production
record is given in Figure Q2.6. Calculate the profit lost by not operating
at the highest value possible. Discuss why the plant production might not
always be at the highest possible value.

2.7. A blending process, shown in Figure Q2.7, mixes component A into a
stream. The objective is to maximize the amount of A in the stream without
exceeding the upper limit of the concentration of A, which is 2.2 mole/m3.
The current operation is "open-loop," with the operator occasionally look
ing at the analyzer value and changing the flow of A. The flow during the
period that the data was collected was essentially constant at 1053 m3/h.
How much more A could have been blended into the stream with perfect
control, that is, if the concentration of A had been maintained exactly at its
maximum? What would be the improvement if the new distribution were
normal with a standard deviation of 0.075 mole/m3?
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2.8. The performance function for a distillation tower is given in Figure Q2.8
in terms of lost profit from the best operation as a function of the bottoms
impurity, *B (Stout and Cline, 1978). Calculate the average performance
for the four distributions (A through D) given in Table Q2.8 along with
the average and standard deviation of the concentration, x&. Discuss the
relationship between the distributions and the average performance.
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FIGURE Q2.8

(Reprinted by permission. Copyright ©1976, Instrument
Society of America. From Stout, T., and R. Cline,

"Control Systems Justification." Instr. Techn.,
September 1976, pp. 51-58.)

Fraction off time al X g

XB A B C D
0.25 0 0 0 0
0.5 0.25 0.05 0 0
0.75 0.50 0.05 0 0
1.0 0.25 0.10 0 0
1.5 0 0.20 0 0.333
2.0 0 0.30 0 0.333
3.0 0 0.20 0.25 0.333
4.0 0 0.10 0.50 0
5.0 0 0 0.25 0
6.0 0 0 0 0
maammmmmm^mmmmmummmmummmmam

Questions

2.9. Profit contours similar to those in Figure Q2.9 have been reported by
Gorzinski (1983) for a distillation tower separating normal butane and
isobutane in an alkylation process for a petroleum refinery. Based on the
shape of the profit contours, discuss the selection of desired values for the
distillate and bottoms impurity variables to be used in an automation strat
egy. (Recall that some variation about the desired values is inevitable.) If
only one product purity can be controlled tightly to its desired value, which
would be the one you would select to control tightly?

P 5
I 3

Profit as %
of maximum

1 2 3
Light key in bottoms (mole %)

FIGURE Q2.9
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The engineer must understand the dynamic behavior of a physical system in order
to design the equipment, select operating conditions, and implement an automation
technique properly. The need for understanding dynamics is first illustrated through
the discussion of two examples. The first involves the dynamic responses of the bus
and bicycle shown in Figure II. 1. When the drivers wish to maneuver the vehicles,
such as to make a 180° U turn, the bicycle can be easily turned in a small radius,
while the bus requires an arc of considerably larger radius. Clearly, the design of
the vehicle affects the possible maneuverability, even when the bus has an expert
driver. Also, the driver of the bus and the rider of the bicycle must use different rules
in steering. This simple example demonstrates that (1) a key aspect of automation is
designing and building equipment that can be easily controlled, and (2) the design
and implementation of an automation system requires knowledge of the dynamic
behavior of the system.

These two important principles can be applied to the chemical reactor exam
ple shown in Figure II.2. The reactor operation can be influenced by adjusting the
opening of the valve in the coolant pipe, and the outlet concentration is measured
by an analyzer located downstream from the reactor outlet. Regarding the first
principle (the effect of process design), it seems likely that the delay in measuring
the outlet concentration would reduce the effectiveness of feedback control. Re
garding the second principle (the effect of automation method), a very aggressive
method for adjusting the coolant flow could cause a large overshoot or oscillations
in returning the concentration to its desired value; thus, the feedback adjustments
should be tailored to the specific process.
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FIGURE 11.1
Bus and bicycle maneuverability.

F T n
-AO

u
do

f c
FIGURE 11.2
Nonisothermal CSTR.

System A
Output

System B
Output

Input

/ ^

Time
FIGURE 11.3

The knowledge of dynamic behavior required for process control is formalized
in mathematical models. In fact, modelling plays such a central role in the theory
and practice of process control that the statement is often made that modelling is
the key element in the successful application of control. A complete explanation
of the needs of process control cannot be presented until more detail is covered
on feedback systems; however, the importance of the four basic questions to be
addressed through modelling should be clear from the general discussion in the
previous chapters, along with the examples in Figures II. 1 and H.2.

1. Which variables can be influenced? Process control inherently involves some
manipulated variables, which can be adjusted, and some controlled variables,
which are affected by the adjustments. By turning the steering wheel, the
driver can influence the direction of the bus, but not its speed. By changing
the coolant valve opening in the reactor example, the reactor temperature
and concentration can be influenced. The identification of variables will be
addressed in this part through the analysis of degrees of freedom and cause-
effect relationships, and the aspect of controllability will be introduced later
in the book.

2. Over what range can the variables be altered? The acceptable range of pro
cess variables, such as temperature and pressure, and the limited range of the
manipulated variables places bounds on the effects of adjustments. The bus
wheels can only be turned a maximum amount to the right and left, and the
coolant valve is limited between fully closed (no flow) and fully opened (max
imum flow). The range of possible values is termed the operating window,
and models can be used to determine the bounds or "frame" on this window
quantitatively.

3. How effectively can feedback maintain the process at desired conditions ? The
following aspects of the process behavior are required to implement process
control.
(a) Sign and magnitude of response: The bus driver must know how the bus

will respond when the wheel is turned clockwise, and the operator needs
to know whether temperature will increase or decrease when the valve
is opened. It is essential that the sign does not change and is best if the
magnitude does not vary greatly.

(b) Speed of response: The speed must be known to determine the manipu
lations that can be entered; if the manipulations are too aggressive, the
system can oscillate and even become unstable. This can happen in driving
a bus on a slippery road and in trying to control the concentration when
there is a long delay between the adjusted variable and measurement.

(c) Shape of response: The shape of dynamic responses can vary greatly. For
example, the two responses in Figure II.3 have the same "speed" as mea
sured by the time to reach their final values, but the shapes are different.
Response A, which gives an indication of the response without delay, is
better for control than response B, which gives no output indication of
the input change for a long time.

4. How sensitive are the results? Process control systems are usually applied in
industrial-scale plants that change operations often and experience variation
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which must be considered in process control. For example, the behavior of Process Dynamics
the chemical reactor could depend on an inhibitor in the feed and catalyst
deactivation. The analysis of the possible variation in the system and sensitivity
of the dynamic behavior to the variability begins in the modelling procedure.

In summary, the dynamic features most favorable to good control include
(1) nearly constant sign and magnitude, (2) a fast response, (3) minimum delay,
and (4) insensitivity to process changes. This good situation cannot always be
achieved through process design, because processes are designed to meet additional
requirements such as high pressures, volumes for reactor residence times, or area
for mass transfer and heat transfer. However, the features that favor good control
should be a consideration in the process design and must be known for the design
of the process controls.

The modelling procedures in this part provide methods for determining these
features and for relating them to process equipment design and operating variables.
There are many types of models used by engineers, so important aspects of these
models used in this book are briefly summarized and compared with alternatives.

1. Mathematical models: The following definition of a mathematical model was
given by Denn (1986).

A mathematical model of a process is a system of equations whose so
lution, given specific input data, is representative of the response of the
process to a corresponding set of inputs.

We will deal exclusively with mathematical models for process analysis. In
contrast, experimental or analog methods can use physical models, like a
model airplane in a wind tunnel or an electrical circuit, to represent the be
havior of a full-scale system empirically.

2. Fundamental and empirical models: Fundamental models are based on such
principles as material and energy conservation and can provide great insight as
well as predictive power. For many systems, fundamental models can be very
complex, and simplified empirical models based on experimental dynamic
data are sufficient for many process control tasks. Both types of models are
introduced in Part II.

3. Steady-state and dynamic models: Both steady-state and dynamic models are
used in process control analysis. Dynamic modelling is emphasized in this
book because it is assumed that the reader has prior experience in steady-state
modelling.

4. Lumped and distributed models: Lumped models are valid for systems in
which the properties of a system do not depend on the position within the sys
tem. For lumped systems, steady-state models involve algebraic equations, and
dynamic models involve ordinary differential equations. Distributed models
are valid for systems in which the properties depend on position, and their
dynamic models involve partial differential equations. To maintain a manage-
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PART II delay in a pipe. Since many chemical process designs involve inventories that
Process Dynamics are approximately well-mixed, lumped models are often sufficient, but each

system should be evaluated for the proper modelling assumptions.

Finally, one must recognize that modelling is performed to answer specific
questions; thus, no one model is appropriate for all situations. The methods in
this part have been selected to provide the information required for the control
analyses included in this book and provide only a limited introduction to the topic
of process modelling. Many interesting modelling concepts, mathematical solution
techniques, and results for important process structures are not included. Therefore,
the reader is encouraged to refer to the references at the end of each chapter.

REFERENCE
Denn, M., Process Modeling, Pitman Publishing, Marshfield, MA, 1986.
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3.1 El INTRODUCTION
The models addressed in this chapter are based on fundamental theories or laws,
such as the conservations of mass, energy, and momentum. Of many approaches to
understanding physical systems, engineers tend to favor fundamental models for
several reasons. One reason is the amazingly small number of principles that can
be used to explain a wide range of physical systems; thus, fundamental principles
simplify our view of nature. A second reason is the broad range of applicability
of fundamental models, which allow extrapolation (with caution) beyond regions
of immediate empirical experience; this enables engineers to evaluate potential
changes in operating conditions and equipment and to design new plants. Perhaps
the most important reason for using fundamental models in process control is the
analytical expressions they provide relating key features of the physical system
(flows, volumes, temperatures, and so forth) to its dynamic behavior. Since chemi
cal engineers design the process, these relationships can be used to design processes
that are as easy to control as possible, so that a problem created through poor pro
cess design need not be partially solved through sophisticated control calculations.

The presentation in this chapter assumes that the reader has previously studied
the principles of modelling material and energy balances, with emphasis on steady-
state systems. Those unsure of the principles should refer to one of the many
introductory textbooks in the area (e.g., Felder and Rousseau, 1986; Himmelblau,
1982). In this chapter, a step-by-step procedure for developing fundamental models
is presented that emphasizes dynamic models used to analyze the transient behavior
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of processes and control systems. The procedure begins with a definition of the
goals and proceeds through formulation, solution, results analysis, and validation.
Analytical solutions will be restricted to the simple integrating factor for this
chapter and will be extended to Laplace transforms in the next chapter.

Experience has shown that the beginning engineer is advised to follow this
procedure closely, because it provides a road map for the sequence of steps and a
checklist of issues to be addressed at each step. Based on this strong recommen
dation, the engineer who closely follows the procedure might expect a guarantee
of reaching a satisfactory result. Unfortunately, no such guarantee can be given,
because a good model depends on the insight of the engineer as well as the pro
cedure followed. In particular, several types of models of the same process might
be used for different purposes; thus, the model formulation and solution should
be matched with the problem goals. In this chapter, the modelling procedure is
applied to several process examples, with each example having a goal that would
be important in its own right and leads to insights for the later discussions of
control engineering. This approach will enable us to complete the modelling pro
cedure, including the important step of results analysis, and learn a great deal of
useful information about the relationships between design, operating conditions,
and dynamic behavior.

3.2 □ A MODELLING PROCEDURE

Modelling is a task that requires creativity and problem-solving skills. A general
method is presented in Table 3.1 as an aid to learning and applying modelling
skills, but the engineer should feel free to adapt the procedure to the needs of

TABLE 3.1
Outline of fundamental modelling procedure
1. Define goals

a. Specific design decisions
b. Numerical values
c. Functional relationships
d. Required accuracy

2. Prepare information
a. Sketch process and identify system
b. Identify variables of interest
c. State assumptions and data

3. Formulate model
a. Conservation balances
b. Constitutive equations
c. Rationalize (combine equations

and collect terms)
d. Check degrees of freedom
e. Dimensionless form

4. Determine solution
a. Analytical
b. Numerical

5. Analyze results
a. Check results for correctness

1. Limiting and approximate answers
2. Accuracy of numerical method

b. Interpret results
1. Plot solution
2. Characteristic behavior like

oscillations or extrema
3. Relate results to data and assumptions
4. Evaluate sensitivity
5. Answer "what if" questions

6. Validate model
a. Select key values for validation
b. Compare with experimental results
c. Compare with results from more complex

model



particular problems. It is worth noting that the steps could be divided into two
categories: steps 1 to 3 (model development) and steps 4 to 6 (model solution
or simulation), because several solution methods could be applied to a particular
model. All steps are grouped together here as an integrated modelling procedure,
because this represents the vernacular use of the term modelling and stresses the
need for the model and solution technique to be selected in conjunction to satisfy
the stated goal successfully. Also, while the procedure is presented in a linear
manner from step 1 to step 6, the reality is that the engineer often has to iterate to
solve the problem at hand. Only experience can teach us how to "look ahead" so that
decisions at earlier steps are made in a manner that facilitate the execution of later
steps. Each step in the procedure is discussed in this section and is demonstrated
for a simple stirred-tank mixing process.
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Define Goals
Perhaps the most demanding aspect of modelling is judging the type of model
needed to solve the engineering problem at hand. This judgment, summarized in
the goal statement, is a critical element of the modelling task. The goals should
be specific concerning the type of information needed. A specific numerical value
may be needed; for example, "At what time will the liquid in the tank overflow?"
In addition to specific numerical values, the engineer would like to determine
semi-quantitative information about the characteristics of the system's behavior;
for example, "Will the level increase monotonically or will it oscillate?" Finally,
the engineer would like to have further insight requiring functional relationships;
for example, "How would the flow rate and tank volume influence the time that
the overflow will occur?"

Another important factor in setting modelling goals is the accuracy of a model
and the effects of estimated inaccuracy on the results. This factor is perhaps not
emphasized sufficiently in engineering education—a situation that may lead to
the false impression that all models have great accuracy over large ranges. The
modelling and analysis methods in this book consider accuracy by recognizing
likely errors in assumptions and data at the outset and tracing their effects through
the modelling and later analysis steps. It is only through this careful analysis that
we can be assured that designs will function properly in realistic situations.
EXAMPLE 3.1.
Goal. The dynamic response of the mixing tank in Figure 3.1 to a step change
in the inlet concentration is to be determined, along with the way the speed and
shape of response depend on the volume and flow rate. In this example, the outlet
stream cannot be used for further production until 90% of the change in outlet con
centration has occurred; therefore, a specific goal of the example is to determine
how long after the step change the outlet stream reaches this composition.

Prepare Informat ion
The first step is to identify the system. This is usually facilitated by sketching the
process, identifying the key variables, and defining the boundaries of the system
for which the balances will be formulated.
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FIGURE 3.1
Continuous-flow stirred tank.
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The system, or control volume, must be a volume within which the important prop
erties do not vary with position.

The assumption of a well-stirred vessel is often employed in this book because
even though no such system exists in fact, many systems closely approximate
this behavior. The reader should not infer from the use of stirred-tank models in
this book that more complex models are never required. Modelling of systems
via partial differential equations is required for many processes in which product
quality varies with position; distributed models are required for many processes,
such as paper and metals. Systems with no spatial variation in important variables
are termed lumped-parameter systems, whereas systems with significant variation
in one or more directions are termed distributed-parameter systems.

In addition to system selection, all models require information to predict a
system's behavior. An important component of the information is the set of as
sumptions on which the model will be based; these are selected after consideration
of the physical system and the accuracy required to satisfy the modelling goals.
For example, the engineer usually is not concerned with the system behavior at
the atomic level, and frequently not at the microscopic level. Often, but not al
ways, the macroscopic behavior is sufficient to understand process dynamics and
control. The assumptions used often involve a compromise between the goals of
modelling, which may favor detailed and complex models, and the solution step,
which favors simpler models.

A second component of the information is data regarding the physicochemical
system (e.g., heat capacities, reaction rates, and densities). In addition, the external
variables that are inputs to the system must be defined. These external variables,
sometimes termed forcing functions, could be changes to operating variables in
troduced by a person (or control system) in an associated process (such as inlet
temperature) or changes to the behavior of the system (such as fouling of a heat
exchanger).
EXAMPLE 3.1.
Information. The system is the liquid in the tank. The tank has been designed
well, with baffling and impeller size, shape, and speed such that the concentration
should be uniform in the liquid (Foust et al., 1980).

Assumptions.
1. Well-mixed vessel
2. Density the same for A and solvent
3. Constant flow in

Data.
1. F0 = 0.085 m3/min; V = 2.1 m3; CAi„u = 0.925 mole/m3; ACAo = 0.925 mole/m3;

thus, Cao = 1-85 mole/m3 after the step
2. The system is initially at steady state (CAo = CA = CAinit aU = 0)

Note that the inlet concentration, CAo. remains constant after the step change has
been introduced to this two-component system.
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First, the important variables, whose behavior is to be predicted, are selected. Then
the equations are derived based on fundamental principles, which usually can
be divided into two categories: conservation and constitutive. The conservation
balances are relationships that are obeyed by all physical systems under common
assumptions valid for chemical processes. The conservation equations most often
used in process control are the conservations of material (overall and component),
energy, and momentum.

These conservation balances are often written in the following general form
for a system shown in Figure 3.2:

Accumulation = in — out + generation (3.1)

For a well-mixed system, this balance will result in an ordinary differential equation
when the accumulation term is nonzero and in an algebraic equation when the
accumulation term is zero. General statements of this balance for the conservation
of material and energy follow.

OVERALL MATERIAL BALANCE.

{Accumulation of mass} = {mass in} - {mass out} (3.2)

A Modelling
Procedure
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FIGURE 3.2

General lumped-parameter system.

COMPONENT MATERIAL BALANCE.

{Accumulation of component mass}
= {component mass in} — {component mass out}

+ {generation of component mass}
(3.3)

ENERGY BALANCE.

{Accumulation of U + PE + KE} = {U + PE + KE in due to convection}
- {U + PE + KE out due to convection}
+ Q-W

(3.4)
which can be written for a system with constant volume as

{Accumulation of U + PE + KE} = {H + PE + KE in due to convection}- {H + PE + KE out due to convection}
+ Q-WS

(3.5)
where H = U + pv = enthalpy

KE = kinetic energy
PE = potential energy
pv = pressure times specific volume (referred to as flow work)
Q = heat transferred to the system from the surroundings
U = internal energy
W = work done by the system on the surroundings
Ws = shaft work done by the system on the surroundings
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The equations are selected to yield information on the key dependent vari
ables whose behavior will be predicted within the defined system. The following
guidelines provide assistance in selecting the proper balances.

• If the variable is total liquid mass in a tank or pressure in an enclosed gas-filled
vessel, a material balance is appropriate.

• If the variable is concentration (mole/m3 or weight fraction, etc.) of a specific
component, a component material balance is appropriate.

• If the variable is temperature, an energy balance is appropriate.

Naturally, the model may be developed to predict the behavior of several dependent
variables; thus, models involving several balances are common.

In fact, the engineer should seek to predict the behavior of all important de
pendent variables using only fundamental balances. However, we often find that
an insufficient number of balances exist to determine all variables. When this is the
case, additional constitutive equations are included to provide sufficient equations
for a completely specified model. Some examples of constitutive equations follow:

Heat transfer:
Chemical reaction rate:
Fluid flow:
Equation of state:
Phase equilibrium:

Q = hA(AT)
rA = k0e-E/RTCA
F = Cu(AP//o)1/2
PV = nRT
yt = KtXi

The constitutive equations provide relationships that are not universally applicable
but are selected to be sufficiently accurate for the specific system being studied.
The applicability of a constitutive equation is problem-specific and is the topic of
a major segment of the chemical engineering curriculum.

An important issue in deriving the defining model equations is "How many
equations are appropriate?" By that we mean the proper number of equations to
predict the dependent variables. The proper number of equations can be determined
from the recognition that the model is correctly formulated when the system's
behavior can be predicted from the model; thus, a well-posed problem should
have no degrees of freedom. The number of degrees of freedom for a system is
defined as

DOF = NV - NE (3.6)
with DOF equal to the number of degrees of freedom, NV equal to the number of
dependent variables, and NE equal to the number of independent equations. Not
every symbol appearing in the equations represents a dependent variable; some
are parameters that have known constant values. Other symbols represent external
variables (also called exogenous variables); these are variables whose values are
not dependent on the behavior of the system being studied. External variables may
be constant or vary with time in response to conditions external to the system,
such as a valve that is opened according to a specified function (e.g., a step). The
value of each external variable must be known. NV in equation (3.6) represents
the number of variables that depend on the behavior of the system and are to be
evaluated through the model equations.



It is important to recognize that the equations used to evaluate NE must be 55
independent; additional dependent equations, although valid in that they also de- i;;v;^h;^^a^^^^^,'<^^;,:'..i
scribe the system, are not to be considered in the degrees-of-freedom analysis, A Modelling
because they are redundant and provide no independent information. This point is Procedure
reinforced in several examples throughout the book. The three possible results in
the degrees-of-freedom analysis are summarized in Table 3.2.

After the initial, valid model has been derived, a rationalization should be
considered. First, equations can sometimes be combined to simplify the overall
model. Also, some terms can be combined to form more meaningful groupings
in the resulting equations. Combining terms can establish the key parameters that
affect the behavior of the system; for example, control engineering often uses
parameters like the time constant of a process, which can be affected by flows,
volumes, temperatures, and compositions in a process. By grouping terms, many
physical systems can be shown to have one of a small number of mathematical
model structures, enabling engineers to understand the key aspects of these physical
systems quickly. This is an important step in modelling and will be demonstrated
through many examples.

A potential final modification in this step would be to transform the equation
into dimensionless form. A dimensionless formulation has the advantages of (1)
developing a general solution in the dimensionless variables, (2) providing a ratio
nale for identifying terms that might be negligible, and (3) simplifying the repeated
solution of problems of the same form. A potential disadvantage is some decrease
in the ease of understanding. Most of the modelling in this book retains problem
symbols and dimensions for ease of interpretation; however, a few general results
are developed in dimensionless form.
EXAMPLE 3.1.

Formulation. Since this problem involves concentrations, overall and compo
nent material balances will be prepared. The overall material balance for a time

TABLE 3.2
Summary of degrees-of-freedom analysis

DOF = NV-NE
DOF = 0 The system is exactly specified, and the solution of the model can proceed.
DOF < 0 The system is overspecified, and in general, no solution to the model exists

(unless all external variables and parameters take values that fortuitously satisfy
the model equations). This is a symptom of an error in the formulation. The likely
cause is either (1) improperly designating a variable(s) as a parameter or
external variable or (2) including an extra, dependent equation(s) in the model.
The model must be corrected to achieve zero degrees of freedom.

DOF > 0 The system is underspecified, and an infinite number of solutions to the model
exists. The likely cause is either (1) improperly designating a parameter or external
variable as a variable or (2) not including in the model all equations that determine
the system's behavior. The model must be corrected to achieve zero degrees
of freedom.
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increment At is
{Accumulation of mass} = {mass in} - {mass out}

(pV)0+At) - (pV)w = FopAt - FxPAt
with p = density. Dividing by At and taking the limit as At -*■ 0 gives

d{pV)
dt

d p d V

(3.7)
(3.8)

(3.9)

The flow in, F0, is an external variable, because it does not depend on the
behavior of the system. Because there is one equation and two variables (V and
F\) at this point, a constitutive expression is required for the flow out. Since the
liquid exits by overflow, the flow out is related to the liquid level according to a weir
equation, an example of which is given below (Foust et al., 1980).

F j = k F y / L - L w f o r L > L w ( 3 . 1 0 )
with kF - constant, L - V/A, and Lw = level of the overflow weir. In this problem,
the level is never below the overflow, and the height above the overflow, L- Lw,
is very small compared with the height of liquid in the tank, L. Therefore, we will
assume that the liquid level in the tank is approximately constant, and the flows in
and out are equal, F0 = Fx = F

^ = F0-F,=0at V = constant (3.11)

This result, stated as an assumption hereafter, will be used for all tanks with
overflow, as shown in Figure 3.1.

The next step is to formulate a material balance on component A. Since the
tank is well-mixed, the tank and outlet concentrations are the same:

(Accumulation of 1 _ j component 1component A J ( A in JofU,l j I A i n J [ A o u t ] [ o f A

(MWaVCa),+a, - (MWaVCa), = (MWaFCao -MWAFCA)Af
(component If generation 1 ,„ ^ 0>.A out } + l of A J {6Ad)

(3.13)
with CA being moles/volume of component A and MWA being its molecular weight,
and the generation term being zero, because there is no chemical reaction. Divid
ing by At and taking the limit as At -> 0 gives

,dCAMWaV- dt = MWaF(CAo-Ca) (3.14)

One might initially believe that another balance on the only other component,
solvent S, could be included in the model:

MWSV^ = MWSF(CS0 - Cs)at (3.15)

with Cs the moles/volume and MWS the molecular weight. However, equation (3.9)
is the sum of equations (3.14) and (3.15); thus, only two of the three equations
are independent. Therefore, only equations (3.11) and (3.14) are required for the
model and should be considered in determining the degrees of freedom. The fol
lowing analysis shows that the model using only independent equations is exactly
specified:

Variables:
External variables:
Equations:

CA and Fi
Fo and CAo
(3.11) and (3.14)

DOF = NV-NE = 2-2 = 0



Note that the variable / representing time must be specified to use the model
for predicting the concentration at a particular time.

The model is formulated assuming that parameters do not change with time,
which is not exactly correct but can be essentially true when the parameters change
slowly and with small magnitude during the time considered in the dynamic mod
elling problem. What constitutes a "small" change depends on the problem, and
a brief sensitivity analysis is included in the results analysis of this example to
determine how changes in the volume and flow would affect the answer to this
example.

Mathemat ica l So lu t ion

Determining the solution is certainly of importance. However, the engineer should
realize that the solution is implicitly contained in the results of the Information and
Formulation steps; the solution simply "figures it out." The engineer would like
to use the solution method that gives the most insight into the system. Therefore,
analytical solutions are preferred in most cases, because they can be used to (1) cal
culate specific numerical values, (2) determine important functional relationships
among design and operating variables and system behavior, and (3) give insight
into the sensitivity of the result to changes in data. These results are so highly
prized that we often make assumptions to enable us to obtain analytical solutions;
the most frequently used approximation is linearizing nonlinear terms, as covered
in Section 3.4.

In some cases, the approximations necessary to make analytical solutions
possible introduce unacceptable errors into the results. In these cases, a numeri
cal solution to the equations is employed, as described in Section 3.5. Although
the numerical solutions are never exact, the error introduced can usually be made
quite small, often much less than the errors associated with the assumptions and
data in the model; thus, properly calculated numerical solutions can often be con
sidered essentially exact. The major drawback to numerical solutions is loss of
insight.

EXAMPLE 3.1.

Solution. The model in equation (3.14) is a linear, first-order ordinary differential
equation that is not separable. However, it can be transformed into a separable
form by an integrating factor, which becomes more easily recognized when the dif
ferential equation is rearranged in the standard form as follows (see Appendix B):

d C A 1 1 . . V 2 . 1 m 3 „ „ „ .—- + -Ca = -Cao with — = : = 24.7 min = r = time constant
d t t x F 0 . 0 8 5 m 3 / m i n

(3.16)
The parameter r is termed the time constant of the system and will appear in many
models. The equation can be converted into separable form by multiplying both
sides by the integrating factor, and the resulting equation can be solved directly:
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Integrating factor = IF = exp ( / -dt J = e,/x

f r (dC* ±l r \ - JbdC* 4. r de ' /T - d^IXCt^ = £^/*
\dT + TA)-e ~oT + Ca dt - dt

j d ( C A e , r ) = j c ^ : d t = c ^ j e t / T

= ^ A O e , / z ( 3 1 7 )

- l / XCA = Cao + le
Note that the integration was simplified by the fact that CAo is constant after the
step change (i.e., for t > 0). The initial condition is CA(0 = CAi„it at f = 0, which
can be used to evaluate the constant of integration, /.This formulation implies that
the time t is measured from the introduction of the step change.

I = CAinit 'AO . ' . CA = CA0 + (CAin i t - Cad)*- "* (3 .18)
(CA - CAinit) = [Cao - (Cao)ui](1 - e~t/xx)

The final equation has used the extra relationship that (CAo)inh = Caml- Sub
stituting the numerical values gives

CA - 0.925 = (CAo - 0.925)(1 - e"'/24J)
Two important aspects of the dynamic behavior can be determined from equa

tion (3.18). The first is the "speed" of the dynamic response, which is characterized
by the time constant, t. The second is the steady-state gain, which is defined as

Steady-state gain — Kp —
A output _ ACa

ACao
= 1.0

A input
Note that in this example the time constant depends on the equipment (V)

and operation of the process (F), and the steady-state gain is independent of
these design and operating variables. These values are not generally applicable
to other processes.

Results Analysis
The first phase of the results analysis is to evaluate whether the solution is correct,
at least to the extent that it satisfies the formulation. This can be partially verified by
ensuring that the solution obeys some limiting criteria that are more easily derived
than the solution itself. For example, the result

• Satisfies initial and final conditions
• Obeys bounds such as adiabatic reaction temperature
• Contains negligible errors associated with numerical calculations
• Obeys semi-quantitative expectations, such as the sign of the output change

Next, the engineer should "interrogate" the mathematical solution to elicit the
information needed to achieve the original modelling goals. Determining specific
numerical values is a major part of the results analysis, because engineers need
to make quantitative decisions on equipment size, operating conditions, and so

CC
Text Box
)



forth. However, results analysis should involve more extensive interpretation of
the solution. When meaningful, results should be plotted, so that key features like
oscillations or extrema (maximum or minimum) will become apparent. Important
features should be related to specific parameters or groups of parameters to assist
in understanding the behavior. Also, the sensitivity of the result to changes in
assumptions or data should be evaluated. Sometimes this is referred to as what-if
analysis, where the engineer determines what happens if a parameter changes by a
specified amount. A thorough results analysis enables the engineer to understand
the result of the formulation and solution steps.
EXAMPLE 3.1.

Results analysis. The solution in equation (3.18) is an exponential curve as
shown in Figure 3.3. The shape of the curve is monotonic, with the maximum
rate of change occurring when the inlet step change is entered. The manner in
which the variable changes from its initial to final values is influenced by the time
constant (t), which in this problem is the volume divided by the flow. Thus, the
same dynamic response could be obtained for any stirred tank with values of flow
and volume that give the same value of the time constant. It is helpful to learn a
few values of this curve, which we will see so often in process control. The values
for the change in concentration for several values of time after the step are noted
in the following table.
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v c A

Time from step Percent of final steady-state change in output
0
T

2t
3r
4t

0
63.2
86.5
95.0
98.2

tM&&safe«i i fe«^

The specific quantitative question posed in the goal statement involves deter
mining the time until 90 percent of the change in outlet concentration has occurred.
This time can be calculated by setting CA = CAimt + 0.9(CAo - CAmit) in equation
(3.18), which on rearrangement gives

= — (24.7)(-2.30) = 56.8 min= _r ln /0.1[(CA)init-CAo]\
\ (CaW — Cao /(CaW — Cao

Note that this is time from the introduction of the step change, which, since the step
is introduced at t = 10, becomes 66.8 in Figure 3.3. One should ask how important
the specification is; if it is critical, a sensitivity analysis should be performed. For
example, if the volume and flow are not known exactly but can change within
± 5 percent of their base values, the time calculated above is not exact. The range
for this time can be estimated from the bounds on the parameters that influence
the time constant:

(2.1)0.05)Maximum t — —

Minimum t — —
(0.085) (0.95)
(2.1)(0.95)

(-2.30) = 62.8 min

(-2.30) = 51.4 min(0.085)(1.05)
Given the estimated inaccuracy in the data, one should wait at least 62.8 (not 56.8)
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FIGURE 3.3

Dynamic result for Example 3.1.

minutes after the step to be sure that 90 percent of the concentration change has
occurred.

VALIDATION. Validation involves determining whether the results of steps 1
through 5 truly represent the physical process with the required fidelity for the
specified range of conditions. The question to be evaluated is, "Does the model
represent the data well enough that the engineering task can be performed using
the model?" Since we know that all models are simplified representations of the
true, complex physical world, this question must be evaluated with careful atten
tion to the application of the model. We do not have enough background in control
engineering at this point, so the sensitivity of process and control design to mod
elling errors must be deferred to a later point in the book; however, all methods
will be based on models, so this question will be addressed frequently because of
its central importance.

While the sensitivity analysis in step 5 could build confidence that the results
are likely to be correct, a comparison with empirical data is needed to evaluate
the validity of the model. One simple step is to compare the results of the model
with the empirical data in a graph. If parameters are adjusted to improve the fit of
the model to the data, consideration should be taken of the amount the parameters
must be adjusted to fit the data; adjustments that are too large raise a warning that
the model may be inadequate to describe the physical system.



It is important to recognize that no set of experiences can validate the model.
Good comparisons only demonstrate that the model has not been invalidated by
the data; another experiment could still find data that is not properly explained
by the model. Thus, no model can be completely validated, because this would
require an infinite number of experiments to cover the full range of conditions.
However, data from a few experiments can characterize the system in a limited
range of operating variables. Experimental design and modelling procedures for
empirical models are the topic of Chapter 6.
EXAMPLE 3.1.

Validation. The mixing tank was built, the experiment was performed, and sam
ples of the outlet material were analyzed. The data points are plotted in Figure 3.4
along with the model prediction. By visual evaluation and considering the accuracy
of each data point, one would accept the model as "valid" (or, more accurately,
not invalid) for most engineering applications.
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The modelling procedure presented in this section is designed to ensure that
the most common issues are addressed in a logical order. While the procedure is
important, the decisions made by the engineer have more impact on the quality of
the result than the procedure has. Since no one is prescient, the effects of early as
sumptions and formulations may not be appropriate for the goals. Thus, a thorough
analysis of the results should be performed so that the sensitivity of the conclusions
to model assumptions and data is clearly understood. If the conclusion is unduly
sensitive to assumptions or data, an iteration would be indicated, employing a more
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FIGURE 3.4

Comparison of empirical data (squares) and model (line) for
Example 3.1.
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rigorous model or more accurate data. Thus, the procedure contains the essential
opportunity for evaluation and improvement.

3.3 □ MODELLING EXAMPLES
Most people learn modelling by doing modelling, not observing results of others!
The problems at the end of the chapter, along with many solved and unsolved
problems in the references and resources, provide the reader with ample opportu
nity to develop modelling skills. To assist the reader in applying the procedure to
a variety of problems, this section includes a few more solved example problems
with solutions. In all examples, steps 1 to 5 are performed, but validation is not.
EXAMPLE 3.2. Isothermal CSTR
The dynamic response of a continuous-flow, stirred-tank chemical reactor (CSTR)
will be determined in this example and compared with the stirred-tank mixer in
Example 3.1.
Goal. Determine the dynamic response of a CSTR to a step in the inlet concen
tration. Also, the reactant concentration should never go above 0.85 mole/m3. If
an alarm sounds when the concentration reaches 0.83 mole/m3, would a person
have enough time to respond? What would a correct response be?
Information. The process is the same as shown in Figure 3.1, and therefore, the
system is the liquid in the tank. The important variable is the reactant concentration
in the reactor.

Assumptions. The same as for the stirred-tank mixer.
Data. The flow, volume, and inlet concentrations (before and after the step) are
the same as for the stirred-tank mixer in Example 3.1.

1. F= 0.085 m3/min; V=2.1 m3; (CA0)init = 0.925 mole/m3; ACAo=0.925 mole/m3.
2. The chemical reaction is first-order, rA = -kCA with k = 0.040 min"'.
3. The heat of reaction is negligible, and no heat is transferred to the surround

ings.

Formulation. Based on the model of the stirred-tank mixer, the overall material
balance again yields F0 = Fi = F. To determine the concentration of reactant, a
component material balance is required, which is different from that of the mixing
tank because there is a (negative) generation of component A as a result of the
chemical reaction.

i-i component
A in

component 1 f generation 1
A out } + l of A J(Accumulation ofcomponent A

(MWaVCa),+a, - (MWA VCa), = (MWaFCao -MWaFCa -MWa VkCA) At
Again, dividing by MWA(At) and taking the limit as At -+ 0 gives

£ C a . 1 ~ F _ . . . . V
dt H—CA = —Caot V with the time constant r =

(3.19)

(3.20)

(3.21)F + Vk
The degrees-of-freedom analysis yields one equation, one variable (CA), two ex
ternal variables (F and CAo), and two parameters (V and k). Since the number of
variables is equal to the number of equations, the degrees of freedom are zero,
and the model is exactly specified.
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which can be solved by application of the integrating factor:

IF = exp (f - dt\ = e'/T

d(CAe«*) F t / r

(3.22)

d t = v C M e

fd(CAe«*) = ^je«*dt
CAS<* = ^°V< + /

CA = ^CA0 + /^/r
The data give the initial condition of the inlet concentration of 0.925 mole/m3

at the time of the step, t = 0. The initial steady-state reactor concentration can be
determined from the data and equation (3.21) with dCA/dt = 0.

_ F(CA) in i t = j - , T / i (CAo) in i tF + Vk
°-m 0.925 = 0.465 m°,e

(3.23)

0 . 0 8 5 + ( 2 . 1 ) ( 0 . 0 4 0 ) m 3
The constant of integration can be evaluated to be

j _ F[(CA0)init - (Cap)] = -F(ACA0)F + V k F + V K
This can be substituted in equation (3.22) to give

= FCA0 _ F(ACaq) _l/rA F + Vk F + Vk6

= (CA)i„it + —itt[Cao - (CA0)init](l - e"'/T)
F + V k

This can be rearranged with Kp = F/(F + Vk) to give the change in reactor
concentration.

Ca - (Ca),* = Kp ACA0(1 - e"'/r)
ACA = (0.503)(0.925)(1 - e~l/t)

Again, the time constant determines the "speed" of the response. Note that in this
example, the time constant depends on the equipment (V), the operation (F), and
the chemical reaction (k), and that by comparing equations (3.16) and (3.21) the
time constant for the chemical reactor is always shorter than the time constant for
the mixer, using the same values for F and V. Their numerical values are

V 2 . 1 .X ~ F + VK ~ 0.085 + 2.1(0.040) ~ * ' """

- F - 0 - 0 8 5 _ m o l e / m 3p~ F + VK ~ 0.085 + 2.1(0.04) ~ ' mole/m3

Thus, the steady-state gain and time constant in this example depend on equip
ment design and operating conditions.
Results analysis. First, the result from equation (3.23) is calculated and plot
ted. As shown in Figure 3.5a, the reactant concentration increases as an expo
nential function to its final value without overshoot or oscillation. In this case, the

Modelling Examples
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concentration exceeds its maximum limit; therefore, a corrective action will be
evaluated. The concentration reaches the alarm limit in 19.6 minutes after the step
(29.6 minutes in the figure) and exceeds the maximum limit after 22.5 minutes.
The sensitivity of this result can be evaluated from the analytical solution; in partic
ular, the dependence of the time constant on variables and parameters is given in
equation (3.21). The time difference between the alarm and the dangerous condi
tion is too short for a person to respond reliably, because other important events
may be occurring simultaneously.

Since a response is required, the safety response should be automated; safety
systems are discussed in Chapter 24. A proper response can be determined by
considering equation (3.21). The goal is to ensure that the reactor concentration
decreases immediately when the corrective manipulation has been introduced.
One manner (for this, but not all processes) would be to decrease the inlet con
centration to its initial value, so that the rate of change of CA would be negative
without delay. The transient response obtained by implementing this strategy when
the alarm value is reached is shown in Figure 3.5b. The model for the response
after the alarm value has been reached, 29.6 minutes, is of the same form as
equation (3.23), with the same time constant and gain.

EXAMPLE 3.3. Two isothermal CSTR reactors
A problem similar to the single CSTR in Example 3.2 is presented, with the only
difference that two series reactors are included as shown in Figure 3.6. Each tank
is one-half the volume of the tank in Example 3.2.

Goal. The same as that of Example 3.2, with the important concentration be
ing in the second reactor. Determine the time when this concentration exceeds
0.85 mole/m3.

30 40 50
Time (min)

30 40 50
Time (min)

Time (min)
(a)

Time (min)
(b)

FIGURE 3.5
Results for Example 3.2: (a) without action at the alarm value; (b) with action at the alarm value.
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Two CSTRs in series.
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Information. The two systems are the liquid in each tank. The data is the same
as in Example 3.2, except that V\ = V2 = 1.05 m3.

1. F = 0.085 m3/min; (CAo)inu = 0.925 mole/m3; ACA0 = 0.925 mole/m3.
2. The chemical reaction is first-order, rA = -kCA with k = 0.040 min-1.
3. The reactor is well mixed and isothermal.

Formulation. Again, due to the assumptions for the overflow tanks, the volumes
in the two tanks can be taken to be constant, and all flows are constant and equal.
The value of the concentration in the second tank is desired, but it depends on the
concentration in the first tank. Therefore, the component balances on both tanks
are formulated.

First tank: V, ^ = F(CA0 - CAl) - VxkCM

Second tank: V2^^ = F(CAi - CA2) - V1kCA2at

(3.24)

(3.25)

The result is two linear ordinary differential equations, which in general must be
solved simultaneously. Note that the two equations could be combined into a single
second-order differential equation; thus, the system is second-order.

Before proceeding to the solution, we should discuss a common error in for
mulating a model for this example. The engineer might formulate one component
material balance, as given in the following.

Incorrect model

System: liquid in both tanks
^CA2Component balance: dt

= F(CA0 - Ca2) - VkQA2

The choice of the system is not correct, because a balance on component A (CA2)
must have a constant concentration of component A that is independent of location
within the system. This condition is satisfied by the second tank, but not by both
tanks. Also, the reaction rate depends on the concentration, which is different for
the two tanks. Therefore, the correct model includes two component balances, one
for each tank. Note that the correct model includes a balance for an intermediate
variable, CM, that is not a goal of the modelling but is required to determine CA2-
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FIGURE 3.7

Dynamic responses for Example 3.3.

Solution. In equations (3.24) and (3.25), the balance on the first tank does not in
volve the concentration in the second tank and thus can be solved independently
from the equation representing the second reactor. (More general methods for
solving simultaneous linear differential equations, using Laplace transforms, are
presented in the next chapter.) The solution for the first balance can be seen to be
exactly the same form as the result for Example 3.2, equation (3.23). The analytical
expression for the concentration at the outlet of the first tank can be substituted into
equation (3.25) to give the model which must be solved. In this solution, the sub
script V designates the initial steady-state value of the variable before the step,
and no subscript indicates the variable after the step; also, ACAo = CAo - CAOs.
Therefore, the model for Ca2 after the substitution of equation (3.23) is

t^ + CA2 = *CA, = K[KCAOs + KACAQ(\ - e~t/x)] (3.26)at
Since the two reactors are identical (and linear), the steady-state gains and time
constant for both are identical, i.e.,

K = Fi/(F, + Vik) = F2/{F2 + V2k) = 0.669 (outlet mole/m3) /(inlet mole/m3)
T = W(Fi + Vxk) = V2/(F2 + V2k) = 8.25 min

(3.27)
Equation (3.26) can be solved by applying the integrating factor method.

IF = sxp( f -dt\ = e"x

d{ChfX) = K[KCAOs + KACA0(l - e~xlx)\— (3.28)d t x

CA2 = K2(£f[ J* dt + ^f-f e«x dt - ^ j e^e^ dt\ e^x

Cj* = K2 (cAOs + ACao - ^-te-tlx\ + Ie~"x

The integration constant can be evaluated using the initial condition of the reactor
concentration, which can be determined by setting dCA2/dt = 0 in equation (3.26)
to give Ca2 = K2(CAQs) at t = 0.

,0 1
K CAos = K2 (cAOs + ACao - ^/e'-'A + //"* when t = 0

/ = -K2ACA0

Substituting the expression for the integration constant into equation (3.28) gives
the final expression for the concentration in the second reactor.

Ca2
- [ ■

Cao* + ACaoO - e~'/x) - ACaoGM
The data can be substituted into equation (3.29) to give

Ca2 = 0.414 + 0.414(1 - e-'/s-25) - 0.050*<T'/8-25

(3.29)

(3.30)
Results analysis. The shape of the transient of the concentration in the second
of two reactors in Figure 3.7 is very different from the transient for one reactor in
Figure 3.3. The second-order response for this example has a sigmoidal or "S"
shape, with a derivative that goes through a maximum at an inflection point and
reduces to zero at the new steady state. Also, the total conversion of reactant
is different from Example 3.2, although the total reactor volume is the same in
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higher concentration of the reactant in the first reactor. In fact, the concentration i^mmmmmsm^mmi
of the second reactor does not reach the alarm or limiting values after the step Modelling Examples
change for the parameters specified, although the close approach to the alarm
value indicates that a slight change could lead to an alarm.

The action upon exceeding the alarm limit in the second reactor would not be
as easily determined for this process, since equation (3.25) shows that decreas
ing the inlet concentration to the first reactor does not ensure that the derivative
of the second reactor's concentration will be negative. The system has "momen
tum," which makes it more difficult to influence the output of the second reactor
immediately.

EXAMPLE 3.4. On/off room heating
The heating of a dwelling with an on/off heater was discussed in Section 1.2. The
temperature was controlled by a feedback system, and semi-quantitative argu
ments led to the conclusion that the temperature would oscillate. In this section, a
very simple model of the system is formulated and solved.
Goaf. Determine the dynamic response of the room temperature. Also, ensure
that the furnace does not have to switch on or off more frequently than once per
3 minutes, to allow the combustion zone to be purged of gases before reignition.
Information. The system is taken to be the air inside the dwelling. A sketch of
the system is given in Figure 1.2. The important variables are the room temperature
and the furnace on/off status.

Assumptions.
1. The air in the room is well mixed.
2. No transfer of material to or from the dwelling occurs.
3. The heat transferred depends only on the temperature difference between the

room and the outside environment.
4. No heat is transferred from the floor or ceiling.
5. Effects of kinetic and potential energies are negligible.

Data.
1. The heat capacity of the air Cv is 0.17 cal/(g°C), density is 1190 g/m3.
2. The overall heat transfer coefficient, UA = 45 x 103 cal/(°C h).
3. The size of the dwelling is 5 m by 5 m by 3 m high.
4. The furnace heating capacity Qh is either 0 (off) or 1.5 x 106 (on) cal/h.
5. The furnace heating switches instantaneously at the values of 17°C (on) and

23°C (off).
6. The initial room temperature is 20°C and the initial furnace status is "off."
7. The outside temperature Ta is 10°C.

Formulation. The system is defined as the air inside the house. To determine the
temperature, an energy balance should be formulated, and since no material is
transferred, no material balance is required. The application of the energy balance
in equation (3.5) to this system gives

^ = ( 0 ) - ( 0 ) + G - ^ ( 3 . 3 1 )d t
The shaft work is zero. From principles of thermodynamics and heat transfer, the
following expressions can be used for a system with negligible accumulation of
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potential and kinetic energy:
*¥. = pVCv^- Q = -UA(T - Ta) + Qh
d t d t (3.32)

with

Qh =

0
1.5 x 106

when T > 23°C
when T < 17°C

unchanged when 17 < T < 23°C
to give

pVCv^r = -UA(T-Ta) + Qhdt (3.33)

The degrees of freedom for this formulation is zero since the model has two equa
tions, two variables (T and Qh), four parameters (UA, Cv, V, and p), and one exter
nal variable {Ta). Thus, the system is exactly specified with equation (3.33), when
the status of the heating has been defined by equation (3.32).
Solution. Rearranging equation (3.33) gives the following linear ordinary differ
ential equation:

d T 1 U A T a + Q h V p C vh - T = w i t h r = — — —■d t x V p C v U A (3.34)

Equation (3.34) is a linear differential equation when the value of heat transferred,
Qh, is constant. As described in the example data, Qh has one of two constant
values, depending on the status of the furnace heating. Thus, the equation can be
solved using the integrating factor with one value of Qh until the switching value
of temperature is reached; then, the equation is solved with the appropriate value
of Qh until the next switch occurs. The solution for equation (3.34) is given in the
following:

T - 7i„it = (rf inal - Tm){\ - e~'lx) (3.35)
where t = time from step in Qh

x = time constant = 0.34 h
rfinai = final value of T as t -+ oo = Ta + Qh/UA

= 10°C when Qh = 0
= 43.3°C when Qh = 1.5 x 106

7jnit = the value of T when a step in Qh occurs
Results analysis. First, the numerical result is determined and plotted in Figure
3.8. From the initial condition with the furnace off, the temperature decreases
according to equation (3.35) until the switch value of 17°C is reached. Then, the
furnace heating begins instantaneously (Qh changes from 0 to 1.5 x 106), and
since the system is first-order with no "momentum," the temperature immediately
begins to increase. This procedure is repeated as the room temperature follows a
periodic trajectory between 17 and 23°C.

The analytical solution provides insight into how to alter the behavior of the
system. The time constant is proportional to the mass in the room, which seems
reasonable. Also, it is inversely proportional to the heat transfer coefficient, since
the faster the heat transfer, the more quickly the system reaches an equilibrium
with its surroundings; therefore, insulating the house will decrease UA and increase
the time constant. Finally, the time constant does not depend on the heating by
the furnace, which is the forcing function of the system; therefore, increasing the
capacity of the furnace will not affect the time constant, although it will affect the
time between switches.
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FIGURE 3.8
Dynamic response for Example 3.4.
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Linearization

The goals of the modelling exercise have been satisfied. The temperature has
been determined as a function of time, and the switching frequency of the furnace
has been determined to be over 3 minutes; that is, longer than the minimum limit.
However, a switch could occur much faster due to a sudden change in outside
temperature or to a disturbance such as a door being opened, which would allow
a rapid exchange of warm and cold air. Therefore, a special safety system would
be included to ensure that the furnace would not be restarted until a safe time
period after shutting off.

Building heating and air conditioning have been studied intensively, and more
accurate data and models are available (McQuiston and Parker, 1988). Also, some
extensions to this simple example are suggested in question 3.9 at the end of the
chapter (adding capacitance, changing UA, and including ventilation).

This example is the first quantitative analysis of a continuous feedback con
trol system. The simplicity of the model and the on/off control approach facilitated
the solution while retaining the essential characteristics of the behavior. For most
industrial processes, the oscillations associated with on/off control are unaccept
able, and more complex feedback control approaches, introduced in Part III, are
required to achieve acceptable dynamic performance.

3.4 a LINEARIZATION
The models in the previous sections were easily solved because they involved
linear equations, which were a natural result of the conservation balances and con
stitutive relationships for the specific physical systems. However, the conservation
and constitutive equations are nonlinear for most systems, and general methods for
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developing analytical solutions for nonlinear models are not available. An alter
native is numerical simulation, covered later in this chapter, which can provide
accurate solutions for specific numerical values but usually offers much less un
derstanding. Fortunately, methods exist for obtaining approximate linearized so
lutions to nonlinear systems, and experience over decades has demonstrated that
linearized methods of control systems analysis provide very useful results for many
(but not all) realistic processes. Therefore, this section introduces the important
method for developing approximate linear models.

First, the concept of linearity needs to be formally defined. This will be done
using the concept of an operator, which transforms an input variable into an output
variable.

An operator F is linear if it satisfies the properties of additivity and proportionality,
which are included in the following superposition, where X\ are variables and a and
b are constants:

T{fix\ + bx2) = aHx\) + bF(x2) (3.36)

We can test any term in a model using equation (3.36) to determine whether it is
linear. A few examples are given in the following table.

Function Check for linearity Is check satisfied?

f(x) = kx k(ax\ + bx2) = kax\ + kbx2 Yes
Fix) = kx{!2 k{axx + bx2)x'2 = Hax^2 + k(bx2)l/2 No
w^&z^MmsMmmm&imsmmm^wm^

u
do

FIGURE 3.9

Stirred tank with heat exchanger.

Next, it is worthwhile considering the dynamic behavior of a process, such as
the stirred-tank heat exchanger shown in Figure 3.9, subject to changes in the feed
temperature and cooling fluid flow rate. For a linear system, the result of the two
changes is the sum of the results from each change individually. The responses to
step changes in the feed temperature (at t = 5) and cooling medium flow rate (at
t = 20) are shown in Figure 3.10. The responses in parts a and b are the effects
of each disturbance individually, and the response in part c is the total effect,
which for this linear process is the sum of the two individual effects. Note that the
true physical system experiences only the response in Figure 3.10c; the individual
responses are the linear predictions for each input change. (The model for this
system will be derived in Example 3.7.) This concept, as an approximation to real
nonlinear processes, is used often in analyzing process control systems.

A linearized model can be developed by approximating each nonlinear term
with its linear approximation. A nonlinear term can be approximated by a Taylor
series expansion to the nth order about a point if derivatives up to nth order exist at
the point; the general expressions for functions of one and two variables are given
in Table 3.3.

The term R is the remainder and depends on the order of the series. A few
examples of nonlinear terms that commonly occur in process models, along with



TABLE 3.3

Taylor series for functions of one and two variables

Function of one variable about xs
dFF(x) = FM + dx ix - xs) + 1 d2F

V.dx1 ix-xs)2 + R (3.38)

Function of two variables about *|S, x*
dF

FiXUX2) = F(X\s,X2s) + —dx\ X\s.X2s
(x\ - Xu) + —ax2 ix2 -Xk)

X\s.X2s

+

+

1 d2F
2! dx2

d2F

(*i - xis)2 +
1 d2F

X\s.*2s 2! dx\ C*2 — JCl?) (3.39)
Xls,X2s

0X10X2
(xi - xls)ix2 -x^ + R

X\s.X2s

wmmmmmmmmMmmmmsmim

their linear approximations about xs, are the following:

Fix)

F(x) =

= Jcl/2

1 +ax

Fix)*x[s/2 + -x; l /2 ix-xs)

F(x) + 1
\ + a x s i i + a x s ) 1 (x - xs)

The accuracy of the linearization can be estimated by comparing the magnitude
of the remainder, R', to the linear term. For a linear Taylor series approximation
in one variable,

* - ! "2dx2 (x — xs) with f between x and xs (3.37)
x=$

The accuracy of a sample linearization is depicted in Figure 3.11. From this
figure and equation (3.37), it can be seen that the accuracy of the linear approxima
tion is relatively better when (1) the second-order derivative has a small magnitude
(there is little curvature) and (2) the region about the base point is small. The suc
cessful application of linearization to process control systems is typically justified
by the small region of operation of a process when under control. Although the
uncontrolled system might operate over a large region because of disturbances in
input variables, the controlled process variables should operate over a much smaller
range, where the linear approximation often is adequate. Note that the accuracy of
the linearization would in general depend on the normal operating point xs.

Several modelling examples of linearized models are now given, with the
linearized results compared with the nonlinear results. In all cases, the models
will be expressed in deviation variables, such as x — xs, where the subscript s
represents the steady-state value of the variable. The deviation variable will always
be designated with a prime (').

Deviation variable: (jc - xs) = x' with xs = steady-state value
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Response of the linear system in
Figure 3.9 to positive step changes in

two input variables, T0 and Fc.
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FIGURE 3.11
Comparison of a nonlinear function y = (1.5*2 + 3) with its linear
approximation about xs = 1.

'AO

U
do

A deviation variable simply translates the variable value (x) by a constant, and
the value of the variable (x) is easily recovered by adding the initial steady-state
value xs to its deviation value, xf. The use of deviation variables is not necessary
and provides no advantage at this point in our analysis. However, expressing a
model in deviation variables will be shown in Chapter 4 to provide a significant
simplification in the analysis of dynamic systems; therefore, we will begin to use
them here for all linear or linearized systems.

EXAMPLE 3.5. Isothermal CSTR
The solution to the single-tank CSTR problem in Example 3.2 is now presented for
a second-order chemical reaction.

Goal. Determine the transient response of the tank concentration in response to
a step in the inlet concentration for the nonlinear and linearized models.

Information. The process equipment and flow are the same as shown in Figure
3.1. The important variable is the reactant concentration in the reactor.

Assumptions. The same as in Example 3.1.

Data. The same as in Example 3.2 except the chemical reaction rate is second-
order, with rA = -kC\ and k = 0.5[(mole/m3) min]-1.

1. F=0.085m3/min; V=2.1m3;(CAo)imt = 0.925 mole/m3; ACA0 = 0.925 mole/m3;
(CA)init =0.236 mole/m3.

2. The reactor is isothermal.

Formulation. The formulation of the equations and analysis of degrees of free
dom are the same as in Example 3.2 except that the rate term involves the reactant
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vif - Wa° - Ca) -v*c* (a40) """TZZZ
To more clearly evaluate the model for linearity, the values for all constants (in this
example) can be substituted into equation (3.40), giving the following:

(2.1)~1 = (0.085)0.85 - CA) - (2.1)(0.50)CAdt
The only nonlinear term in the equation is the second-order concentration term in
the rate expression. This term can be linearized by expressing it as a Taylor series
and retaining only the linear terms:

C 2 A ^ C 2 A s + 2 C A s i C A - C A s ) ( 3 . 4 1 )
Recall that C^ is evaluated by setting the derivative to zero in equation (3.40)
and solving for CA, with CA0 having its initial value before the input perturbation,
because the linearization is about the initial steady state. The approximation is
now substituted in the process model:

v~a7f = f(cao - CA) - [VkC2As + 2VkCAsiCA - CAJ] (3.42)
The model can be expressed in deviation variables by first repeating the linearized
model, equation (3.42), which is valid for any time, at the steady-state point, when
the variable is equal to its steady-state value:

A f° = V~aT = F(Cms " Cas) " t™̂  + 2V*Ca*(Ca* " Ca*}] (3-43)
Then equation (3.43) can be subtracted from equation (3.42) to give the equation
in deviation variables:

V__a = f (Cao - CA) - 2VkCAsC'A (3.44)dC,
dt

The resulting model is a first-order, linear ordinary differential equation, which can
be rearranged into the standard form:

d C \ F V
^ f + 7 c ; = ? c ; 0 w i , h r = ? T I ^ - = 3 . 6 2 m m ( 3 . 4 5 )

Solution. Since the input forcing function is again a simple step, the analytical
solution can be derived by a straightforward application of the integrating factor:

c* = c" {jTWkcz)(1" e'm) m A W1" e~"X)
with

Kp = ^- = 0.146 and ACA0 = 0.925 mole/m3 (3.46)F + lVkCto
The data can be substituted into this expression to give

CA = (0.925)(0.146)(1 - <r'/3-62)
Results Analysis. The linearized solution from equation (3.46) is plotted in Fig
ure 3.12 in comparison with the solution to the original nonlinear differential
equation, equation (3.40). The linear solution can be seen to give a good semi
quantitative description of the true process response.
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Dynamic responses for Example 3.5.
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An important advantage of the linearized solution is in the analytical relation
ships. For example, the time constants and gains of the three similar continuous-
flow stirred-tank processes—mixer, linear reactor, and linearized model of nonlin
ear reactor—are summarized in Table 3.4. These results can be used to learn how
process equipment design and process operating conditions affect the dynamic
responses. Clearly, the analytical solutions provide a great deal of useful informa
tion on the relationship between design and operating conditions and dynamic
behavior.
s i & s s s ^ s i i & m s H r s ^

TABLE 3.4

Summary of linear or linearized models for single stirred-tank systems

Physical system
Is the system
linear?

Time constant
( r )

Steady-state gain,

Example 3.1 (CST mixing) Yes V/F 1.0
Example 3.2 (CSTR with Yes V/(F + Vk) F/(F + Vk)
first-order reaction)
Example 3.5 (CSTR with No V/iF + 2VkCAs) F/(F + 2VkCAs)
second-order reaction) (linearized model) (linearized model)



EXAMPLE 3.6. Tank draining
The level and flow through a partially opened restriction out of the tank system in
Figure 3.13 is considered in this example.
Goal. Determine a model for this system. Evaluate the accuracies of the lin
earized solutions for small (10 m3/h) and large (60 m3/h) step changes in the inlet
flow rate.

Information. The system is the liquid in the tank, and the important variables
are the level and flow out.

Assumptions.
1. The density is constant.
2. The cross-sectional area of the tank, A, does not change with height.

Data.
1. The initial steady-state conditions are (i) flows = F0 = Fx = 100 m3/h and (ii)

level = L — 7.0 m.
2. The cross-sectional area is 7 m2.

Formulation. The level depends on the total amount of liquid in the tank; thus,
the conservation equation selected is an overall material balance on the system.

75

pA— = pF0-pFxdt (3.47)

This single balance does not provide enough information, because there are
two unknowns, F| and L. Thus, the number of degrees of freedom (1) indicates that
another equation is required. An additional equation can be provided to determine
F\ without adding new variables, through a momentum balance on the liquid in
the exit pipe. In essence, another subproblem is defined to formulate this balance.
The major assumptions for this subproblem are that

1. The system is at quasi-steady state, since the dynamics of the pipe flow will
be fast with respect to the dynamics of the level.

2. The total pressure drop is due to the restriction.
3. Conventional macroscopic flow equations, using relationships for friction fac

tors and restrictions, can relate the flow to the pressure driving force (Foust
et al., 1980; Bird, Stewart, and Lightfoot, 1960).

With these assumptions, which relate the flow out to the liquid level in the tank, the
balance becomes

Linearization

Pa
FIGURE 3.13

Level in draining tank for Example 3.6.

0.5Fx = fiFx)iPa+pL-Pa)™ = kFXL0.5 (3.48)
with Pa constant. The system with equations (3.47) and (3.48) and with two vari
ables, Fx and L, is exactly specified. After the equations are combined, the system
can be described by a single first-order differential equation:

A^ = FQ-kFXL°-5dt (3.49)

To more clearly evaluate the model for linearity, the values for all constants (flow,
area, and kFX = 37.8) can be substituted into equation (3.49), giving the following:

(7)^ = (100 + 10) - (37.8)L05dt
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U
do

r . tx « n ' r o u t

The only nonlinear term in the equation is the square root of level, which can be
linearized as shown in the following:

•0.5 l°-5 + o.5l;°-5(l-ls) (3.50)

This expression can be used to replace the nonlinear term. The resulting equation,
after subtracting the linearized balance at steady-state conditions and noting that
the input is a constant step (i.e., Fq = AF0), is

A^ = AF0-(0.5kFXL;°-5)L'dt (3.51)

Solution. The linearized differential equation can be rearranged and solved as
before.

dL' 1 Tf I AT,— + -L' = -AF0
d t x A with r =

0.5kFXLf5
giving the solution

2/ssI^+/e-'/'

(3.52)

(3.53)

The initial condition is that V = 0 at t = 0, with time measured from the input step;
thus, / = -xAFq/A. Substitution gives

L' = I^£(1_e-</<)
- l / z>

(3.54)
= AFQKpi\-e-"x) with K, = - = Q _0>5

For this example,

kF\ =
100 m3/h

,0.5L?-5 V7m
Z/ = 0.14AFo(l-e"/0'98)

= 37.8 m3/h
m0.5 t = 0.98 h ^=014i5h

Results analysis. The solution of the linearized model indicates an exponential
response to a step change. The results for the small and large step changes in flow
in are plotted in Figure 3.14a and b, respectively. The solution to the approximate
linearized model is quite accurate for the small step; however, it is inaccurate for a
large step, even predicting an impossible negative level at the final steady state.
The general trend that the linearized model should be more accurate for a small
than for a large step conforms to the previous discussion of the Taylor series. Also,
the large variation of the level, which for the larger input step is not maintained
close to its initial condition as shown in Figure 3.146, suggests that the linear
solution might not be very accurate.

EXAMPLE 3.7. Stirred-tank heat exchanger
To provide another simple example of an energy balance, the stirred-tank heat
exchanger in Figure 3.9 is considered.
Goaf. The dynamic response of the tank temperature to a step change in the
coolant flow is to be determined.
Information. The system is the liquid in the tank.
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Dynamic responses for Example 3.6: (a) for a small input change
(linearized and nonlinear essentially the same curve); ib) for a

large input change.

Assumptions.
1. The tank is well insulated, so that negligible heat is transferred to the sur

roundings.
2. The accumulation of energy in the tank walls and cooling coil is negligible

compared with the accumulation in the liquid.
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3. The tank is well mixed.
4. Physical properties are constant.
5. The system is initially at steady state.

Data. F=0.085 m3/min; V = 2.1 rc\2,Ts = S5A°C;p = 106 g/m3;Cp = l cal/(g°C);
T0 = 150°C; rd„ = 25°C; Fcs = 0.50 m3/min; Cpc = 1 cal/( g°C); pc = 106 g/m3;
a = 1.41 x 105 cal/min°C; b = 0.50.
Formulation. Overall material and energy balances on the system are required
to determine the flow and temperature from the tank. The overall material balance
is the same as for the mixing tank, with the result that the level is approximately
constant and F0 = Fx- F. For this system, the kinetic and potential energy ac
cumulation terms are zero, and their input and output terms cancel if they are not
zero. The energy balance is as follows:

^- = {H0}-{HX} + Q-WSdt (3.55)

Also, it is assumed (and could be verified by calculations) that the shaft work is
negligible. Now, the goal is to express the internal energy and enthalpy in measur
able variables. This can be done using the following thermodynamic relationships
(Smith and Van Ness, 1987):

dU/dt = pVCv dT/dt « pVCp dT/dt
H ^ p C p F i i T i - T ^ )

(3.56)
(3.57)

Note that the heat capacity at constant volume is approximated as the heat capac
ity at constant pressure, which is acceptable for this liquid system. Substituting
the relationships in equations (3.56) and (3.57) into (3.55) gives

pVCp^- = pCPF[iT0 - 7/rcf) - (r, - Tref)] + Q (3.58)

This is the basic energy balance on the tank, which is one equation with two
variables, T and Q. To complete the model, the heat transferred must be related
to the tank temperature and the external variables (coolant flow and temperature).
Thus, a subproblem involving the energy balance on the liquid in the cooling coils
is now defined and solved (Douglas, 1972). The assumptions are

1. The coil liquid is at a quasi-steady state.
2. The coolant physical properties are constant.
3. The driving force for heat transfer can be approximated as the average be

tween the inlet and outlet.

With these assumptions, the energy balance on the cooling coil is

T r o u t = T c i n ^ — 7 7 ( 3 . 5 9 )

The subscript c refers to the coolant fluid. Now, two constitutive relationships are
employed to complete the model. The heat transferred can be expressed as

iT - Tdn) + iT - Tcout)lQ = -UAiAT)!m -ua[- (3.60)

The heat transfer coefficient would depend on both film coefficients and the wall
resistance. For many designs the outer film resistance in the stirred tank and
the wall resistance would be small compared with the inner film resistance; thus,



UA t*i hmA. The inner film coefficient can be related to the flow by an empirical
relationship of the form (Foust et al., 1980)

UA = aF* (3.61)
Equations (3.59) to (3.61) can be combined to eliminate Tcoat and UA to give

the following expression for the heat transferred:

Q = -
aF*+l

Fc +
aF* (T-Tcia) (3.62)

2pcCpc

This solution to the subproblem expresses the heat transferred in terms of the
specified, external variables (Fc and Tdn) and the tank temperature, which is the
dependent variable to be determined. Equation (3.62) can be substituted into
equation (3.58) to give the final model for the stirred-tank exchanger.

dT
VpCp— = CppFiT0-T)-

aF^x

Fc +
aF* iT-Tc in) (3.63)

2pcClpc

The degrees-of-freedom analysis results in one variable (7"), one equation
(3.63), four external variables (7^, 7b, and F are assumed constant, and Fc can
change with time), and seven parameters. Thus, the model is exactly specified.

To evaluate the linearity of the model, all constants (for this example) are
substituted into equation (3.63) to give the following:

a t 1 4 1 x 1 0 5 F 0 5
(2.1 x 10')- = (0.85 x 10«)(150 - T) - p'+ ^faV - 25)

The model is nonlinear because of the Fc terms and the product of Fc times T.
Therefore, the second term in equation (3.63) must be linearized using the Taylor
series in two variables, which yields the following result:

Q = Qs - UAUT - Ts) + KFciFc - Fcs)

I \
Qs =

(3.64)

- a F ^ i T - Tc i n )

\
Fc +

aFl

ua: = aF*+x
aFch

\ c+2pcCpc/s

KFc =

t-Pc^pc

-abFbc (

J
Fc + ,b 2pcCi iT - Tcm)

pc.

\ c 2pcCpc)

(3.65)

The linear approximation can be used to replace the nonlinear term, and again
the equation can be expressed in deviation variables:

dT'
VCpp— = FpCpi-T) - UA*V + KFcF'c (3.66)

Solution. The resulting approximate model is a linear first-order ordinary differ
ential equation that can be solved by applying the integrating factor.

d V 1 „ , K F c+ -T' = ——d t x V p C p
F' with x

\ v V p C j
-1

(3.67)
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For a step change in the coolant flow rate at t = 0 and 7"(0) = 0, the solution is
given by

r = %^(l - e-'x) = AFcKpi\ - e~"x)
VpCp (3.68)

The linearized coefficients can calculated to be KFc = -5.97 x 106 ([cal/min]/
[m3/min]), KT = -9.09 x 104 ([cal/min]/°C). The steady-state gain and time constant
can be determined to be

Kp =
KFcx
VpCp

= -33.9
m3/min \ V V p C p )

11.9 min

Results analysis. The solution gives an exponential relationship between time
and the variable of interest. The approximate linearized response is plotted in
Figure 3.15 along with the solution to the nonlinear model. For the magnitude of the
step change considered, the linearized approximation provides a good estimate
of the true response.

The analytical linearized approximation provides relationships between the
transient response and process design and operation. For example, since UA* > O,
equation (3.67) demonstrates that the time constant for the heat exchanger is
always smaller than the time constant for the same stirred tank without a heat
exchanger, for which r = V/F.



V
FIGURE 3.16

Simplified schematic of flow through valve.

EXAMPLE 3.8. Flow manipulation
As explained briefly in Chapter 1, process control requires a manipulated variable
that can be adjusted independently by a person or automation system. Possible
manipulated variables include motor speed and electrical power, but the manip
ulated variable in the majority of process control systems is valve opening, which
influences the flow of gas, liquid, or slurry. Therefore, it is worthwhile briefly consid
ering a model for the effect of valve opening on flow. A simplified system is shown
in Figure 3.16, which is described by the following macroscopic energy balance
(Foustetal., 1980; Hutchinson, 1976).

F = C v v l ^ — ^ - ( 3 . 6 9 )

where Cv = inherent valve characteristic
v = valve stem position, related to percent open
F = volumetric flow rate

The valve stem position is changed by a person, as with a faucet, or by an auto
mated system. The inherent valve characteristic depends in general on the stem
position; also, the pressures in the pipe would depend on the flow and, thus, the
stem position. For the present, the characteristic and pressures will be considered
to be approximately constant. In that case, the flow is a linear function of the valve
stem position:

F' = CJ^—^-v' = Kvv' with Kv = CpJ^—5. (3.70)

Thus, linear or linearized models involving flow can be expressed as a function of
valve position using equation (3.70). This is the expression used for many of the
models in the next few chapters. More detail on the industrial flow systems will be
presented in Chapters 7 (automated valve design) and 16 (variable characteristics
and pressures).

The procedure for linearization in this section has applied classical methods to
be performed by the engineer. Software systems can perform algebra and calculus;
therefore, linearization can be performed via special software. One well-known
software system for analytical calculations is Maple™. We will continue to use
the "hand" method because of the simplicity of the models. Whether the models
are linearized by hand or using software, the engineer should always thoroughly
understand the effects of design and operating variables on the gains, time constant,
and dead time.
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The examples in this section have demonstrated the ease with which lineariza
tion can be applied to dynamic process models. As shown in equation (3.37), the
second-order term in the Taylor series gives insight into the accuracy of the linear
approximation. However, there is no simple manner for evaluating whether a linear
approximation is appropriate, since the sensitivity of the modelling results depends
on the formulation, input variables, parameters, and, perhaps most importantly, the
goals of the modelling task. An analytical method for estimating the effects of the
second-order terms in the Taylor series on the results of the dynamic model is
available (Douglas, 1972); however, it requires more effort than the numerical so
lution of the original nonlinear equations. Therefore, the analytical method using
higher-order terms in the Taylor series is not often used, although it might find
application for a model solved frequently.

One quick check on the accuracy of the linearized model is to compare the
final values, as time goes to infinity, of the nonlinear and linearized models. If
they differ by too much, with this value specific to the problem, then the linearized
model would be deemed to be of insufficient accuracy. If the final values are close
enough, the dynamic responses could still differ and would have to be evaluated.
Also, values of the time constants and gain at the initial and final conditions can be
determined; if they are significantly different, the linearized model is not likely to
provide adequate accuracy. The reader will be assisted in making these decisions by
numerous examples in this book that evaluate linearized control methods applied
to nonlinear processes.

The predictions from a linearized dynamic model are sufficiently accurate for most
control system design calculations if the values of steady-state gain and time con
stants) are similar throughout the transient, i.e., from the initial to final conditions.

The more complete approach for checking accuracy is to compare results from
the linearized and full nonlinear models, with the nonlinear model solved using
numerical methods, as discussed in the next section. Fundamental models can
require considerable engineering effort to develop and solve for complex processes,
so this approach is usually reserved for processes that are poorly understood or
known to be highly nonlinear. In practice, engineers often learn by experience
which processes in their plants can be analyzed using linearized models.

Again, this experience indicates that in the majority of cases, linear models
are adequate for process control. An additional advantage of approximate linear
models is the insight they provide into how process parameters and operating
conditions affect the transient response.

3.5 B NUMERICAL SOLUTIONS OF ORDINARY
DIFFERENTIAL EQUATIONS
There are situations in which accurate solutions of the nonlinear equations are re
quired. Since most systems of nonlinear algebraic and differential equations can
not be solved analytically, approximate solutions are determined using numerical
methods. Many numerical solution methods are available, and a thorough coverage
of the topic would require a complete book (for example, Carnahan et al., 1969,



and Maron and Lopez, 1991). However, a few of the simplest numerical methods
for solving ordinary differential equations will be introduced here, and they will
be adequate, if not the most efficient, for most of the problems in this book.

Numerical methods do not find analytical solutions like the expressions in the
previous sections; they provide a set of points that are "close" to the true solution
of the differential equation. The general concept for numerical solutions is to use
an initial value (or values) of a variable and an approximation of the derivative over
a single step to determine the variable after the step. For example, the solution to
the differential equation

dy

can be approximated from / = /,- to / =
Taylor series approximation to give

withy |,=,(.= y/

ti+u with At = ti+i

V;+i « y/ + UI fo+1 - ti)

(3.71)

t,, by a linear

(3.72)

yt+i *yi + f(yi,t)At
The procedure in equation (3.72) is the Euler numerical integration method (Car-
nahan et al., 1969). This procedure can be repeated for any number of time steps
to yield the approximate solution over a time interval.

Numerical methods can include higher-order terms in the Taylor series to
improve the accuracy. The obvious method would be to determine higher-order
terms in the Taylor series in equation (3.72); however, this would require algebraic
manipulations that are generally avoided, although they could be practical with
computer algebra. A mariner has been developed to achieve the equivalent accuracy
by evaluating the first derivative term at several points within the step. The result is
presented here without derivation; the derivation is available in most textbooks on
numerical analysis (Maron and Lopez, 1991). There are many forms of the solution,
all of which are referred to as Runge-Kutta methods. The following equations are
one common form of the Runge-Kutta fourth-order method:

At
yi+i = v,- + — (mi + 2m2 + 2m3 + m4) (3.73)o

w i t h m x - fi y i , t i )
/ A t A t \

m2 = f I y, + —mx, U + —\

J A t A Am = f ( v/ + Y™2, tl + ~2)

m = /(y,- + Arm3, tj + At)
All numerical methods introduce an error at each step, due to the loss of

the higher-order terms in the Taylor series, and these errors accumulate as the
integration proceeds. Since the accumulated error depends on how well the function
is approximated, the Euler and Runge-Kutta methods have different accumulated
errors. The Euler accumulated error is proportional to the step size; the Runge-
Kutta error in equation (3.73) depends on the step size to the fourth power. Thus,
the Euler method requires a smaller step size for the same accuracy as Runge-
Kutta; this is partially offset by fewer calculations per step required for the Euler
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method. Since the errors from both methods increase with increasing step size, a
very small step size might be selected for good accuracy, but a very small step size
has two disadvantages. First, it requires a large number of steps and, therefore,
long computing times to complete the entire simulation. Second, the use of too
small a step size results in a very small change in y, perhaps so small as to be lost
due to round-off. Therefore, an intermediate range of step sizes exists, in which
the approximate numerical solution typically provides the best accuracy.

The engineer must choose the step size At to be the proper size to provide
adequate accuracy. The proper step size is relative to the dynamics of the solution;
thus, a key parameter is At/x, with x being the smallest time constant appearing
in a linear(ized) model. As a very rough initial estimate, this parameter could be
taken to be approximately 0.01. Then, solutions can be determined at different step
sizes; the region in which the solution does not change significantly, as compared
with the accuracy needed to achieve the modelling goal, indicates the proper range
of step size. There are numerical methods that monitor the error during the problem
solution and adjust the step size during the solution to achieve a specified accuracy
(Maron and Lopez, 1991).

Some higher-order systems have time constants that differ greatly (e.g., x\ = 1
and T2 = 5000); these systems are referred to as stiff. When explicit numerical
methods such as Euler and Runge-Kutta are used for these systems, the step size
must be small relative to the smallest time constant for good accuracy (and sta
bility), but the total interval must be sufficient for the longest time constant to
respond. Thus, the total number of time steps can be extremely large, and com
puter resources can be exorbitant. One solution method is to approximate part of
the system as a quasi-steady state; this was done in several of the previous exam
ples in this chapter, such as Example 3.7, where the coolant energy balance was
modelled as a steady-state process. When this is not possible, the explicit numeri
cal methods described above are not appropriate, and implicit numerical methods,
which involve iterative calculations at each step, are recommended (Maron and
Lopez, 1991).

Either the Euler or the Runge-Kutta method should be sufficient for the prob
lems encountered in this book, but not for all realistic process control simulations.
Recommendations on algorithm selection are available in the references already
noted, and various techniques have been evaluated (Enwright and Hull, 1976). The
numerical methods are demonstrated by application to examples.

'AO
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EXAMPLE 3.9. Isothermal CSTR
In Example 3.5 a model of an isothermal CSTR with a second-order chemical
reaction was derived and an approximate linear model was solved. The nonlinear
model cannot be solved analytically; therefore, a numerical solution is presented.
The Euler method can be used, which involves the solution of the following equation
at each step, i:

GCA,+i = CA/ + At -(Cao/ - CA/) + kC- - ) (3.74)

An appropriate step size was found by trial and error to be 0.05. (Note that
At/x = 0.014.) The numerical solution is shown in Figure 3.12 as the result from
the nonlinear model.



In summary, numerical methods provide the capability of solving complex, 
nonlinear ordinary differential equations. Thus, the engineer can formulate a model 
to satisfy the modelling goals without undue concern for determining an analyt­
ical solution. This power in developing specific solutions is achieved at a loss in 
engineering insight, so that the linearized solutions are often derived to establish 
relationships. 

3.6 Cil THE NONISOTHERMAL CHEMICAL REACTOR 

One of the most important processes for the engineer is the chemical reactor be­
cause of its strong influence on product quality and profit. The dynamic behaviors 
of chemical reactors vary from quite straightforward to highly complex, and to 
evaluate the dynamic behavior, the engineer often must develop fundamental mod­
els. A simple model of a nonisothermal chemical reactor is introduced here with 
a sample dynamic response, and further details on modelling a continuous-flow 
stirred-tank reactor (CSTR) are presented in Appendix C along with additional as­
pects of its dynamic behavior. In this introduction, the reactor shown in Figure 3.17 
is modelled; it is a well-mixed, constant-volume CSTR with a single first-order 
reaction, exothermic heat of reaction, and a cooling coil. The system is the liq­
uid in the reactor. Since the concentration changes, a component material balance 
is required, and since heat is transferred and the heat of reaction is significant, 
an energy balance is required. Thus, the following two equations must be solved 
simultaneously to determine the dynamic behavior of the system: 

Material balance on component A: 

Energy balance: 

dCA = F(CAo- CA)- Vkoe - EfRT CA 
dt 

dT aFb 
-d = FpCp(To- T) + b e (T- Tc) 

t Fc +aFc f2pcCpc 

+ ( -tlHrxn) Vkoe-E fRT CA 

(3.75) 

(3.76) 

The second term on the right-hand side of the energy balance represents the heat 
transferred via the cooling coil, with the heat transfer coefficient a function of the 
coolant flow rate as described in Example 3.7. 

The dynamic behavior of the concentration of the reactant and temperature to 
a step change in the cooling flow can be determined by solving equations (3 .75) and 
(3 .76). Since these equations are highly nonlinear, they are solved numerically here, 
using data documented in Section C.2 of Appendix C. The dynamic behaviors of 
the concentration and temperature to a step in coolant flow are shown in Figure 3.18. 
Note that for this case, the dynamic behavior is underdamped, yielding oscillations 
that damp out with time. (You may have experienced this type of behavior in an 
automobile with poor springs and shock absorbers when the suspension oscillates 
for a long time after striking a bump in the road.) Certainly, the large oscillations 
over a long time can lead to undesired product quality. 

Not all chemical reactors behave with this underdamped behavior; many are 
more straightforward with overdamped dynamics, while a few are much more 
challenging. However, the engineer cannot determine the dynamic behavior of 
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FIGURE 3.18

Dynamic response of a CSTR to a step change in coolant flow of -1 m3/min at
r = 1.

a reactor based on the physical structure, such as a CSTR or packed bed, or on
specific design parameters. Therefore, the engineer must apply modelling and
analysis to predict the dynamic behavior. Hopefully, your interest will be piqued
by this example, and you will refer to the detailed reactor modelling and analysis
found in Appendix C.

3 . 7 □ C O N C L U S I O N S

The procedure in Table 3.1 provides a road map for developing, solving, and
interpreting mathematical models based on fundamental principles. In addition
to predicting specific behavior, these models provide considerable insight into the
relationship between the process equipment and operating conditions and dynamic
behavior. A thorough analysis of results is recommended in all cases so that the
sensitivity of the solution to assumptions and data can be evaluated.

Perhaps the most important concept is

Modelling is a goal-oriented task, so the proper model depends on its application.

The models used in process control are developed to relate each input variable
(cause) to the output variable (effect). The modelling approach enables us to reach
this goal by (1) developing the fundamental model and (2) deriving the linearized



models for each input output dynamic response. The approach can be demonstrated
by repeating the model for the isothermal CSTR with first-order kinetics derived
in Example 3.2.

viir = F(Cao " Ca) " VIcCa (3.77)

In this discussion, we will consider the situation in which the feed flow rate can
be regulated by a valve, while the feed concentration is determined by upstream
equipment that causes unregulated variations in the concentration. Thus,

Ca = key output variable
F = manipulated input variable

Cao = disturbance input variable
Equation (3.77) can be linearized and expressed in deviation variables to give the
following approximate model:

dC±
dt + CA = KpF + KcaqC'aao (3.78)

with T = V/iF + Vk)
KF = (CA0 - CAs)/(Fs + Vk)

KCA0 = F/iF + Vk)
A model for each input can be derived by assuming that the other input is constant
(zero deviation) to give the following two models, one for each input, in the standard
form.
Effect of the disturbance:

d£±
dt + CA = KcAqCaao

Effect of the manipulated variable:
dC'
dt + C'=KFF'

(3.79)

(3.80)

Note that separate models are needed to represent the dynamics between the two
inputs and the output; thus, the single-component material balance yields two
input/output models. If more input variables were considered, for example, tem
perature, additional input/output models would result.

This modelling approach provides very important information about the dy
namic behavior of the process that can be determined from the values of the steady-
state gains and the time constants. The definitions of the key parameters are sum
marized in the following:
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Parameter S y m b o l D e fi n i t i o n Units
Steady-state gain K Output/input (Aoutput/Ainput)ss
Time constant X Multiplies derivative

in standard model form
Time
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The values of these parameters can be used to estimate the magnitude and
speed of the effects of the input changes on the output variable. This modelling
procedure enables the engineer to relate the dynamic behavior of a process to
the equipment sizes, physical properties, rate processes, and operating conditions.
For example, the steady-state effect of the flow disturbance (F) depends on its
gain (£», which is affected by the equipment (V), chemistry (k), and operating
conditions (F, CAo, and C^). Recall that we are compromising accuracy through
linearization to achieve these insights.

The engineer should interpret linearized models to determine the factors influencing
dynamic behavior, i.e., influencing the gains and time constants.

As we build understanding of process control in later chapters, this interpre
tation will prove invaluable in designing process with favorable dynamics and
designing feedback process control calculations.

The observant reader may have noticed the similarities among the behaviors
of many of the examples in this chapter. These similarities will lead to important
generalizations, presented in Chapter 5, about the dynamics of processes that can
be represented by simple sets of differential equations: one ordinary differential
equation (first-order system), two equations (second-order system), and so forth.
However, before exploring these generalities, some useful mathematical methods
are introduced in Chapter 4. These mathematical methods are selected to facilitate
the analysis of process control systems using models like the ones developed in
this chapter and will be used extensively in the remainder of the book.
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In answering the questions in this chapter (and future chapters), careful attention
should.be paid to the modelling methods and results. The following summary of the
modelling method is provided to assist in this analysis.

• Define the system and determine the balances and constitutive relations used.
• Analyze the degrees of freedom of the model.
• Determine how the design and operating values influence key results like gains

and time constants.
• Determine the shape of the dynamic response. Is it monotonic, oscillatory, etc.?
• If nonlinear, estimate the accuracy of the linearized result.
• Analyze the sensitivity of the dynamic response to parameter values.
'■•■ Discuss how you would validate the model.

QUESTIONS
3.1. The chemical reactor in Example 3.2 is to be modelled, with the goal of

determining the concentration of the product Cr as a function of time for the
same input change. Extend the analytical solution to answer this question.

3.2. The series of two tanks in Example 3.3 are to be modelled with V\ + V2 =
2.1 and Vi = 2V2. Repeat the analysis and solution for this situation.

3.3. The step input is changed to an impulse for Example 3.3. An impulse is a
"spike" with a (nearly) instantaneous duration and nonzero integral; phys
ically, an impulse would be achieved by rapidly dumping extra component
A into the first tank. Solve for the outlet concentration of the second tank
after an impulse of M moles of A is put into the first tank.

3.4. A batch reactor with the parameters in Example 3.2 is initially empty and
is filled at the inlet flow rate, with the outlet flow being zero. Determine
the concentration of A in the tank during the filling process. After the tank
is full, the outlet flow is set equal to the inlet flow; that is, the reactor is
operated like a continuous-flow CSTR. Determine the concentration of A
to the steady state.

3.5. The system in Example 3.1 has an input concentration that varies as a sine
with amplitude A and frequency co. Determine the outlet concentration for
this input.

3.6. The level-flow system is Figure Q3.6 is to be analyzed. The flow Fo is
constant. The flow F3 depends on the valve opening but not on the levels,
whereas flows Fj and F2 depend on the varying pressures (i.e., levels).
The system is initially at steady state, and a step increase in F3 is made by
adjusting the valve. Determine the dynamic response of the levels and flows
using an approximate linear model. Without specific numerical values,
sketch the approximate dynamic behavior of the variables.

3.7. The behavior of the single CSTR with the kinetics shown below is consid
ered in this question. The goal is to control the concentration of product D
in the effluent. Your supervisor proposes the feed concentration of reactant



91

Linearization

FIGURE Q3.6

A as the manipulated variable for a feedback controller. Is this a good idea?
*AD

W \ B / k
D

In answering this question, you may use the following information: (1)
the tank is well mixed and has a constant volume and temperature; (2)
all components have the same molecular weights and densities; (3) all
reactions are elementary; thus, in this case they are all first-order; (4) the
volumetric feed flow is constant (F) and contains only component A (Cao).
(a) Starting with fundamental balances, derive the model (differential

equations) that must be solved to determine the behavior of the con
centration of component D.

ib) Express the equations from part id) in linear(ized) deviation variables
and define the time constants and gains.

ic) Does a causal relationship exist between Cao and Co?
3.8. The level-flow system in Figure Q3.8 is to be analyzed. The flow into the

system, Fo, is independent of the system pressures. The feed is entirely
liquid, and the first vessel is closed and has a nonsoluble gas in the space
above the nonvolatile liquid. The flows F\ and F2 depend only on the
pressure drops, because the restrictions in the pipes are fixed. Derive the
linearized model for this system in response to a step change in F0, solve
the equations, and, without specific numerical values, sketch the dynamic
responses.

3.9. The room heating Example 3.4 is reconsidered; for the following situations,
each representing a single change from the base case, reformulate the model
as needed and determine the dynamic behavior of the temperature and
heating status.

■J&J—-
p\

h.

FIGURE Q3.8



92 (a) Due to leaks, a constant flow into and out of the room exists. Assume
wwM^^^msm^ that the volume of air in the room is changed every hour with entering
C H A P T E R 3 a i r a t t h e o u t s i d e t e m p e r a t u r e .
Mathematical ib) A mass of material (e.g., furniture) is present in the room. Assume
Modelling Principles mat mis mass is aiways jn equilibrium with the air; that is, the heat

exchange is at quasi-steady state. The mass is equivalent to 200 kg of
wood.

(c) The ambient temperature decreases to — 10°C.
id) The duty of the furnace is reduced to 0.50 x 106 when on.
ie) The heat transferred to the room does not change instantaneously when

the furnace status changes. The relationship between the heat generated
in the furnace (<2/), which changes immediately when the switch is
activated, and the heat to the room ((2/.) is

*Q^L = Qf-Qh with xQ= 0.10 h
3.10. Determine the dynamic responses for a+10 percent change in inlet flow rate

in place of the original input change for one or more of Examples 3.2,3.5,
and 3.7. Determine whether the model must be linearized in each case. For
cases that require linearization, estimate the errors introduced and compare
a numerical solution with the approximate, linear dynamic response.

3.11. A stirred-tank heater could have an external jacket with saturated steam
condensing in the jacket to heat the tank. Assume that this modification
has been made to the system in Example 3.7 and derive an analytical ex
pression for the response of the tank temperature to a step change in the
steam pressure. Begin by sketching the system and listing assumptions.

3.12. The tank draining problem in Example 3.6 has been modified to remove
the restriction (partially opened valve) in the outlet line. Now, the line is
simply a pipe. Reformulate and solve the problem for the two following
cases, each with a pipe long enough that end conditions are negligible.
id) The flow in the outlet pipe is laminar.
ib) The flow in the outlet pipe is turbulent.

3.13. Answer the following questions.
id) Explain what is meant by a stiff system of differential equations. Under

what conditions (changing values of parameters) would the equations
in Example 3.3 be stiff? If they were stiff, suggest several ways to
solve them numerically. Would this stiffness affect the accuracy of the
analytical solutions of the linearized model?

ib) The analysis of degrees of freedom suggests that terms that are constant
in the current examples be separated into two categories: parameters
and external variables. Why would this be useful for future analysis of
feedback control systems? Suggest two subcategories for the external
variables and why they might be useful for feedback control analysis.

(c) The degrees-of-freedom analysis should define the proper number of
equations for a model. Suppose that the following model were pro
posed for Example 3.6.

A^- = F0- F, (5)(2) = 10dt



When Fo is constant, this model has two equations and two unknown
variables, L and F\. Explain why this model does not satisfy the
degrees-of-freedom analysis and provide a mathematical test that can
be applied to potential equation sets.

id) Is it possible for a model to be linear for one external input perturbation
and nonlinear for another? Explain and give examples.

ie) Give the equations to be solved at every time step for an Euler integra
tion of the nonisothermal chemical reactor model in equations (3.75)
and (3.76).

3.14. The chemical reactor in Example 3.3 is considered in this question. The only
change to the problem is the input function; here, the inlet concentration is
returned to its initial value in a step 5 minutes after the initial step increase.
id) Determine the dynamic response of the concentration of both tanks.
ib) Compare your answer to the shape of the plot in Figure 3.5/? and explain

similarities and differences,
(c) Based on your results in id) and ib), discuss how you would design

an emergency system to prevent the concentration of A in the second
tank from exceeding a specified maximum value. Discuss the variables
F and Cao as potential manipulated variables, and select the value to
which the manipulated variable should be set when the action limit
is reached. Also, discuss how you would determine the value of the
action limit.

3.15. The dynamic response of the CSTR shown in Figure 3.1 is to be determined
as follows.
Assumptions: (i) well mixed, (ii) isothermal, (iii) constant density, and (iv)
constant volume.
Data: V = 2 m3; F = 1 m3/h; CAo(0) = 0.5 mole/m3.
Reaction: A ->• Products

w i t h r A = - k \ C A / i \ + k 2 C A ) m o l e / ( m 3 h )
*i = 1.0 h"1
k2— 1.0 m3/mole

id) Formulate the model for the dynamic response of the concentration of
A.

ib) Linearize the equation in id).
(c) Analytically solve the linearized equation for a step change in the inlet

concentration of A, Cao-
id) Give the equation(s) for the numerical solution of the "exact" nonlin

ear equation derived in id). You may use any of the common numerical
methods for solving ordinary differential equations.

ie) Calculate the transients for the (analytical) linearized and (numerical)
nonlinear models. Graph the results for both the nonlinear and lin
earized predictions for two cases, both of which start from the initial
conditions given above and have the magnitudes (1) ACao = 0.5 and
(2) ACao = 4.0. Provide an annotated listing of your program or
spreadsheet.

if) Discuss the accuracy of the linearized solutions compared with solu
tions to the "exact" nonlinear equations for these two cases.
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3.16. Discuss whether linearized dynamic models would provide accurate rep
resentations of the dynamic results for
id) Example 3.2 with ACAo = -0.925 moles/m3
(h) Example 3.7 for AFC = -9.25 m3/min

3.17. A stirred-tank mixer has two input streams: Fa which is pure component
A, and Fn, which has no A. The system is initially at steady state, and
the flow Fa is constant. The flow of B changes according to the following
description: From time 0 -» t\, F ît) = at (a ramp from the initial condi
tion); and from time t\ -▶ oo, F ît) = at\ (constant at the value reached
at t\). The following assumptions may be used:

(1) The densities of the two streams are constant and equal, and there
is no density change on mixing.

(2) The volume of the liquid in the tank is constant.
(3) The tank is well mixed.

id) Sketch the process, define the system, and derive the basic balance for
the weight fraction of A in the exit stream, Xa.

ib) Derive the linearized balance in deviation variables,
(c) Solve the equation for the forcing function, Fg (f), defined above. (Hint:

You may want to develop two solutions, first from 0 -> t\ and then
t\ -▶ oo.)

id) Sketch the dynamic behavior of Fg(r) and X'Ait).
3.18. In the tank system in Figure 3.13, the outflow drains through the outlet

pipe with a restriction as in Example 3.6, and in this question, a first-order
chemical reaction occurs in the tank. Given the following data, plot the
operating window, i.e., the range of possible steady-state operating condi
tions, with coordinates of level and concentration of A. Discuss the effect
of changing reactor temperature on the operating window, if any.

Design parameters: Cross-sectional area = 0.30 m2, maximum
level = 4.0 m. The chemical reaction is first-order with ko = 2.28 x 107
(h_1) and E/R = 5000 K. The base-case conditions can be used to
back-calculate required parameters. The base case data are T = 330 K,
L - 3.33 m, F = 10 m3/h, and CA =0.313 mole/m3. The external vari
ables can be adjusted over the following ranges: 0.20 < Cao < 0.70 and
3.0 < F < 12.5.

3.19. A system of well-mixed tanks and blending is shown in Figure Q3.19. The
delays in the pipes are negligible, the flow rates are constant, and the streams
have the same density. Step changes are introduced in Cai at t\ and Ca2 at
t2, with t2 > t\. Determine the transient responses of Ca3, Ca4, and Cas.

3.20. Determining the sensitivity of modelling results to parameters is a key
aspect of results analysis. For the result from Example 3.2,

CA = CAinit + ACA0Kpi\ " e~'/T)

id) Determine analytical expressions for the sensitivity of the output vari
able CA to small (differential) changes in the parameters, Kp,x, fore-
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ib) For each result in (0), plot the sensitivities over their trajectories and Linearization
discuss whether the answer makes sense physically.

3.21. Another experiment was performed to validate the fact that the vessel in
Example 3.1 was well mixed. In this experiment, the vessel was well insu
lated and brought to steady state. Then a step change was introduced to the
inlet temperature. The following data represents the operating conditions,
and the dynamic data is given in Table Q3.21.

Data: V = 2.7 m3, F = 0.71 m3/min, roinit = 103.5°C, T0 = 68°C.
id) Formulate the energy balance for this system, and solve for the ex

pected dynamic response of the tank temperature.
ib) Compare your prediction with the data.
(c) Given the two experimental results in Figure 3.4 and this question for

the same equipment, discuss your conclusions on the assumption that
the system is well mixed.

id) Is there additional information that would help you in (c)?
3.22. The dynamic response of the reactant concentration in the reactor, Ca, to a

change in the inlet concentration, Cao, for an isothermal, constant-volume,
constant-density CSTR with a single chemical reaction is to be evaluated.
The reaction rate is modelled by

_ k [ C ArA~ \+k2CA

Determine how the approximate time constant of the linearized model of
the process relating Ca to Cao changes as k\ and k2 range from 0 to infinity.
Explain how your answer makes sense.

TABLE Q3.22

Time Tempera tu re
0 103.5

.4 102
1.2 96
1.9 91
2.7 87
3.4 84
4.2 81
5.0 79
6.5 76
8.5 73

l l i « M i « i i i i W i « i i M

CC
Text Box
Table Q3.21
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4.1 ra INTRODUCTION
In the previous chapter, solutions to fundamental dynamic models were developed
using analytical and numerical methods. The analytical integrating factor method
was limited to sets of first-order linear differential equations that could be solved
sequentially. In this chapter, an additional analytical method is introduced that
expands the types of models that can be analyzed. The methods introduced in this
chapter are tailored to the analysis of process control systems and provide the
following capabilities:

1. The analytical solution of simultaneous linear differential equations with con
stant coefficients can be obtained using the Laplace transform method.

2. A control system can involve several processes and control calculations, which
must be considered simultaneously. The overall behavior of a complex system
can be modelled, considering only input and output variables, by the use of
transfer functions and block diagrams.

3. The behavior of systems to sine inputs is important in understanding how the
input frequency influences dynamic process performance. This behavior is
most easily determined using frequency response methods.

4. A very important aspect of a system's behavior is whether it achieves a steady-
state value after a step input. If it does, the system is deemed to be stable; if
it does not, it is deemed unstable. Important control system analysis is based
on this behavior, and the methods in this chapter are applied to determine the
stability of feedback control systems in Chapter 10.
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All of the methods in this chapter are limited to linear or linearized systems of
ordinary differential equations. The source of the process models can be the fun
damental modelling presented in Chapter 3 or the empirical modelling presented
in Chapter 6.

The methods in this chapter provide alternative ways to achieve results that
could, at least theoretically, be obtained for many systems using methods in Chap
ter 3. Therefore, the reader encountering this material for the first time might feel
that the methods are redundant and unnecessarily complex. However, the meth
ods in this chapter have been found to provide the best and simplest means for
analyzing important characteristics of process control systems. The methods will
be introduced in this chapter and applied to several important examples, but their
power will become more apparent as they are used in later chapters. The reader is
encouraged to master the basics here to ease the understanding of future chapters.

4.2 n THE LAPLACE TRANSFORM
The Laplace transform provides the engineer with a powerful method for analyzing
process control systems. It is introduced and applied for the analytical solution of
differential equations in this section; in later sections (and chapters), other appli
cations are introduced for characterizing important behavior of dynamic systems
without solving the differential equations for the entire dynamic response.

The Laplace transform is defined as follows:

£if(t)) = fis) = j°° me-xdt (4.1)

Before examples are presented, a few important properties and conventions are
stated.

1. Only the behavior of the time-domain function for times equal to or greater
than zero is considered. The value of the time-domain function is taken to be
zero for t < 0.

2. A Laplace transform does not exist for all functions. Sufficient conditions for
the Laplace transform to exist are (i) the function fit) is piecewise continuous
and (ii) the integral in equation (4.1) has a finite value; that is, the function /(/)
does not increase with time faster than e~st decreases with time. Functions typ
ically encountered in the study of process control are Laplace-transformable
and are not checked. Further discussion of the existence of Laplace transforms
is available (Boyce and Diprima, 1986).

3. The Laplace transform converts a function in the time domain to a function
in the "5-domain," in which s can take complex values. Recall that a complex
number x can be expressed in Cartesian form as A + Bj or in polar form as
Re*7" with

A = Re(;t) B = Im(jc) R = V' A2 + B2 <p = tan-1 (5) (4.2)



4. In this book, the Laplace transform of a function Tit) will be designated by
the argument s, as in Tis). The function and its transform will be designated
by the same symbol, which can be either a capital or a lowercase letter, and
no overbar will be used for the transformed function. The function in the
time domain will be designated as the variable (as T) or with the time shown
explicitly [as 7X0], if needed for clarification.

5. The Laplace transform is a linear operator, because it satisfies the requirements
specified in equation (3.36):

C[aFx (0 + bF2it)] = aC[Fx it)} + bC[F2it)] (4.3)

6. Tables of Laplace transforms are available, so the engineer does not have to
apply equation (4.1) for many commonly occurring functions. Also, these
tables provide the inverse Laplace transform,

—iC~l[fis)) = fit) fort >0 (4.4)

Since the Laplace transform is defined only for single-valued functions, the
transform and its inverse are unique.

Before we proceed to the application of Laplace transforms to differential
equations, equation (4.1) is applied to a few functions that will be used in later
examples. A more extensive list of Laplace transforms is given in Table 4.1.
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Constant
For/(0 = C,

C(C)
Jo

Ce~st dt = - —es
- S t C

s (4.5)

Step off Magnitude C at t = 0

For fit) = CUit) with 1/(0 =
0 at t = 0+
1 for t > 0+

CiCiUit))] = CC[Uit)] = CU e~st dt) = j
(4.6)

Since the variable is assumed to have a zero value for time less than zero, the
Laplace transforms for the constant and step are identical.

Exponential
For fit) = e~at,

Cieat) -Lo o j
at „-st -ea'e-sl dt = a — s

,-(.v-a)/|°°lo s — a (4.7)
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TABLE 4.1

Laplace transforms
N o . f { t )

1
2

3

4

5

6

7

8

9

10

11
12

13

14

15

16

17

18

8, unit impulse
i t
t"

Uit), unit step or constant
*n-\

in - 1)!

x

l + ^ - ^ e - "
X

1 tn-le-'/T
xn in - 1)!

1 + ( ^ - , ) e -

T'-V'/t, _ X2~a --/»

xx—a
Ti(r, -x2)

1 +
T 2 - T i

sin i(ot)
cos ioot)

e~a' cos (o>f)

e~a' sin icot)

, - ' / r i _ T 2 " a C i / W

72(T| - r2)

t 2 - r i

£e-̂ sin[>/EI!r + 0t \ r

c j * : * + l j - - - / * ^\ - p l _ si
a>re ,/r sin (art + cp)+
\+C02X2 y / \+ (02X2

<f> = tan_I(—(*>x)

1 - 1
VT=?

,-Wr sin 'VT^?■t + 4>

<j> = tan-1

/(0 =

' y / T ^

fi t - a ) t > a
0 t < a

a, co, and t,- are real and distinct, 0 < £ < 1, n = integer

Ms)
l
1A
\/sn

1
TJ + 1

as + 1
7(t7+T)

1
JxTTiy

as + 1
(w +1)2

as + l
sixs + l)2

flj + 1
(riJ -I- l)(r2s + 1)

as + \
sixxs + l)ix2s + 1)
co/is2 + co2)
s/is2 + co2)

s + a
is + a)2

CO
+ C02

(s + a)2 + C02

as + 1
x2s2 + 2$xs + 1

CO

ixs + l)is2+co2)

1
six2s2 + 2l-xs + \)

e-"sfis)



Sine
For fit) = sin (cot),

r < x > r o o / j o t _ p - j ( o t \
£(sin (at)) = / sin (a>t)e-st dt = / ( T j e~st

•oo /e-(s-ja))t _ e-(s+j<o)t

dt

-n
_J_[e- (s -J

V )
dt (4.8)

e-(s- j (o) t e - (s+ ja) t - I00 CO

co) (s + jco)]0 s2 + co2

Pulse
For f(t) = C[UiO) - Uitp)] = C/tp for t = 0 to tp, and = 0 for t > tp, as
graphed in Figure 4.1,

f t p Q / . O O
C(f(t)) = / -e-st dt + / Oe~st dt

J o h J t n
C(\- e~stp) (4.9)
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Pulse function.

An impulse function, which has zero width and total integral equal to C, is a
special case of the pulse. Its Laplace transform can be determined by taking the
limit of equation (4.9) as tp -> 0 (and applying L'Hospital's rule) to give

C (1 - e~st")
Y(s)\t.0 = lim

t P - + o t p s

= lim-c(-^)=c
r » - > 0 s

(4.10)

Derivative off a Function
To apply Laplace transforms to the solution of differential equations, the Laplace
transform of derivatives must be evaluated.

(4.11)

This equation can be integrated by parts to give

c (̂r)= " i°° m(-s)e~5'dt+f{t)e~st
= sf(s)-f(t)\t=0

The method can be extended to a derivative of any order by applying the integration
by parts several times to give

(4.12)

m-'f(s)

- (sn- /(OUo + s n-2 df(t)
dt

in-1
+ ...+ fit)

t=0 dtn~] J
(4.13)
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In tegra l

By similar application of integration by parts the Laplace transform of an integral
of a function can be shown to be

C (j* f(t') dA = j™ Qf f(t') dA e~st dt
= f°° —fit) dt + \( f f(t) dt) —1 = -

J o s l \ J o ) s J / = o s

(4.14)
f(s)

'AO

■ b '■

do

Different ia l Equat ions

One of the main applications for Laplace transforms is in the analytical solution
of ordinary differential equations. The key aspect of Laplace transforms in this
application is demonstrated in equation (4.13), which shows that the transform of
a derivative is an algebraic term. Thus, a differential equation is transformed into an
algebraic equation, which can be easily solved using rules of algebra. The challenge
is to determine the inverse Laplace transform to achieve an analytical solution in
the time domain. In some cases, determining the inverse transform can be complex
or impossible; however, methods shown in this section provide a general approach
for many systems of interest in process control. First, the solutions of a few simple
models involving differential equations, some already formulated in Chapter 3, are
presented.
EXAMPLE 4.1.
The continuous stirred-tank mixing model formulated in Example 3.1 is solved
here. The fundamental model in deviation variables is

dCV - A = F ( C A Q - C A ) ( 4 . 1 5 )
The Laplace transform is taken of each term in the model:

V [sC'Ais) - C'Ait)\tJ = F [C'AQis) - C'Ais)] (4.16)
The initial value of the tank concentration, expressed as a deviation variable, is
zero, and the deviation of the inlet concentration is constant at the step value for
t > 0; that is, CA0(O = ACAoA- Substituting these values and rearranging equation
(4.16) gives

CA(0 =
ACAO 1 with x = — = 24.7 min (4.17)S X s + 1

The inverse transform of the expression in equation (4.17) can be determined from
entry 5 of Table 4.1 to give the same expression as derived in Example 3.1.

CA(0 = ACAO(l-<r'/r) (4.18)

'AO

CD
' A l

b
CO

'A2

EXAMPLE 4.2.
The model for the two chemical reactors in Example 3.3 is considered here, and
the time-domain response to a step change is to be determined. The linear com
ponent material balances derived in Example 3.3 are repeated below in deviation
variables.

Vi dt
Al = F iC ' -C ' ) -VkC '' A l (3.24)
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The Laplace transforms of the component material balances in deviation variables, Transform
noting that the initial conditions are zero, are

sVC'Alis) = F(C'AOis) - C'AXis)) - VkC'Alis) (4.19)
sVC'^is) = F (CAlis) - C'A2is)) - VkC'^is) (4.20)

These equations can be combined into one equation by eliminating C'A]is) from
the second equation. First, solve for C'AXis) in equation (4.19):

KF + Vk)^C » = „ + 1 C a o ( 4 - 2 1 )

This expression can be substituted into equation (4.20) along with the input step
disturbance, CAOis) = ACA0/s, to give

KpACAp
sixs + l)2C « W = ^ = ( 4 - 2 2 )

V m o l ewith x = -——- = 8.25 min ACA0 = 0.925 —r
2 m o l e

K ^ ( - d v k ) = 0 m C „ . - 0 A U mJ
The inverse transform can be determined from entry 8 of Table 4.1 to give the
resulting time-domain expression for the concentration in the second reactor.

c^4V,[ i - ( . + i )^ ] (423)
CA2(0 = 0.414 + 0.414(1 - <?-'/8-25) - 0.050f<r'/8-25

This is the same result as obtained in Example 3.3.

Time Translation or Dead Time
The Laplace transform for a dead time of 0 units of time is

• o o / * o o/ • o o / » o o

C[fit -9))= fit - e)e~st dt = e~9s / /(/ - 0)*-*('-0) dit - 9)J o J o ( 4 2 4 )
/•OO

= e~6s / fit')e~st' dt' = e~6sfis)
Jo

When changing variables from it -9) to t', the lower bound of the integral remained
at 0 (did not change to t'-9), because the function is defined /(/) = Oforf < Ofor
the Laplace transform. The expression in equation (4.31) is used often in process
modelling to represent behavior in which the output variable does not respond
immediately to a change in the input variable; this condition is often referred to as
dead time.
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0 Length
FIGURE 4.2
Schematic of plug flow process.
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FIGURE 4.3
Input and output for dead time (0) of one time unit.
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EXAMPLE 4.3.
The dynamic behavior of turbulent fluid flow in a pipe approximates plug flow, with
the fluid properties like concentration and temperature progressing down the pipe
as a front. The dead time is 6 - L/v, i.e., the length divided by the fluid velocity.
The inlet concentration to the pipe in Figure 4.2 is X, and the outlet concentration
is Y. For ideal plug flow,

Y i t ) = X i t - 6 ) ( 4 . 2 5 )
The Laplace transform of this model can be evaluated using the results in equation
(4.24) to give

Y i s ) = X i s ) e ~ 9 s ( 4 . 2 6 )
The effect of a dead time for an arbitrary input concentration is shown in Figure 4.3.

Final Value Theorem

The final condition of the transient can be determined by applying the expression
for the derivative of a function, equations (4.11) and (4.12), and taking the limit
as s -» 0. ,0° dfit)

limu: dt -stdt\ = \\m[sf(s)-f(t)]t=0
Changing the order of the limit and the integral gives

,0° dfit)
/Jo

. dt = \im\sfis) - fit)]
a t 5 - > o

/(oo) - /(OU = HmW(s) - fit)]s->0

/(oo) = lim sfis)s-*0

t=0

t = 0

(4.27)

(4.28)



Equation (4.28) provides an easy manner for finding the final value of a variable;
however, one should recognize that a simpler method would be to formulate and
solve the steady-state model directly. The final value theorem finds use because the
dynamic models are required for process control, and the final value can be easily
determined from the Laplace transform without further modelling effort. Also, it
is important to recall that the final value is exact only for a truly linear process and
is approximate when based on a linearized model of a nonlinear process.

EXAMPLE 4.4.
Find the final value of the reactor concentration, expressed as a deviation from
the initial value, for the CSTRs in Example 4.2. The Laplace transform for the
concentration in response to a step in the inlet concentration is given in equation
(4.22). The final value theorem can be applied to give

\\ms(CA2is)) = lim ( js - * 0 s - * 0 \
ACAp Kp

s ixs + \) ) = KPACA0 = (7F7™) ACao (4-29)
Note that this is the final value, which gives no information about the trajectory to
the final value.

The engineer must recognize a limitation when applying the final value the
orem. The foregoing derivation is not valid for a Laplace transform fis) that is
not continuous for all values of s > 0 (Churchill, 1972). If the transform has a
discontinuity for s > 0, the time function fit) does not reach a final steady-state
value, as will be demonstrated in the discussion of partial fractions. Therefore, the
final value theorem cannot be applied to unstable systems.
EXAMPLE 4.5.
Find the final value for the following system.

K
Yis) = (AX) sixs — 1)

with r > 0

This transfer function has a discontinuity at s = 1/r > 0; therefore, the final value
theorem does not apply. The analytical expression for Yit) is

Yit) = iAX)Ki\ -e"x) (4.30)
The value of Yit) approaches negative infinity as time increases; this is not equal
to the incorrect result from applying the final value theorem to the transfer function
-KiAX).

Init ial Value Theorem
The initial value of a variable can be determined using the initial value theorem.
The derivation begins in the same manner as the final value theorem, except that the
limit is taken as s -> co. Again, the order of the limit and integration is changed,
resulting in the following equation:
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'AO

do
U-

' A l

db 'A2

Initial value theorem /(OUo = lim sf(s) (4.31)
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-Ao
- W

do ' A l

do
-A2

EXAMPLE 4.6.
The model for the two series CSTR chemical reactors in Examples 3.3 and 4.2 is
considered in this example with the alteration that the volumes of the two reactors
are not the same volume, Vi = 1.4 and V2 = 0.70 m3. Determine the time-domain
response.

The Laplace transforms of the two linear component material balance models
in deviation variables are

sViCM(s) = F[C'AOis) - CM(s)] - VxkCAlis) (4.32)

sViC^is) = F[C'Mis) - CA2is)] - V2kC'A2is) (4.33)
These equations can be combined into one equation by solving for CA1 is) in equa
tion (4.32) and substituting this into equation (4.33). Also, the input step distur
bance can be substituted, C'Mis) = ACA0/s, to give

K p C A o ( s ) K p A C A oCWO = (xxs + \)ix2s + 1) sixxs + \)ix2s + 1) (4.34)

with

T i =
V,

T 2 =
v2 K,

\F + Vxk)\F + V2k)F + Vxk F+V2k "y \F + Vxk) \F + V2k t
The inverse Laplace transform can be evaluated using entry 10 in Table 4.1 (with
a — 0) to determine the time-domain behavior of the concentration in the second
reactor.

CUt) = KPACA0 1 + ,-</*! - -^—e-<lA
T 2 - T i J

(4.35)r 2 - x x - -
This response is a smooth j-shaped curve, but it has different values at every time
from the original CSTR system.

EXAMPLE 4.7.
Using Laplace transforms, determine the response of the level in the draining tank
(Example 3.6) to two different changes to the inlet flow, (a) a step and (b) an
impulse.
Data. Cross-section area A = 7 m2, initial flows in and out, = 100 m3/min, initial
level = 7 m, kFX = 37.8 (m3/h)/(m-°-5). The model for the draining tank level is
based on an overall material balance of liquid in the tank depending on the flow
in (Fo)andout(Fi).

dL
pA— - pF0 - pFx (4.36)

The tank cross-sectional area is A. The flow out depends on the level in the tank
through a nonlinear relationship, and after linearization, the level model is

t 1 T + l ' = k p f ° < 4 - 3 7 )
with x = A/i0.5kF, L;0-5) = 0.98 h

Kp = \/i0.5kFXL;05) = 0.14 m/(m3/h)
The Laplace transform of equation (4.37) can be taken to give

KrL'is) = xs + \ Fiis) (4.38)



(a) For a step change in the inlet flow rate, Fq(s) = AF0/(O; this expression can
be substituted into equation (4.38), and the inverse Laplace transform can be
evaluated using entry 5 in Table 4.1. The resulting expression for the draining
level response to a step flow change is

L ' i t ) = K p A F Q i \ - e - ' / x ) ( 4 . 3 9 )
As.already determined in Example 3.6, the level dynamic response begins
at its initial condition and increases in a "first-order" manner to its final value,
which it reaches after about four time constants.

(b) An impulse is a change that has a finite integral but zero duration! Before
evaluating the impulse response, we should understand how this could occur
physically. For the level process, an impulse can be approximated by intro
ducing additional liquid very rapidly: one method for implementing an impulse
in this system would be to empty a bucket of liquid into the tank very fast. The
integral of the impulse is evaluated as

/ F < J ( 0 d t = M m 3 ( 4 . 4 0 )

The Laplace transform of the impulse, F^is) = M, can be introduced into
equation (4.38) to give

xs + \
The inverse Laplace transform can be evaluated using entry 4 in Table 4.1,
which gives [substituting the definition of the gain Kp = x/iA)] the following
result:

L ' i t ) = h E e - t h = M e _ t l x ( 4 4 1 )x A
The dynamic response of the draining tank level to an impulse of M = 20 m3 is
shown in Figure 4.4. For the parameters in the example, the levels calculated
using the nonlinear and linearized models are nearly identical. The level im
mediately increases in response to the addition of liquid. Since the inlet flow
returns to its initial value after the impulse, the level slowly returns to its initial
value.

Part ia l Fract ions
The Laplace transform method for solving differential equations could be limited
by the entries in Table 4.1, and with so few entries, it would seem that most models
could not be solved. However, many complex Laplace transforms can be expressed
as a linear combination of a few simple transforms through the use of partial fraction
expansion. Once the Laplace transform can be expressed as a sum of simpler
elements, each can be inverted individually using the entries in Table 4.1, thus
greatly increasing the number of equations that can be solved. More importantly,
the application of partial fractions provides very useful generalizations about the
forms of solutions to a wide range of differential equation models, and these
generalizations enable us to establish important characteristics about a system's
time-domain behavior without determining the complete transient solution. The
partial fractions method is summarized here and presented in detail in Appendix H.
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Response of the draining tank level in Example 4.7 to an impulse in
the flow in (F0) at time t = 0.50 h.

The reader may have noticed that nearly all Laplace transforms encountered to
this point are ratios of polynomials in the Laplace variable s. The partial fractions
method can be used to express a ratio of polynomials as a sum of simpler terms.
For example, if the roots of the denominator are distinct, a ratio of higher-order
numerator and denominator polynomials can be expressed as the sum of terms, all
of which have constant numerators and first-order denominators, as given below.

Yis) = N(s)/D(s) = Ci/is - «i) + C2/(s - a2) + (4.42)

with Y(s) = Laplace transform of the output variable
N(s) = numerator polynomial in s of order m
D(s) = denominator polynomial in s of order n (n > m), termed the

characteristic polynomial
C\ — constants evaluated for each problem
a,- = distinct roots of D(s) = 0

The inverse Laplace transform of the original term Y(s), which might not appear
in a table of Laplace transforms, is the sum of the inverses of the simpler terms
Ci/(s — a,), which appear as entry 4 in Table 4.1. This method is extended to
repeated and complex denominator roots in Appendix H, where it is applied to
determining the inverse of a complicated Laplace transform. However, the major
usefulness for partial fractions is in proving how several key aspects of a variable's
behavior can be determined directly from the Laplace transform without solving
for the inverse.

One key finding is summarized here, and another will be developed in Section
4.5 on frequency response. For any differential equation which can be arranged



into the form of equation (4.42), the inverse Laplace transform will be of the form 109

Yit) = Ax** + --- + (Bl+B2t + -' •)«"'' + • ■ ■ +
(4.43)

Number of
zero roots Terms in so lu t ion Is the system stab le?
Only one Axe° = Ax — constant Yes
Two (or more) (Bx + B2t)e° = (Bx + B2t) No, this term increases in

magnitude without limit

2. Damping. The nature of the roots of the characteristic polynomial determines
whether the dynamic response will experience periodic behavior for nonperi-
odic inputs; complex roots of D(s) lead to periodic (underdamped) behavior,
and real roots lead to nonperiodic (overdamped) behavior.

These two results enable the engineer to determine key features of the dynamic
performance of systems without evaluating the complete dynamic transient via
inverse Laplace transform. The simplification is enormous!

Certainly, a process would be easier to operate when it is stable so that vari ables
rapidly approach constant values and no variables tend to increase or decrease
without limit (based on a linearized model). Also, while oscillations are not usually
completely avoided, oscillations of large magnitude are generally undesirable.
Thus, the nature of the roots of the characteristic polynomial and how process
design and control algorithms affect these roots are important factors in designing
good processes and controls. These issues will be investigated thoroughly in Part
III on feedback control by evaluating the roots of the characteristic polynomial, and
the partial fraction method provides the mathematical foundation for this important
analysis.

The Laplace
[ C , C O S ( c o t ) + C 2 S i n ( c o t ) ] e a « ( + • • • T r a n s f o r m

This equation includes distinct (a\), repeated real (ap), and complex roots (aq), not
all of which may appear in a specific solution, in which case some of the constants
(A, B, or C) will be zero. Two important conclusions can be drawn:

1. Stability. The real parts of the roots of the characteristic polynomial, Dis),
determine the exponents (a's) in the solution. These exponents determine
whether the function approaches a constant value after a long time. For exam
ple, when all real parts of the roots, i.e., all Re(a,), are negative, all terms on
the right of equation (4.43) approach a constant value after an initial transient;
a system which tends toward a constant final value is termed stable. If any
Re(a,) is greater than zero, the function Yit) will increase (or decrease) in an
unbounded manner as time increases; this is termed unstable.

We must look carefully at the case of roots with a value of zero. If one
distinct root has a value of zero, the system is stable, while if repeated roots
have values of zero, the system is unstable. This result is summarized in the
following.
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'AO

CD
'Al

do 'A2

EXAMPLE 4.8.
Determine whether the concentration in the second reactor in Example 4.6 is stable
and underdamped without solving for the concentration.

The roots of the denominator of the Laplace transform can be evaluated to
determine these key aspects of the dynamic behavior. The Laplace transform is
repeated below.

C'(s) = KPACAQ
s(xxs + l)(x2s + 1) (4.44)

The roots of the denominator, which are the exponents, are -1/ti, -1/t2, and 0.0.
Since both nonzero time constants are positive, the roots are less than zero; also,
only one zero root exists. Therefore, the concentration reaches a constant value
and is stable. Also, since the roots are real, the concentration is overdamped. Natu
rally, these conclusions are consistent with the equation defining the time-varying
concentration derived in Example 4.5; however, the conclusions were reached
here with minimal effort and can be determined for more complex Laplace trans
forms that do not appear in Table 4.1.

4.3 m INPUT-OUTPUT MODELS AND TRANSFER FUNCTIONS
In some cases the values for all dependent process variables need to be determined
to meet modelling goals, and the fundamental models used to this point in the
book, which provide expressions for all variables, can be used in these cases.
For example, the model for two series CSTRs in Example 3.3 yields expressions
for the concentrations in both reactors. Some models are not unduly complex;
however, detailed models can involve a large number of equations. For example,
a distillation tower with 40 trays and 10 components would require over 400
differential equations.

A fundamental model solving for all dependent variables is often not required
for process control, because the control system is principally involved with all
input variables but only one or a few output variables. Thus, we need a method
for "compressing" the model, which can be achieved by first grouping variables
into three categories: input (causes), output (effects), and intermediate. For linear
dynamic models used in process control, it is possible to eliminate intermediate
variables analytically to yield an input-output model, so that intermediate variables
are considered in the model even though they are not explicitly calculated. Thus,
no further assumptions or simplifications are involved in input-output modelling
of linear systems.

Examples of this approach have already been encountered in this chapter.
For example, the basic model for two series CSTRs in Example 4.6 included
equations for the concentrations in both reactors, equations (4.32) and (4.33).
After the Laplace transforms are taken and the equations are combined into one
equation, the model in equation (4.34) involves only the input, C'AOis), and the
output, C'A2is). The intermediate variable, C'Alis), was eliminated, although all
effects of the first reactor are represented in the model.

A very common manner for presenting input-output models, which finds
considerable application in process control, is the transfer function. The trans-



fer function is a model based on Laplace transforms with special assumptions,
as follows.

I l l

The transfer function of a system is defined as the Laplace transform of the output
variable, 7(0, divided by the Laplace transform of the input variable, Xit), with all
initial conditions equal to zero.

Transfer function = Gis) = Yjs)
Xis) (4.45)

The assumptions of Y (0) = 0 and X(0) = 0 are easily achieved by expressing the
variables in the transfer function as deviations from the initial conditions. Thus, all
transfer functions involve variables that are expressed as deviations from an initial
steady state. All derivatives are zero if the initial conditions are at steady state.
(Systems having all zero initial conditions are sometimes referred to as "relaxed.")
These zero initial conditions are assumed for all systems represented by transfer
functions used in this book; therefore, the prime symbol"'" for deviation variables
is redundant and is not used here when dealing with transfer functions. Transfer
functions will be represented by Gis), with subscripts to denote the particular
input-output relationship when more than one input-output relationship exists.
Before proceeding with further discussion of transfer functions, a few examples
are given.

EXAMPLE 4.9.
Derive the transfer functions for the systems in Examples 4.1 and 4.2. The Laplace
transform of the model in Example 4.1 is in equation (4.16). This can be rearranged
to give the transfer function for this system:

Example 4.1: CA(0 1
xs + 1

Vwith x = —F (4.46)CaoOO
The Laplace transform for the model in Example 4.2 can be rearranged to give
the transfer function for this system:

Example 4.2:
KrCA2js) =

CAOis) ixs +1)2 (4.47)

with x =

Kp =

F + V k
F

\F + Vk)
The models from the previous examples could be used to form transfer functions,
because they were in terms of deviation variables with zero initial conditions.

Note that the transfer function relates one output to one input variable. If
more than one input or output exists, an individual transfer function is defined for
each input-output relationship. Since the transfer function is a linear operator (as
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'AO

U
do

V C A

a result of the zero initial conditions), the effects of several inputs can be summed
to determine the net effect on the output.

EXAMPLE 4.10.
Derive the transfer functions for the single CSTR with the first-order reaction in
Example 3.2 for changes in the inlet concentration and the feed flow rate.

The two linear models for each input change can be determined by assuming
that all other inputs are constant. The basic model was derived in Example 3.2 and
is repeated below.

V^£ = FiCM-CA)-VkCAat (4.48)

To determine whether the model is linear or not, the constant values are substituted
(noting that the flow and inlet concentrations are now variables) to give

<2.1)^r = F(Ca° - Ca> - (2.D(0.040)CAdt
The model is nonlinear because of the products of flow times concentrations.
Two linearized models can be derived from equation (4.48), one for each input
(assuming the other input constant), to give

tca-
dC\
dt + CA = KCACA0

t f ^+C 'a = K fF '

withT«=Grrw) *«=GnW(4'49)

Taking the Laplace transforms and rearranging yields the two transfer functions,
one for each input.

CAjs)
CaoCO

= GcAis) = &CA

tCAs +1

£^1 = Gf(s) = -̂ -
F ( s ) F V x F s + 1

(4.51)

(4.52)

These models and transfer functions give the behavior of the system output for
individual changes in each input. If both inputs change, the overall effect is ap
proximately the sum of the two individual effects. (If the process were truly linear,
the total effect would be exactly the sum of the two individual effects.) Readers
may want to return to Section 3.4 to refresh their memory on linearization.

The transfer function clearly shows some important properties of the system
briefly discussed below.

Orde r
The order of the system is the highest derivative of the output variable in the
defining differential equation, when expressed as a combination of all individ
ual equations. For transfer functions of physical systems, the order can be easily
determined to be the highest power of s in the denominator.



Pole
A pole is defined as a root of the denominator of the transfer function; thus, it is
the same as a root of the characteristic polynomial. Important information on the
dynamic behavior of the system can be obtained by analyzing the poles, such as

1. The stability of the system
2. The potential for periodic transients, as shown clearly in equation (4.43)

The analysis of poles is an important topic in Part III on feedback systems, since
feedback control affects the poles.

Zero
A zero is a root of the numerator of the transfer function. Zeros do not influence
the exponents (Re(a)), but they influence the constants in equation (4.43). This
can most easily be seen by considering a system with n distinct poles subject to an
impulse input of unity. The expression for the output, since the Laplace transform
of the unity input impulse is 1, is

N ( s ) M i ( s )Y(s) = G(s)X(s) = G(s) = for i = 1, n (4.53)D(s) s — a,-
For a system with no zeros, the numerator would be equal to a constant, N(s) = K,
and the constant associated with each root is

With no zeros " U(*)/,«, (4.54)

Dt (s) is the denominator, with (s — a,) factored out. For a system with one or more
zeros, the constant associated with each root is

With zeros 1 V Aco/,=_ff, (4.55)

Thus, the numerator changes the weight placed on the various exponential terms.
This demonstrates that the numerator of the transfer function cannot affect the
stability of the system modelled by the transfer function, but it can have a strong
influence on the trajectory followed by variables from their initial to final values.
A simple, but less general, example to demonstrate the effect of numerator zeros
is seen in the following transfer function.

G ( s ) = ^ i i _ 1 ( 4 . 5 6 )w (3s + 1)(2.5j + 1) 2.5^ + 1
The numerator zero cancelled one of the poles, with the result that the second-order
system behaves like a first-order system. Important examples of how zeros occur
in chemical processes and how they influence dynamic behavior are presented in
the next chapter, Section 5.4.

Order of Numerator and Denominator

Physical systems conform to a specific limitation between the orders of the nu
merator and denominator; that is, the order of the denominator must be larger than
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the order of the numerator. This limitation results from the observation that real
physical systems do not contain pure differentiation, as would be required for a
system with a numerator order greater than the denominator order.

Causa l i t y
As discussed in Chapter 1 in the introduction of feedback control, the "direction" of
the cause-effect relationship is essential to control system design. This direction is
presented in the transfer function by identifying the variable in the denominator as
an input (cause) and in the numerator as an output (effect). In designing feedback
control strategies, the variable chosen to be adjusted must be an input, and the
measured controlled variable used for determining the adjustment must be an
output. When the physical system is causal, the order of the denominator is greater
than that of the numerator, and the value of the transfer function as s -> co is
equal to 0. Such a transfer function is referred to as strictly proper.

Also, the current value of a system output variable can depend on past values
of the output and inputs, but it cannot depend on future values of any variable.
Therefore, the transfer function must not have prediction terms. By equation (4.24),
the transfer function may not contain a term eds, which is a translation into the future
(that cannot be eliminated by rearranging the transfer function). Such models are
referred to as noncausal or not physically realizable, because they cannot represent
a real physical system.

'AO

-W-
do ' A l

■W
db 'A2

Steady-State Gain
The steady-state gain is the steady-state value of A Y/ AX for all systems whose
outputs attain steady state after an input perturbation AX. The steady-state gain is
normally represented by K, often with a subscript, and can be evaluated by setting
s = 0 in the (stable) transfer function. This is exact for linear systems and gives
the linearized approximation for nonlinear systems.

EXAMPLE 4.11.
Determine the stability and damping of the outlet concentration leaving the last of
two isothermal CSTRs in Examples 4.2 and 4.9.

The transfer function for this system was derived in Example 4.9 and is re
peated below.

CA2(Q = G ( ) _ KP
C a o C O ( w + D 2 (4.57)

The order of the system is the highest power of s in the denominator, 2. This indi
cates that the process can be modelled using two ordinary differential equations.
The poles are the roots of the polynomial in the denominator; they are repeated
roots, a = -1/t = -1/8.25 min-1 = -0.1212 min"1. The dynamic behavior is non-
periodic (overdamped), because the poles are real and not complex. Also, the
poles are negative, indicating that the process is stable.

For a stable process, the steady-state gain can be determined by setting
s = 0 in the transfer function.

Steady-state gain: iGis))s=0 = Kp
Also, the final value of the reactant concentration in the second reactor can be
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In a specific situation the behavior of an output variable, from time 0 to comple
tion of the response, depends on its initial conditions, input forcing, and transfer
function (input-output) model. However, some very important properties of lin
ear dynamic systems depend only on the transfer function, because the properties
are independent of initial conditions and type of (bounded) forcing functions. For
example, the stability of the system was shown in the previous section to be deter
mined completely by the roots of the characteristic polynomial. The primary appli
cation of transfer functions is in the analysis of such properties of linear dynamic
systems, and they are applied extensively throughout the remainder of the book.

4.4 0 BLOCK DIAGRAMS
The transfer function introduced in the previous section describes the behavior of
the individual input-output system on which it is based. Often, several different
individual systems are combined, and the behavior of the combined system is to
be determined. For example, a control system could involve individual systems
for a reactor, a distillation tower, a sensor, a valve, and a control algorithm. The
overall model could be derived by writing all equations in a large set, taking the
Laplace transforms, and combining into one transfer function. Another approach
retains the distinct transfer functions of the individual systems and combines these
transfer functions into an overall model. This second approach is usually preferred
because

1. It retains individual systems, thereby simplifying model changes (e.g., a dif
ferent sensor model).

2. It provides a helpful visual representation of the cause-effect relationships in
the overall system.

3. It gives insight into how different components of the system influence the
overall behavior (e.g., stability).

The block diagram provides the method for combining individual transfer
functions into an overall transfer function. The three allowable manipulations in
a block diagram are shown in Figure 4.5a through c. The first is the transform
of an input variable to an output variable using the transfer function; this is just
a schematic representation of the relationship introduced in equation (4.45) and
discussed in the previous section. The second is the sum (or difference) of two
variables; the third is splitting a variable for use in more than one relationship.
These three manipulations can be used in any sequence for combining individual
models. A more comprehensive set of rules based on these three can be developed
(Distephano et al., 1976), but these three are usually adequate.

To clarify, a few illegal manipulations, which are sometimes mistakenly used,
are shown in Figure A.5d through /. The first two are not allowed because the
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Allowed

Yis)

X3is)

X2(s)
Xxis) + X2is) = X3is)

i c ) i * - X 2 i s )

Xxis)—|

id)

Not Allowed

-<MW
"

X2is)—* G{s) — ^ Y i s )

ie)
* ( * )—•* Gis) —+- Yxis)

—▶ Y2is)

-+■ X3is)

Xxis) = X2is) = X3is)
FIGURE 4.5

if) Xxis)

X2is)

X3is)

[Xlis)][X2is)]=X3is)

Summary of block diagram algebra: ia-c) allowed; id-f) not
allowed.

'AO

- U
do ' A l

b
do 'A2

transfer function is defined for a single input and output, and the third is not
allowed because the block diagram is limited to linear operations.

The block diagram can be prepared based on linearized models (transfer func
tions) of individual units and the knowledge of their interconnections. Then an
input-output model can be derived through the application of block diagram alge
bra, which uses the three operations in Figure 4.5a through c. The model reduction
steps normally followed are

1. Define the input and output variables desired for the overall transfer function.
2. Express the output variable as a function of all variables directly affecting it

in the block diagram. This amounts to working in the direction opposite to the
cause-effect relationships (arrows) in the diagram.

3. Eliminate intermediate variables by this procedure until only the output and
one or more inputs appear in the equation. This is the input-output equation
for the system.

4. If a transfer function is desired, set all but one input to zero in the equation
from step 3 and solve for the output divided by the single remaining input.
This step may be repeated to form a transfer function for each input.

The following examples demonstrate the principles of block diagrams, and
many additional applications will be presented in later chapters.
EXAMPLE 4.12.
Draw the block diagram for the two chemical reactors in Example 4.2, and combine
them into one overall block diagram and transfer function for the input CA0 and
the output CA2. The individual transfer functions are given below and shown in
Figure 4.6a.
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ib)
CA0is)

F 2
CA2is)

. F + V k

[TS + I]2

FIGURE 4.6
Block diagrams for Example 4.12.

Gxis) =

G2is) =

CMjs)
CAOis)
CA2is)

K>
xs + \

K2

with r =

with x =

F + Vk
V

K, =

K j =

F + Vk
F

(4.58)

(4.59)C a i ( j ) x s + \ F + V k ' " ' F + V k
Block diagram manipulations can be performed to develop the overall input

output relationship for the system.
CA2 = G2is) CaiCs) = G2is) [Giis) CAOis)] = G2is) Gxis)CAOis)

KXK2 ;CAOis)
(4.60)

ixs + l)2
This can be rearranged to give the transfer function and the block diagram in
Figure 4.6b.

Ca2(*) = = KXK2
CAOis) {S) ixs +1)2 (4.61)

EXAMPLE 4.13.
Derive the overall transfer functions for the systems in Figure 4.7. The system in
part (a) is a series of transfer functions, for which the overall transfer function is
the product of the individual transfer functions.

X„is) = Gnis) Xn-iis) = GM G„_,(j) X._2(j)
= G„is) Ga-iis) Gn.2is) -Giis) Xois)

Xnjs)
Xois)

(4.62)

= Y\G'̂
i = i

The system in part (b) involves a parallel structure of transfer functions, and
the overall transfer function can be derived as

X3is) = X, is) + X2is) = G, is) X0is) + G2is) XQis)
X3is)

(4.63)

Xois)
= Gxis) + G2is)
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(a)
X0is)

Gxis)
Xj(i)

G2
X2is)

G3is) Gnis)
Xnis)

(b)

Xois)-

1 *■ Gxis)
Xxis)

*•
<
C

▶» G2is)
X2is)

»•

<§>—+~X3is)

(c)
Xxis)

X0is)-+-®—*- Gxis)
X2is)

X3is) G2is) ^

FIGURE 4.7
Three common block diagram structures considered in Example 4.13.

The system in part (c) involves a recycle structure of transfer functions, and
the overall transfer function can be derived as

X2is) = Gxis) Xxis) = Gxis) [X0is) + X3is)] = Gxis) [Xois) + G2is)X2is)]
Gxis)X2js) =

Xois) \-Gxis)G2is)
(4.64)

Examples of processes that can be represented by these structures, along
with the effects of the structures on dynamic behavior, will be presented in the next
chapter.

It is perhaps worth noting that the block diagram is entirely equivalent to and
provides no fundamental advantage over algebraic solution of the system's linear
algebraic equations (in the s domain). Either algebraic or block diagram manipu
lations for eliminating intermediate variables to give the input-output relationship
will result in the same overall transfer function. However, as demonstrated by the
examples, the block diagram manipulations are easily performed.

Two further features of block diagrams militate for their extensive use. The
first is the helpful visual representation of the integrated system provided by the
block diagram. For example, the block diagram in Figure 4.7c clearly indicates a
recycle in the system, a characteristic that might be overlooked when working with
a set of equations. The second feature of the diagrams is the clear representation
of the cause-effect relationship. The arrows present the direction of these rela
tionships and enable the engineer to identify the input variables that influence the



output variables. As a result, block diagrams are widely used and will be applied
extensively in the remainder of this book.

4.5 m FREQUENCY RESPONSE*
An important aspect of process (and control system) dynamic behavior is the
response to periodic input changes, most often disturbances. The range of possible
dynamic behavior can be determined by considering cases (in thought experiments)
at different input frequencies for an example system, such as the mixing tank
in Figure 4.8. If an input variation is slow, with a period of once per year, the
output response would be essentially at its steady-state value (the same as the
input), with the transient response being insignificant. If the input changed very
rapidly, say every nanosecond, the output would not be significantly influenced;
that is, its output amplitude would be insignificant. Finally, if the input varies at
some intermediate frequency near the response time of the process, the output will
fluctuate continuously at values significantly different from its mean value. The
behavior at extreme frequencies is easily determined in this thought experiment,
but the method for determining the system behavior at intermediate frequencies is
not obvious and is useful for the design process equipment, selection of operating
conditions, and formulation of control algorithms to give desired performance.
Before presenting a simplified method for evaluating the effects of frequency, a
process equipment design example is solved by determining the complete transient
response to a periodic input.
EXAMPLE 4.14.
The feed composition to a reactor varies with an amplitude larger than acceptable
for the reactor. It is not possible to alter the upstream process to reduce the os
cillation in the feed; therefore, a drum is located before the reactor to reduce the
feed composition variation, as shown in Figure 4.8. What is the minimum volume
of the tank required to maintain the variation at the inlet to the reactor (outlet of the
tank) less than or equal to ± 20 g/m3?
Assumptions. The assumptions include a constant well-mixed volume of liq
uid in the tank, constant density, constant flow rate in, and the input variation in
concentration is well represented by a sine. Also, the system is initially at steady
state.
Data.
1. F = 1 m3/min.
2. CA0 is a sine with amplitude of 200 g/m3 and period of 5 minutes about an

average value of 200 g/m3.
Solution. The model for this stirred-tank mixer was derived in Example 3.1 and
applied in several subsequent examples. The difference in this example is that the
input concentration is characterized as a sine rather than a step, CA0 = A sin icot).
Thus, the model for the tank is

d C
V — - A L = F i A s i n i c o t ) ) - F C ' A X ( 4 . 6 5 )dt

To more clearly evaluate the model for linearity, the values for all constants (in this
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Intermediate inventory to attenuate

variation.

*The reader may choose to cover this material when reading Chapter 10.
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example) can be substituted into equation (4.65), giving the following:

dCtAl
dt

= (l)[(200)sin(27r/5)]-(l)CA1

Since V is a constant to be determined, the equation is linear, and we can proceed
without linearization. Equation (4.65) could be solved by using either the integrat
ing factor or Laplace transforms. Here, the Laplace transform of equation (4.65)
is taken to give, after some rearrangement,

CUs) =
Aco 1' K)

is2 + co2)

v
with x = — (4.66)

The dynamic behavior of the concentration can be determined by evaluating
the inverse of the Laplace transform. This expression appears as entry 16 in Table
4.1. The resulting expression for the time behavior is given in the following equation:

C'AX(t) =
Acox

1 + x2co2
,-'/* + VT+ x2co2

sin icot + <f>) (4.67)

Results analysis. The first term in equation (4.67) tends to zero as time in
creases; thus, the response of the process after a long time of operation (about
four time constants) is not affected by this term. The second term describes the
"long-time" behavior of the concentration in response to a sine input. It is periodic,
with the same frequency as the input forcing and an amplitude that depends on
the input amplitude and frequency, as well as process design parameters. For
this example, the output amplitude must be less than or equal to 20; by setting
the amplitude equal to the limit, the time constant, and thus the volume, can be
calculated.

'Allmax — x/l + r V
= 20

V = xF = F VVlCA'InuJ X _1QVV
200 y
20 J

CO 2it/5

(4.68)

= 7.9 m3 (4.69)

Note that the analytical solution provides valuable sensitivity information, such
as the amount the size of the vessel must be increased if the input frequency
decreases.

For general frequency response analysis, periodic inputs will be limited to
sine inputs, which will be a mathematically manageable problem. Also, only the
"long-time" response (i.e., after the initial transient, when the output is periodic)
is considered. The periodic behavior after a long time is sometimes referred to as
"steady-state"; however, it seems best to restrict the term steady-state to describe
systems with zero time derivatives.

The periodic behavior of the input and output after a long time—the frequency
response—is shown in Figure 4.9, and frequency response is defined as follows:



The frequency response defines the output behavior of a system to a sine input after
a long enough time that the output is periodic. The output iY') of a linear system will
be a sine with the same frequency as the input iX'), and the relationship between
input and output can be characterized by

Amplitude ratio = output magnitude | Y'it) |r
input magnitude | X' it) |

Phase.angle = phase difference between the input and output

(4.70)
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For the system in Figure 4.9 the amplitude ratio = B/A, and the phase angle
= —2niP'/P) radians. Note that P' is the time difference between the input and
its effect at the output and can be greater than P.

The usefulness of the amplitude ratio was demonstrated in Example 4.14, and
the importance of the phase angle, while not apparent yet, will be shown to be very
important in the analysis of feedback systems. Recalling that feedback systems
adjust an input based on the behavior of an output, it is reasonable that the time
(or phase) delay between these variables would affect the feedback system. The
analysis of feedback systems using frequency response methods is introduced in
Chapter 10 and used in many subsequent chapters.

Example 4.14 demonstrates that the frequency response of linear systems
can be determined by the direct solution of the ordinary differential equations.
However, this approach is time-consuming for complex systems. Also, the solution
of the entire transient response provides information not needed, because only
the behavior after the initial transient is desired. Now a simpler approach for

E 1 1 , 1 1 1
«
VI
> x
Vi / B \ ^ / \E / \ / \n£ V / k \ /
o
so ^ « ■ < ^ i ^ » — ^
^ i i ! i i i

P'-

!-*
i

p - \>s$\ 1 f x '
Eo
VI>>v>
O / ; \ / \
o \ /c \ /
X

1 X . S , \ /
Time

FIGURE 4.9

Frequency response for a linear system.
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determining frequency response is presented; it is based on the transfer function
of the system.

The following expressions, which are derived in Appendix H, show how the
long-time frequency response of a linear system can be evaluated easily using
the transfer function and algebraic manipulations. The long-time output Yjk de
pends on the dynamic system model, G(s), and the input sine amplitude, A, and
frequency, co.

YVR( t ) ^A \G( j 0 ) \ sm(co t + < f> ) ( 4 .71 )
The two key parameters of the frequency response can be determined from

Amplitude ratio = AR = .l«*l« A | G ( » | = \G(ja»\

= jRe[Gijco)]2 + m[Gijco)]2

^ . ^ ^ ■ - ^ ; ^ ^ ( ^ g )

(4.72)

(4.73)

It is important to recognize that the frequency ico) must be expressed as radians/time.

Thus, the frequency response can be determined by substituting jco for s in the
transfer function and evaluating the magnitude and angle of the resulting complex
number! This is significantly simpler than solving the differential equation.

Note that the frequency response is entirely determined by the transfer func
tion. This is logical because the initial conditions do not influence the long-time
behavior of the system. Also, the derivation of the equations (4.72) and (4.73)
clearly indicates that they are appropriate only for stable systems. If the system
were unstable (i.e., if Re(a,) > 0 for any i), the output would increase without
limit (for the linear approximation). Also, this analysis demonstrates that the out
put of a linear system forced with a sine approaches a sine after a sufficiently long
time. How "long" this time is depends on all other terms; for most of the transient
to have died out (i.e., e~at < 0.02), the time should satisfy at = t/x > 4. Thus,
a long time can usually be taken to be about four times the longest time constant,
or the smallest a.

EXAMPLE 4.15.
Repeat the frequency response calculations for the mixing tank in Example 4.14
and Figure 4.8, this time using the direct method based on the transfer function.
The frequency response is determined by substituting jco for s in the first-order
transfer function with x = 7.9.

Gis) = 1

Gijco) =

xs + \
1

xcoj + 1
1 1 — xcoj 1 — xcoj

AR = |GO)| = a/IT x2co2

xcoj + 1 1 — xcoj

1

1 -I- x2co2

1

(4.74)

1 + x2co2 VI + x2co2 Vl+62.4a>2

0 = IGijco) = tan-1 i-cox) = tan_,(-7.9o>) (4.75)
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Frequency response for Example 4.15, CAiJ6))/CAOija))t presented as a
Bode plot.

A frequency response is often presented in the form of a Bode plot, in which
the log of the amplitude and the phase angle are plotted against the log of the
frequency. An example of the Bode plot for the system in Example 4.15 is given in
Figure 4.10. From this result, it can be determined that the amplitude ratio is nearly
equal to the steady-state gain for all frequencies below about 0.10 rad/min for this
example, and it decreases rapidly as frequency increases from this value. Also, the
amplitude ratio at a frequency of 27r/5 = 1.26 rad/min is the desired value of 0.10.
Finally, this graph clearly indicates the sensitivity of the result to potential errors in
time constant and frequency; for example, the output amplitude is insensitive to
frequency at low frequencies and quite sensitive at high frequencies.

EXAMPLE 4.16.
The two isothermal series CSTRs in Examples 3.3 and 4.2 rely on upstream pro
cesses for the feed of reactant A. The upstream process producing A does not

'AO

do AT] ~ k
do ' A l
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operate exactly at steady state. Based on an analysis of the data, the feed con
centration to the first reactor varies around its nominal value in a manner that can
be approximated by a sine with an amplitude of 0.10 mol/m3 and frequency of
0.20 rad/min. Would the second reactor concentration deviate from its steady-
state value by more than 0.05 mol/m3? Variation greater than this amount is not
acceptable to the customer.

To answer this question, the frequency response must be evaluated. The im
portant behaviors can be stated as

CAoit) = CMss + A sin icot) or
Ca2 (0 = Cfi&s + B sin icot + <f>) or

CAOit) = Asm icot)
C'A2it) = B sin icot+ $)

with A = 0.10 mole/m3, co = 0.20 rad/min, and B the unknown amplitude to be
evaluated and compared with its maximum allowable variation magnitude. The
transfer function based on component material balances for the two tanks was
derived in Example 4.9 and is repeated below.

K fCA2js) =
CAOis) ixs + \)2 (4.76)

The gain is 0.448, and the time constants are both 8.25 minutes. The results in
equations (4.71) to (4.73) demonstrate that the amplitude of the output variable can
be evaluated by setting s = jco and evaluating the magnitude. The expressions for
the frequency responses for many common transfer functions are provided later
in the book (e.g., Table 10.2), so the results of the algebraic manipulations are
summarized here without intermediate derivations being shown.

\GiJco)\ = KB
(4.77)(l+a>2r2) A

The magnitude of the output concentration is the product of the input magnitude
and the amplitude ratio. Therefore,

* ' — A
(4.78)

B =
(l-ra>2r2)'

= (0.12)(0.10 mol/m3) = 0.012 mol/m3 < 0.050 mol/m3

Since the outlet concentration magnitude is lower than the maximum allowed, the
operation would be considered acceptable, but good engineering would call for
continued efforts to reduce all variation in product quality. Note that in this case, no
control correction is required. We are seldom so fortunate, and we usually have to
introduce corrective control actions through process control to maintain consistent
product quality.

The algebraic manipulations required to evaluate the amplitude ratio and phase
angle can be tedious. However, relationships to ease hand calculations are provided
in Chapter 10 for the commonly occurring series combinations of individual units.
For more complex structures the frequency response can be easily evaluated using
computer technology, because the amplitude ratio is the magnitude of the properly
defined function of a complex variable; likewise, the phase angle is the argument
of a complex variable. Many programming languages provide standard evaluations
of these functions.

In conclusion, the frequency response of a linear system can be easily deter
mined from the transfer function using equations (4.72) and (4.73). The frequency



response gives useful information concerning how the process behaves for various
input frequencies, and these results can be used for determining equipment de
sign parameters, such as the size of a drum to attenuate fluctuations. The general
frequency responses for some common systems are given in the next chapter for
several common systems, such as first- and second-order, and important applica
tions of frequency response to the analysis of feedback control systems are covered
in Part III.

4.6 - CONCLUSIONS
The methods in Chapters 3 and 4 can be combined in an approach, shown in
Figure 4.11, designed to provide models in the format most useful for the analysis
of process control systems. The initial steps involve the modelling procedure based
on fundamental principles summarized in Table 3.1. This procedure can be applied
to each process in a complex plant. Then the transfer function of each system is
determined by taking the Laplace transform of the linearized model. The block
diagram can be constructed to present the interactions among the individual transfer
functions, and the overall transfer function for the integrated system can be derived
through block diagram manipulation.

The overall transfer functions can be used to determine some important prop
erties of the system without solving the defining differential equations. These prop
erties include

1. The final value of the output variable
2. The stability of the response
3. The response of the output to a sine input

Determining this information without the entire dynamic response has two advan
tages:

1. It reduces the effort to establish these system properties.
2. It assists in understanding the ways in which equipment design, operating

conditions, and control systems affect these properties.

Naturally, information about the entire transient is not obtained by analyzing the
poles of the transfer function or by the frequency response calculations. The com
plete transient response can be obtained if needed from analytical or numerical
solution of the algebraic and differential equations.

As noted in the previous chapter, many different processes—heat exchangers,
reactors, and so forth—behave in similar ways. The transfer function method pre
sented in this chapter gives us a useful way to compare models for processes and
recognize similarities and differences, which is the topic of the next chapter.
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Formulate Model Based on Conservation Balances and Constitutive Relationships
• "Exact" dynamic behavior described by model
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Shows cause-effect direction
FIGURE 4.11

Steps in developing models for process control with sample results for a chemical reactor.

" i '

Linearize Nonlinear Terms
• Easier to solve analytically
• Useful for determining some

properties, e.g., stability

Numerical Simulation
• Determine the complete

transient response

"
Express in Deviation Variables

* Required so that transfer functions are linear operators

"

Take the Laplace Transform

% Pseudocode for Euler's integration
T ( l ) = 0 % I n i t i a l i z e
CA(1)=CAINIT
FOR N = 2: NMAX

IF N>NSTEP, CAO » STEP, END
DER= (F/V) * (CAO-CA(N-l) )

-K*(CA(N-D) *2
CA(N) = CA(N-1)+DELTAT*DER
T(N) =T(N-1) +DELTAT

END

1f "
Solve Analytically

(Invert to time domain)
• Use Table 4.1
• Expand using partial fractions
• General initial conditions and

input forcing

Formulate Transfer Function
(Do not solve for entire dynamic response)

• Set all initial conditions to zero
• Draw block diagram of system
• Derive overall transfer function

using block diagram algebra

Results: Complete transient of the
linearized system

Results: Final value, stability, and
frequency response

Transfer Function: CA(s) Kn
= G(s)

Cm{s) (w+ 1)

Final Value: lim CA(s) = lim sCA(s)
/ - » » s - * 0
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= *,ACa

Stability: Pole s = ^ < 0

.*. stable

Frequency Response:
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K „

Vl + wV

^O = Z G{j(o) = tan~'(-fiW)
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ADDITIONAL RESOURCES
The following references provide background on Laplace transforms and provide
extensive tables.

Doetsch, G., Introduction to the Theory and Application of Laplace Trans
forms, Springer Verlag, New York, 1974.

Nixon, R, Handbook of Laplace Transforms (2nd ed.), Prentice-Hall, Engle
wood Cliffs, NJ, 1965.

Spiegel, M., Theory and Problems of Laplace Transforms, McGraw-Hill, New
York, 1965.

Frequency responses can be determined experimentally, although at the cost
of considerable disturbance to the process. This was done to ensure the concepts
applied to chemical processes, as discussed in the references below, but the practice
has been discontinued.

Harriott, P., Process Control, McGraw-Hill, New York, 1964.
Oldenburger, R. (ed.), Frequency Response, Macmillan, New York, 1956.

For additional discussions on the solution of dynamic problems for other types
of physical systems, see Ogata, 1990 (in the References) and

Ogata, K., System Dynamics (2nd ed.), Wiley, New York, 1992.
Tyner, M., and F. May, Process Control Engineering, The Ronald Press, New

York, 1968.

All of the questions in Chapter 3 relating to dynamics can be solved using methods in
this chapter; thus, returning to those questions provides additional exercises. Also,
when solving the questions in this chapter, it is recommended that the results be
analyzed to determine

• The order of the system
• Whether the system can experience periodicity and/or instability
• The block diagram with arrows properly representing the causal relationships
• The final value

QUESTIONS
4.1. Several of the example systems considered in this chapter are analyzed

concerning the violation of safety limits. A potential strategy for a safety



1 2 8 s y s t e m w o u l d b e t o m o n i t o r t h e v a l u e o f t h e c r i t i c a l v a r i a b l e a n d w h e n t h e
MMdMBbmMmm^m variable approaches the safety limit (i.e., it exceeds a preset "action" value),
CHAPTER 4 a response is implemented to ensure safe operation. Three responses are
Modelling and proposed in this question to prevent the critical variable from exceeding a
Analysis for Process maximum-value safety limit, and it is proposed that each could be initiated

when the measured variable reaches the action value. Critically evaluate
each of the proposals, and if the proposal is appropriate, state the value of
the action limit compared to the safety limit.

The proposed responses are
(i) Set the concentration in the feed (CAo) to zero.
(ii) Set the inlet flow to zero,
(iii) Introduce an inhibitor that stops the chemical reaction (for b).
The critical variables and systems are
id) Ca in the mixer in Example 4.1
(b) Ca2 in the series of two chemical reactors in Example 4.2

4.2. Solve the following models for the time-domain values of the dependent
variables using Laplace transforms.
(a) Example 3.2
(b) Example 3.2 with an impulse input and with a ramp input, C'A0(t) = at

for t > 0 (with a an arbitrary constant)
(c) Example 3.3 with an impulse input

4.3. The room heating Example 3.4 is to be reconsidered. In this question, a
mass of material is present in the room and exchanges heat with the air
according to the equation Q = UAm(T - Tm), in which UAm is an overall
heat transfer coefficient between the mass and the room air, and Tm is the
uniform temperature of the mass.
(a) Derive models for the temperatures of the air in the room and the mass.

Combine them into one differential equation describing T.
(b) Explain how this system would behave with an on-off control and note

differences, if any, with the result in Example 3.4.

4.4. An impulse of a component could be introduced into a continuous-flow
mixing tank.
(a) Describe how the experiment could be performed; specifically, how

could the impulse be implemented in the experiment?
(b) Derive a model for the component concentration in the tank, and solve

for the concentration of the component in the tank after the impulse.
(c) Discuss useful information that could be determined from this exper

iment.

4.5. A CSTR has constant volume and temperature and is well mixed. The
reaction A -+ B is first-order and irreversible. The feed can contain an
impurity which serves as an inhibitor to the reaction; the rate of reaction
of A is /"a = -koe~E/RTC\/(\ + k\C\) where C\ is the concentration
of inhibitor. The reactor is initially at steady state and experiences a step
change in the inhibitor concentration. Determine the dynamic response of
the concentration of reactant A after the step based on a linearized model.
(Hint: You must determine the concentration of inhibitor first.)



4.6. For the following systems, (a) apply the final value theorem and (b) calcu
late the frequency response.
(i) Example 3.2
(ii) Example 3.3
(Hi) A level system with L(s)/Fm(s) = l/As, with Fm(s) = AF[n/s and

A = cross-sectional area [see equation (5.15)].
For each case, state whether the result is correct, and if not, why.

4.7. The process shown in Figure Q4.7 is to be modelled and analyzed. It con
sists of a mixing tank, mixing pipe, and CSTR. Information for modelling
is given below.
(i) Both tanks are well mixed and have constant volume and temperature,
(ii) All pipes are short and contribute negligible transportation delay,
(iii) All flows are constant, and all densities are constant,
(iv) The first tank is a mixing tank.
(v) The mixing pipe has no accumulation, and the concentration Ca3 is

constant,
(vi) The second tank is a CSTR with A -> products and ta = —kCA .
(a) Derive a linear(ized) model (algebraic or differential equation) relating

C'A2(t) to C'A0(t).
ib) Derive a linear(ized) model (algebraic or differential equation) relating

CA4(OtoCA2(0.
(c) Derive a linear(ized) model (algebraic or differential equation) relating

cA5(otocA4(o.
id) Combine the models in parts (i) to (iii) into one equation relating CA5 to

CA0 using Laplace transforms. Is the response unstable? Is the response
periodic?

129

Questions

CAo /

mixing tank

mixing
pipe

\CtA2 -A4

'A3

'A5

stirred-tank reactor
FIGURE Q4.7

Mixing and reaction processes.



130

CHAPTER 4
Modelling and
Analysis for Process
Control

ie) Determine the analytical expression for CA5 it) for a step change in the
inlet concentration, i.e., C'A0(t) = ACao > 0. Sketch the behavior of
CA5(f) in a plot vs. time.

4.8. Consider a modified version of the system in Example 4.14 with two tanks
in series, each tank volume being one-half the original single-tank volume.
id) Determine the transfer function relating the inlet and outlet concentra

tions.
ib) Calculate the amplitude ratio of the inlet and outlet concentration for

the frequency response using equation (4.72).
(c) Determine whether either of the two designs is better (i.e., always

provides the smaller amplitude ratio), for all frequencies. Explain your
answer and discuss how this analysis would be used in equipment
sizing.

4.9. The responses of the two levels in Figure Q4.9 are to be determined. The
system is initially at steady state, and a step change is made in Fo. Assume
that Fo is independent of the levels, that the flows F\ and F2 are proportional
to the pressure differences between the ends of the pipes, and that P' is
constant. Solve for the dynamic response of both levels.

FIGURE Q4.9

4.10. For each of the block diagrams in Figure Q4.10, derive the overall input-
output transfer function Xi (s)/Xq(s). (Note that they are two of the most
commonly occurring and important block diagrams used in feedback con
trol.)

4.11. The isothermal chemical reactor in Figure Q4.11 includes a liquid inventory
in which the turbulent flow out depends on the liquid level. The chemical
reaction is first-order with negligible heat of reaction, A -» B, and it occurs
only in the tank, not in the pipe. The system is initially at steady state and
experiences a step change in the inlet flow rate, with the inlet concentration
constant.
id) Derive the overall and component material balances.
ib) Linearize the equations and take the Laplace transforms.
(c) Determine the transfer function for Ca(s)/F0(s).
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4.12. The frequency response of a system can be determined empirically by in
troducing a sine to an input variable, waiting until the initial transient is
negligible, and measuring the input and output amplitudes and the phase
angle (see Figure 4.9). If this procedure were performed for several in
put frequencies, how could you determine whether the real physical sys
tem were first-order or second-order? After selecting the proper transfer
function order, how could you determine the unknown parameters, gain,
and time constant(s)? Also, discuss possible limitations to this empirical
method.

4.13. A single, isothermal, well-mixed, constant-volume CSTR is considered in
this question. The chemical reaction is

A ± > B
which is first-order with the forward and reverse rate constants k\ and k2,
respectively. Only component A appears in the feed. The system is initially
at steady state and experiences a step in the concentration of A in the feed.
Formulate a model to describe this system, and solve for the concentrations
of A and B in the reactor.

4.14. Answer the following questions.
id) The initial value of a variable can be determined in a manner similar

to the final value. Derive the general expression for the initial value.
ib) The transfer function in equation (4.46) can be inverted to give

CAq(s) _ xs + 1
CAis) " Kp

Discuss whether this is also a transfer function describing the process,
(c) The transfer function is sometimes referred to as the impulse response

of the (linear) system. Demonstrate why this statement is true.
id) If only the input-output relationship is required, why are all equations

for the system included in the model, rather than only those equations
involving the input and output variables?

L C *

FIGURE Q4.11
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4.15. A heat exchanger would be difficult to model, because of the complex
fluid mechanics in the shell side. To develop a simple model, consider the
two stirred tanks in Figure Q4.15, in which heat is transferred through the
common wall, with Q = UAiAT) and UA being constant.
id) Using typical assumptions for the stirred tanks and ignoring energy

accumulation effects of the walls, derive an unsteady-state energy bal
ance for the temperatures in both tanks.

ib) Solve for the analytical expression for both temperatures in response
to a step in 7/,o.

(c) Is it possible for this system to have periodic behavior?
4.16. For the series of isothermal CSTRs in Example 3.3:

id) Derive the transfer function for CA2(s)/Fis).
ib) Use this result to determine the response of Ca2 to an impulse in the

feed rate F.

4.17. The system in Figure Q4.17 has a flow of pure A to and from a draining
tank (without reaction) and a constant flow of B. Both of these flows go
to an isothermal, well-mixed, constant-volume reactor with A + B ->
products and rA = rB = -£CaCb. Make any additional assumptions
in determining analytical expressions for the dynamic responses from an
initial steady state.
id) Determine the flow of A to the chemical reactor in response to a flow

step into the draining tank.
ib) Determine the concentration of A in the chemical reactor in response

to id).

®

® ®

u

FIGURE Q4.17



4.18. The process in Figure Q4.18 involves a continuous-flow stirred tank with
a mass of solid material. The assumptions for the system are:

(1) The tank is well mixed.
(2) The physical properties are constant, and C„ «* Cp.
(3) V = constant, F = constant [vol/time].
(4) The solid material contributes a significant portion of the energy

storage, and the temperature is uniform throughout the solid.
(5) The heat transfer from the liquid to the metal is UAiT — Tm).
(6) Heat losses are negligible.
(7) All variables are initially at steady state.

id) Determine the fundamental model equations that relate the behavior
of Tit) as 7bit) changes.

ib) Derive the Laplace transform T'is) as afunction of Tqis). This involves
the linear(ized) deviation variables. Identify the time constants and
gains,

(c) Draw a block diagram of the system of equations and derive the transfer
function Tis)/Tois).

id) State whether the system is stable or unstable and periodic or nonpe-
riodic, and explain your answer.

ie) Solve the equations and sketch the dynamic response of T'it) for a
step change in T ît).

if) Describe briefly how the results in steps (c) through ie) would change
as UA -> oo.
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5.1 n INTRODUCTION

Examples in the previous two chapters have demonstrated that physical systems,
which involve very different physical principles, can have similar dynamic behav
ior. The concept that a single model type can apply to a wide range of entities,
process plants, biological units, economic communities, and so forth provides the
basis for "systems" analysis. Thus, it is possible to acquire understanding of a
large number of systems from a thorough study of a much smaller number of basic
models. In this chapter we study some fundamental model structures that occur
frequently in process plants, along with their effects on dynamic behavior. This
experience will enable us to recognize the effects of process designs on dynamic
behavior.

First, the behavior of some simple, basic systems, such as first- and second-
order and dead-time systems, is summarized using the results from previous chap
ters, with some extensions. Second, the behavior of these simple systems in series
structures is determined. Third, the behavior of parallel structures of simple sys
tems is introduced. Fourth, the effects of recycle structures on dynamic responses
are demonstrated. The chapter concludes with an investigation of more complex
physical systems of special importance in the process industries: staged systems
and multiple input-multiple output systems.

In these sections, the manner in which the behavior of simple systems is al
tered by common process structures is derived for simple, idealized models but is
demonstrated for important process examples involving levels, heat exchangers,
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chemical reactors, and distillation towers. This coverage demonstrates that the
engineer must master both the physical principles of specific processes and
systems analysis techniques to determine the dynamics of complex processes
quantitatively.

5.2 m BASIC SYSTEM ELEMENTS
The coverage of process dynamics begins with the simplest elements, which are
often combined to model more complex systems. Since examples of most of these
elements were included in previous chapters, the coverage here is concise. The ba
sic model structure for each element is first defined, and several physical examples
are given, with the system input designated by X and the output by Y. The chem
ical process principles should be apparent to the reader, while the electrical and
mechanical models are based on KirchhofPs and Newton's laws, and the reader
is referred to Ogata (1992) and Weber (1973) for derivations. The graphical and
analytical results of common inputs for several basic systems are summarized in
Figure 5.1; the presentation of results in such a figure seems to have originated
with Buckley (1964). Only the amplitude ratio is presented here, because more
extensive frequency response analysis is presented in Chapter 10, where the im
portance of the phase behavior on stability is demonstrated and applied in control
system analysis.

Mixing

Process —

Variables CA0
In / Out

do

Mixing

oor-J do

Underdamped
reactor Plug flow

CA2 CA0

db
- fl -

-Q
Cjz = 0

1
>

CiU-t
constant

Fir

Time

T t
Impulse

X
Time

Sine

FIGURE 5.1

Dynamic responses for basic process-modelling elements.

Log (frequency)



First-Order System 137
First-order systems occur as the result of a material or energy balance on a lumped
(i.e., well-mixed) system, as demonstrated in Examples 3.1 and 3.6. Some further
examples are given in Figure 5.2. The differential equation and transfer function
for a first-order system are

Basic System Elements

rtm + m-KW G(,)=yW K,
dt Xis) xs + 1 (5.1)

The step response is monotonic, with its maximum slope at the time of the
step, and the time to reach 63.2 percent of its final change is one time constant.
The final steady-state change is equal to KpiAX).

Step response: Y\t) = KpiAX)i\ - e~t/T) (5.2)

An impulse input occurs over a negligible time and transfers a finite amount
into the system. For example, rapidly introducing a small amount of tracer into
a stirred tank emulates a perfect impulse. The impulse response shows an im
mediate increase at the time of the impulse, which for the idealized stirred-tank
example would mean that the concentration would change instantly by (mass of
tracer)/(volume). After the impulse (C), the system follows an exponential path in

Balance Input Output KP X

Component
material

GAo cA F
F+Vk

V
F+Vk

Energy 1.0

Overall
material

1
O.SkLr0-5 O.SkLr05

E0 ci E
Current 1.0 RC

k1 zo
3 : z F o r c e zo 1.0 / / * '

FIGURE 5.2

First-order processes (E = voltage, z = position, k' = spring constant, and
/ = friction coefficient).
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return to its final condition.

Impulse response: Y\t) = -e-"Tx (5.3)

For the first-order system, the amplitude ratio is never greater than the process
gain Kp, and it decreases monotonically as the frequency increases:

AR = \G(jco)\ =
K,\Y(ja>)\ =

\X(jco)\ J\+co2x2
(5.4)

Second-Order System
The second-order system occurs when two first-order or one second-order ordinary
differential equation is required to model the dynamic behavior. Some examples
are given in Figure 5.3. The transfer function for the second-order system with a
gain in the numerator (and no zeros) can be written as

with

d t 2 d t

G« = J&i = j*l+2$TS+\

<X\,2
- f ± V ^ T [

(5.5)

-AO"

A->B

Balance

Component
material

I n p u t O u t p u t

c a o G B

KP

Vk
F+Vk ^ B

2£t

* A + * B

Zs\ •i----^ ■ Energy

T i . Overall
material

[see question 5.2]

0.5kLr0-5 [0.5kLs-°-5\
2 t

L R
o-fUP—VA-

' 0 c1 E
Current 1.0 LC RC

A —f *'
m\ z

f

Force M k ' m / k ' f / k '

FIGURE 5.3

Second-order processes (E = voltage, z = position, k' = spring constant, / = friction
coefficient, h = force, m = mass, rA = V/(F + Vk), and tb = V/F).



The parameter f is termed the^damping coefficient, and 0^,2 are the two roots of 139
the characteristic polynomial, which determine the exponents of the time-domain m^ams^^mssimmum
output function. When the damping coefficient is less than 1.0, the system is Basic System Elements
termed underdamped, the roots of the characteristic polynomial are complex, and
the system will have periodic behavior for a nonperiodic input. For example, the
nonisothermal reactor system in Section 3.6, which exhibits oscillations for a
step input, has a damping coefficient of 0.15. When the damping coefficient is
greater than 1.0, the system is termed overdamped, the roots of the characteristic
polynomial are real, and the system will have nonperiodic responses to nonperiodic
inputs. Finally, the series reactor system in Example 3.3 has a damping coefficient
of 1.0, which indicates real, repeated roots; this type of system is termed critically
damped.

Two entries are given in Figure 5.1 for second-order systems; one is for an
overdamped system, and the other is for an underdamped system. The step response
for the overdamped system initially at steady state is monotonic with an initial slope
of zero and an inflection point. Note that the underdamped system experiences
periodic behavior even for this simple input.

OVERDAMPED STEP RESPONSE (£ > 1).

Y = KpAX 1 + -
\ x2-x\ x2 - Xi )

(5.6)

CRITICALLY DAMPED STEP RESPONSE (£ = 1).

Y = KpAX
( ' ♦ ; M

1 - 1 + 1 e - t b ( 5 . 7 )

UNDERDAMPED STEP RESPONSE (£ < 1).

ax gl/t . /yi-s2 AY = KDAX - Kv t _e-*tlx sin ( v t + 4> J
(5.8)

. I J \ - k 2 \
<p = tan

OVERDAMPED IMPULSE RESPONSE (£ > 1).

Y = C [ - ) ( 5 . 9 )
\ T 1 - T 2 x \ - x 2 J

CRITICALLY DAMPED IMPULSE RESPONSE (£ = 1).

Y = ^ l e - t / T ( 5 . 1 0 )
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Y = V̂T̂J- :e-Wr sin V^i : (5.11)

Both the step and impulse responses for a second-order system have initial re
sponses that are more gradual than for a first-order system. The overdamped system
approaches its final value smoothly, while the underdamped system experiences
oscillations.

The amplitude ratio of the frequency response is monotonically decreasing
for an overdamped system and begins to deviate substantially from Kp around
the frequency equal to 1/t. The amplitude ratio for second-order systems with
a damping coefficient below 0.707 exceeds Kp over a limited frequency range
around 1/r. This resonance effect results from the inherent oscillatory tendency
of the system reinforcing the input sine oscillations.

AR = \G(jco)\ = K,\Y(jco)\ =
\X(jco)\ y/(]-co2x2)2 + (2cox^)2

(5.12)

Dead Time
The dead time or transportation delay was introduced in Example 4.3 for plug flow
of liquids and can also occur for transportation of solids along a conveyor belt. It
was shown to have the following model:

Y(s)Y(t) = X(t - 0) G(s) = X(s)
= e-6s (5.13)

The step response, impulse response, and amplitude ratio can all be easily deter
mined, because the output is the input translated in time by 0. For example, this
leads to the conclusion that the amplitude ratio is equal to 1.0 for all frequencies,
which can be demonstrated mathematically by

AR = | g - ^ i -| = |cos (co9) - j sin (co0)\ = y cos2 (co9) + sin2 (toO) - 1
(5.14)

The dead time can be approximated by a transfer function that replaces the
exponential in the Laplace variable (e~9s) with a ratio of polynomials in s. This
approach is referred to as a Pade approximation, which is presented in Appendix
D. In this book, we will not use dead time approximations; i.e., we will model the
dead time as an exact delay as given in equations (5.13).

The importance of dead time to feedback control can be understood by con
sidering an example such as steering an automobile. With dead time, the automo
bile would not respond immediately after the change in steering wheel position.
Clearly, such an automobile would be difficult to drive and would require a skilled
and patient driver who could wait for the effect of a steering wheel change to occur.

Integrator
The integrator is a special type of first-order system; a process example of an
integrator is a level system, which is modelled based on an overall material balance



to give

pA— = pF0- pFx (5.15)

In many cases the inlet and outlet flows do not depend on the level (unlike the tank
draining Example 3.6). When no causal relationship exists from the level to the
flow, the model has the following general form:

dY'r„_ = x<#/u") xh = holdup time

_ _ 1
X(s) xHsG(s) = —— =

(5.16)

(5.17)

The important difference between the integrator and the first-order system in
equation (5.1) is the lack of dependence of the derivative on the output variable
(Y'y, that is, dY'/dt is independent of Y'. This results in a pole at s = 0 in the
transfer function. The analytical expression for the output of the integrator is

Y'(t) = / '
Jo X'(t')dt' (5.18)

A system like this simply accumulates the net input: thus, the name integrator. If
the deviation in the input remains nonzero and of the same sign, the magnitude
of the idealized model output increases without limit as time increases toward
infinity. For a step input,

Step response: Y' = A X
xh '

(5.19)

The impulse response also demonstrates that the system integrates the impulse
(area under the impulse function), and then the output remains constant at its altered
value when X'(t) returns to zero. The value of the impulse response is Y' = C/xh.

The amplitude ratio can be determined to be

Frequency response: AR = \G(jco)\ =
1 = -coj

xHco2XHJCO

1
xHco

(5.20)
As the frequency decreases, the amount accumulated by the integrator each half
period (which is related to the output amplitude) increases.

Self-Regulation
The unique behavior of the integrator demonstrates that not all processes tend to
a steady state after input changes cease and all inputs are constant. To clarify the
distinction, the term self-regulation is introduced here.
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For a process that is self-regulatory, the output variables tend to a steady state after
the input variables have reached constant values.

Many processes encountered to this point have been self-regulatory, including the
chemical reactors, heat exchanger, and mixing tanks. Self-regulatory processes are
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CA0 <w
do

r . r' c m I c o u t

generally easier to operate because they tend to a steady state. Naturally, the final
steady state might be acceptable or not depending on the magnitude and direction
of the input changes, so that process control is often applied to self-regulatory
processes.

The self-regulation in a process can be identified by analyzing the dynamic
model to determine if the value of the output variable influences its derivative.
For example, the heat exchanger in Example 3.7 has inherent negative feedback,
because an increase in the output (outlet temperature) causes a decrease in a model
input term -(F/V + UA/VpCp)T, which stabilizes the system by decreasing
the derivative:

d T ( F U A \ ( F U A \
vPc„ -

External inputs
VpCp,

Inherent negative
feedback

(5.21)

Some processes have inherent positive and negative feedback; for example,
the nonisothermal chemical reactor with exothermic chemical reaction is

dT_
dt \V ° VpCp cm) \V VpCpJVpCp

External inputs
VpCp

Inherent negative
feedback

+ j-AHnn)kQe-EfRTCk
pCP

Inherent positive
feedback

The reactor has a negative feedback term in its energy balance, the same as for the
heat exchanger. However, the exothermic chemical reaction contributes positive
feedback, because the input term i-AHrxnkoe~E/RTCA/pCp) increases when the
output temperature increases. For the parameter values in Table C.l, case I, the
inherent negative feedback in the process dominates, and the process achieves
a steady state after a step input. The positive feedback is substantial, however,
which leads to the periodic behavior and complex poles. Additional comments on
the behavior and stability of processes are given in Appendix C.

In contrast, non-self-regulatory processes do not tend to steady-state operation
after all inputs have reached constant values. Thus, even a small (and constant)
input change from an initial steady state can lead to large disturbances after a long
time. A non-self-regulatory process can be identified from its dynamic model; the
value of the output variable does not influence its derivative, as shown in equation
(5.15), so that the derivative can have a constant (nonzero) value over a long
time. Without intervention, a non-self-regulatory process can experience very large
deviations from desired values; therefore, all non-self-regulatory processes require
process control. The dynamics of typical non-self-regulatory processes are covered
in Chapter 18, along control technology tailored to their special requirements.

In summary, many different systems obeying the models of these basic el
ements behave in a similar manner. After the parameters have been determined,
their behavior for specified inputs is well understood. Thus, the experience learned
from a few examples can be extended, with care, to many other systems.
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A structure involving a series of systems occurs often in process control. As dis
cussed in Chapter 2, this structure can occur because of a processing sequence—for
example, feed heat exchange, chemical reactor, product cooling, and product sep
aration. Also, a control loop involves a final element (valve), process, and sensor
in a series, as will be more fully discussed in Part III. Therefore, the understanding
of how series structures behave is essential in the design of chemical plants and
process control systems.

Series Structures of
Simple Systems

Noninteracting Series
There are two major categories of series systems, and the noninteracting system
is covered first. It is worthwhile considering the mixing system, which conforms
to the block diagram at the bottom of Figure 5Aa, in which each intermediate
variable has physical meaning.

d C
Va±2± = FC'-FC'

V

dt
dC'A

'AO A l

dt
A2 = FC'Al - FC'A2

Note that the model equations have the general form
dY!

x t ^ - K t Y l . y - Y ! for / = 1,..., n with Yq = X'

(5.23)

(5.24)

(5.25)

Any system modelled with equations of this structure constitutes a noninteracting
series system. Important features of the system follow from this model.

1. Only y„_i and Yn (not Yn+\) appear in the equation for dYn/dt.
2. Following from (I), the downstream properties do not affect upstream prop

erties; in the example, the concentration in tank 2 does not affect the concen
tration in tank 1 but does affect tank 3.

ib)

X{s)
Gx{s)

W
G2{s)

Y2{s)
G3(*) ^

ia)
FIGURE 5.4

Series of processes: (a) noninteracting; ib) interacting.
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3. The model for the general noninteracting series of first-order systems can
be developed by taking the Laplace transform of each equation (5.25) and
combining them into one input-output expression. For a series of systems
shown in Figure 5.4a, each represented by atransfer function G, is), the overall
transfer function

Yn(s)
X(s)

n-\
= Gn(s)Gn.l(s). • • Gxis) = ]*] Gn-iW (5-26)

i = 0

For n first-order systems in series, this gives
« - i

Y«JS)
Xis)

Y\K»-i
i=0

n-1

Y[(Tn-iS + 1)
i=0

with Kn-i and xn--, for the individual systems

(5.27)
The gains and time constants appearing in equation (5.27) are the same as the
values for the individual systems, as in equation (5.25). Thus, the model of
interacting systems can be determined directly from the individual models.

4. If each system is stable (i.e., r,- > 0 for all i), the series system is stable. This
follows from the important observation that the poles (roots of the character
istic polynomial) of the series system are the poles of the individual systems.

Now the dynamic response of a series of noninteracting first-order systems can
be considered. Since so many possibilities exist, the simplest case of n identical
systems, all with unity gain, is considered. The response to a step in the input,
X'(s) = 1/5, is plotted in Figure 5.5. Note that the time is divided by the order of
the system (i.e., the number of systems in series), which time-scales the responses
for easy comparison. We note that the shape of the response changes from the now-
familiar exponential curve for n — 1. As n increases, the response begins to have
an apparent dead time, which is the result of several first-order systems in series.
For very large n, the output response has a very steep change at time equal to nx.
Thus, we conclude that the series of identical noninteracting first-order systems
approaches the behavior of a dead time with 0 % nx for large n. Again looking
ahead to feedback control, a system with several first-order systems in series would
seem to be difficult to control, for the same reasons discussed for dead times.

A second observation is that the curves all reach 63 percent of their output
change at approximately the same value of t/nx\ this will be exploited later in
the section. Finally, we note that the system is always overdamped, because the
transfer function has n real poles, all at — 1/r.

The amplitude ratio of the frequency response can be determined directly from
the transfer function in equation (5.27) to be

AR = \Yn(jCO)\
\X(jco)\

= \G(jco)\ = [Y[Ki 1
i = \ .VT+ (02X2 ) "

(5.28)

The amplitude ratio is always less than or equal to the overall gain, and it decreases
rapidly as the frequency becomes large. Amplitude ratios for several series of



1 . 5 2
Scaled time, tlnx

2.5

FIGURE 5.5

Responses of n identical noninteracting first-order systems with K = 1
in series to a unit step at t = 0.

identical first-order systems are shown in Figure 5.6; again, the frequency is scaled
to the order of the system to provide time-scaling.
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Interacting Series
The second major category of series systems is interacting systems. Again, it is
worthwhile considering a physical example, this being the level-flow process in
Figure 5Ab. Assuming that the flow through each pipe is a function of the pressure
difference, the model can be derived based on overall material balance for each
vessel to give

dLi
Ai—L = Fi_ldt Ft

= Kj-\(L(-i — Li) - Ki(L, — Li+\) (5.29)

because Fi = K[(Pi — P,+i) for the linearized system, and the pressures are
proportional to the liquid levels. These model equations have the following general
form for a series of two interacting first-order systems:

dY'
Hl-j± = X'-KliY{-Yl)

dY'
(5.30)

(5.31)

Many important physical systems, including that in Figure 5.4fc, have struc
tures described by equations (5.30) and (5.31); thus, these equations are considered
representative of interacting systems for subsequent analysis. Some important fea
tures of these systems follow from their model structure:
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Frequency responses of n identical noninteracting first-order systems
with K = 1 in series.

1. The variables Yn-\, Yn, and Yn+i appear in the equation for dYn/dt.
2. Following from (1), the downstream properties affect upstream properties; for

example, the exhaust pressure (Pj) influences both levels in Figure 5.4b.
3. The model for the general interacting series system of first-order systems can

be developed by taking the Laplace transform of equations (5.30) and (5.31)
and combining them into one input-output expression, which results in poles
of the interacting system that are different from the poles of the individual
systems.

The procedure for deriving the overall transfer function is shown in some
detail, because the result is somewhat more complex than for a noninteracting
system and because the procedure can be applied to systems of differing structures.
First, the Laplace transform of equation (5.30) can be rearranged to give (with the
primes deleted)

Ylis) = -^TXis) +xns + 1

1 J J

—Y2(s) with xY\ = TT
x Y \ s + 1 K \

(5.32)

The parameter zy\ is the time constant for the first system when considered indi
vidually. The Laplace transform of the second equation is

xY2sY2(s) = ^riYiis) - Y2(s)] - [Y2(s) - Y3(s)] with xY2 = Q (5.33)
t i 2 K 2

Again, the parameter xy2 is the time constant for the second system when con
sidered individually. The behavior of the combined system can be determined by



substituting equation (5.32) into (5.33) to give, after some rearrangement,
(xYls + \)

Y2(s) =
XY\XY2S2 + f XY\ + XY2 + xY\ —- j

l /K2

Y3(s)
s + l

(5.34)
+

xy\xY2s2 + [ xY\ + xY2 + xY\ —- ) s + 1
( K2)

X(s)

Several important conclusions on the effect of the series structure on the
dynamic behavior can be determined from an analysis of the denominator of the
transfer function. The time constants of the interacting system (x\ and x2), which
are the inverses of the poles, can be determined by solving the quadratic equation
for the roots of the characteristic polynomial to give

«1,2
(

xy\ + Xyi + Xy\ * l \ 2xy\ + Xyi + xy\ — 1 - 4rn xY2

2xy\Xy2
(5.35)

Four characteristics of the dynamics of this type of series system are now estab
lished. First, the possibility of complex poles is determined to establish whether
periodic behavior is possible. The expression within the square root in equation
(5.35) can be rearranged to give

(

K A 2 A
xyi + xyi + xYi— I —4xy\Xy2

— (Xy\ — Xy2) + Xy 2xy\ +2xy2 + xy\
(5.36)

> 0

Since both terms in the right-hand expression are greater than zero, the entire
expression is greater than zero, and complex poles are not possible for this system.
Therefore, periodic behavior cannot occur for nonperiodic inputs, such as a step.

Second, the stability of the process can be determined from equation (5.35).
Note that the numerator has the form —a ± (a2 — b)05, with a and b both positive.
Therefore, the poles for both signs of the root are negative, and the system is stable.

Third, the "speed" of response of the interacting series system can be compared
with the individual system responses. Since the poles are real, the characteristic
polynomial in equation (5.34) can be written in an equivalent form as

(xis + l)(x2s + 1) = X\X2S2 + (X[ + x2)s + 1 (5.37)

Equating the coefficients of like powers of s in equations (5.34) and (5.37) gives

T\x2 = xy\Xy2 and X[ + x2 = xY\ + xY2 + Xyi K2 (5.38)

Therefore, the sum of the time constants for the overall interacting system is
greater than the sum of the individual systems. In other words, the interacting
system is "slower," due to the interaction, than it would have been if the systems
were noninteracting.
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Fourth, equations (5.38) show that the product of the time constants is un
changed but the sum is greater. Therefore, the difference between the interacting
system time constants (tj - T2) is greater than the difference between the individ
ual time constants (xyi - xy2)', that is, one time constant begins to dominate. This
conclusion can be demonstrated by rearranging equations (5.38) to give

(xi - x2)2 = (xY\ - xY2)2 + xYi—[ 2xY\ + 2xY2 + xY\
K 2 \ K2)

(5.39)

Since the noninteracting series system has been shown to have all real poles,
the dynamic responses of an interacting system of first-order systems have many
of the same characteristics as those of a noninteracting system; that is, they are
stable and overdamped.

The previous results for interacting systems are applicable to (only) those systems
that conform to the model; in addition to having variables F„_i, Y„, and Y„+\ appear
in the equation for dYn/dt, the coefficients of each linearized term must conform to
the structure and range of values in equations (5.30) and (5.31).

Many systems have the same model structures but different ranges for the
values of the parameters. If the type of system is not obvious from the structure of
the equations and the values of the model parameters, the model can be analyzed
using the procedure just applied to the equations (5.30) and (5.31) to determine
important characteristics of its dynamic behavior.

Noninteracting Series with Dead Time
As will become more apparent in the next chapter, we often use first-order-with-
dead-time models to approximate more complex systems with monotonic step
input responses. Therefore, noninteracting series of first-order-with-dead-time sys
tems are considered to conclude this section. The direct application of equation
(5.26) results in

Y(s)
Xis)

n-\ n*,)exp(-J>s
= Y\Gn-iis) = w=l 1=1 with d (s) =

1=0
f\(XiS + 1)

XjS + 1

1=1

(5.40)
This overall transfer function provides the basis for the following equations, which
give values for key parameters of a noninteracting series of first-order-with-dead-
time systems.

n n
Exact relationships: K - (5.41a)

Approximate relationship:
n

'63% » £(0/ + Tt) (5.41ft)



The results for the overall gain and dead time follow directly from equation (5.40).
The approximation for the time for the output response to a step input to reach
63 percent of its final value, t&%, is based on fitting an approximate model to the
response of the series system, using the method of moments. The derivation of
this expression is provided in Appendix D. The relationships in equations (5.41)
are useful for quickly characterizing the approximate behavior of a noninteracting
series system from the individual systems; comparison to solutions of noninter
acting systems (e.g., Figure 5.5) shows that the expression for t&% is a reasonable
approximation but not exact.
EXAMPLE 5.1.
Four first-order-with-dead time systems, with parameters in the following table, are
placed in a noninteracting series. Describe the output response of this system to
a step change in the input to the series at time = 2.
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System 1 2 3 4
Dead time, 0 0.40 0.90 1.2 1.70
Time constant, r 1.5 3.3 5.2 0.95
Gain, K 1.0 0.25 3.0 1.33
msmmm^mmmi^mi0smmm^immm^^Mmm!mm\

The results in this section on noninteracting systems indicate that the output re
sponse will be an overdamped sigmoid. Equations (5.41) can be used to estimate
key values of the response. Note that the input occurred at time = 2, so that the
points indicated on Figure 5.7 are based on the following results as measured
from time = 2.

a:, = 1.0 0 = 4.2 (after step) J^(0 + r) = 15.15 .-. t63% & 15.15 (after step)

The overall response is compared with the approximation in Figure 5.7, which
demonstrates the usefulness of the approximation for t&%, because it gives an
approximate "time scale" for the response. However, many sigmoidal curves could
be drawn through the two points in the figure. The entire curve can be determined
through analytical or numerical solution of the defining equations.

EXAMPLE 5.2. Input-output response.
Two series systems, each with four elements, involve only transportation delays
and mixing tanks. A step change is introduced into the input feed composition of
each system with the flow rates constant. Determine and compare the dynamic
responses of the output for each system. Since there is no chemical reaction, the
systems have a gain of 1.0 and dynamic parameters given in the following table.

Ox X\ 02 r2 *3 T3

Case 1 0 2 2 0 0 2
Case 2 0 2 2 2 1 0

# 4 * 4
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FIGURE 5.7

35 40

Dynamic response of series processes in Example 5.1 for a unit step at
time = 2.

The solution can be developed in several ways. The most general is to derive the
overall input-output transfer functions for these systems.

Y4(s) = Gds)Y3is) = • • ■ = G4(s)G3(s)G2(s)Gi(.s)X(s)
y 4 ( j ) i . Q g - f fl i + f t + f t + f t ) *
~X(S) ~ iTiS + \)iT2S + 1)(T35 + 1)(T4* + 1)

l.Qg-4'~ (2j + \)i2s + 1)

Since the overall transfer functions are the same for the two systems, their dynamic
input-output behaviors are identical. This is verified by the transient responses of
the two cases for a step input at time = 2 in Figure 5.8, with each variable Ytit) on
a separate scale.

The responses in Figure 5.8 show that two systems can have the same input-output
behavior with different values for intermediate variables.

In conclusion, the analysis in this section has demonstrated that both noninter
acting and interacting series of n first-order systems can be modelled by a transfer
function with a characteristic polynomial of order n. Much about the dynamic re
sponses of the series systems can be determined from the models of the individual
systems. The results are summarized in Table 5.1.

The series systems in this section provided additional reinforcement for the im
portance of transfer function poles. The strongest general conclusions were based
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FIGURE 5.8

Dynamic responses for series system in Example 5.2 to a unit step at time = 2.

TABLE 5.1

Properties of series systems with first-order elements
(responses between input, X, and output, Y„)
Individual first-order Noninteracting
s y s t e m s s e r i e s s y s t e m s

Interacting series system,
equations (5.30) and (5.31)

n first-order systems
Each is stable
Time constants, t/

km
Step response
Frequency response

nth-order system
Stable, not periodic
Time constants are zit
i = 1,..., n

to * E x>
Overdamped, sigmoidal
AR < Kp for all co

nth-order system
Stable, not periodic
Time constants are not t/'s. They
must be determined by solving the
characteristic polynomial.
t&>% > ]CT«
Overdamped, sigmoidal
AR < Kp for all co

on the manner in which the poles of the overall system were or were not affected by
the series structure. These conclusions concerned stability and the related property
of periodic behavior. Since these generalizations dealt with properties completely
determined by the poles, they are independent of the numerators in the transfer
functions. In fact, the generalizations on stability and periodicity can be extended
to any series transfer functions with denominators expressed as a polynomial in s.
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However, the values of the poles do not provide general conclusions for the
time-domain responses to step and sine inputs. Since both the numerator and
denominator of the transfer function influence the dynamic behavior, the more
specific results on dynamic responses are valid only for systems consistent with
the assumptions in the derivations—that is, with a constant for the numerator
of each series transfer function element. In particular, Figures 5.4 and 5.5 and all
conclusions on the step response and amplitude ratio are specific to systems whose
component elements have constant numerators. Finally, such strong conclusions
for an overall system, based on the individual elements, are not always possible,
as demonstrated by the structures considered in the remainder of this chapter.

- t & r

A - ^ B

FIGURE 5.9
ib)

Examples of parallel systems in
chemical engineering: (a) heat
exchanger with bypass and ib) chemical
reaction system.

Xis)-

FIGURE 5.10

Example of a parallel structure
involving two systems.

5.4 m PARALLEL STRUCTURES OF SIMPLE SYSTEMS
Parallel paths between a system input and its output can occur in processes, for
example, the heat exchanger with multiple fluid flow paths in Figure 5.9a and
the multiple reaction pathways in Figure 5.9b. Systems with parallel paths can
experience unique dynamic behavior that can have a strong effect on control per
formance. Therefore, engineers should understand the process structures leading to
parallel structures giving good and poor dynamic behaviors. The basic concepts of
parallel systems are introduced in this section to explain the reasons for the unique
dynamic behavior, and detailed process examples are presented in Appendix I.

A simple structure that demonstrates the important features of parallel systems
is shown in Figure 5.10. The system has two paths between the input variable, X,
and the output, Y. The overall model relating input and output can be determined
using block diagram algebra.

Ylis) = G]is)Xis)
Y2(s) = G2(s)X(s)

Y(s) = Y{(s) + Y2(s)
The three equations can be combined to give

Y(s)
X(s)

= G1(s) + G2(.y)

(5.42)
(5.43)
(5.44)

(5.45)

For the situation in which each process is a first-order process, G,- (s) = Ki/(xis +
1), the model becomes

Y(s) £1 + K2
X(s) (xxs + l) " (x2s + l)

Equation (5.46) can be rearranged to have a common denominator to give
Y(s) = Kp(z3s + l)
X(s) (xlS + l)(x2s + 1)

(5.46)

(5.47)

with Kp = (KX+K2)
X3 = (Klx2 + K2xl)/(Kl +K2)

We note that the transfer function model in equation (5.47) has a polynomial in the
Laplace variable s in the denominator, as has occurred in many previous models;
the denominator terms result from taking the Laplace transform of derivatives in



the dynamic models. Since the stability and periodicity of the output Y(t) depend
on the roots of the denominator, we conclude that the parallel structure does not
alter these important aspects of dynamic behavior.

In addition, this model has a new feature in the model, a polynomial in s in the
transfer function numerator that results from the parallel structure. To investigate
the effect of the parallel structure on dynamic behavior, the step response of the
system in Figure 5.10 and modelled by equation (5.47) will be determined. The
time behavior can be determined by setting X(s) = AX/s for a step change and
taking the inverse Laplace transform using entry 10 in Table 4.1 (with a = z3).
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Y'(t) = KpAX M + ^—
x\ — x3 _t/ x2 — x3 _0 ' / ' I 0

X\ x2-x\
t/r2\ (5.48)

To enable us to plot a typical system, the following arbitrary parameter values are
inserted into equation (5.48): K = 1, AX = 1, x\ = 2, and x2 = 1. The responses
are plotted for several values of the parameter x3 in Figure 5.11.

Key characteristics of the responses depend on the value of x3.

For negative values of 13 the step response changes initially in the direction opposite
from the final steady state! This behavior is termed an inverse response and results
from the parallel path.

1.5

3o
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0 .5 - /

-0.5

1 1
4

1 1 1 1 l 1 1

- / / 3
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1
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1

-1

-2

1
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Time
10

FIGURE 5.11

Responses for a sample parallel system to a unit step at t = 0 in Xis);
the model is Yis)/Xis) = Gis) = iz3s + l)/(2s + l)(s +1), with the

value of T3 shown for each curve.
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This behavior can be explained by considering the system in Figure 5.10, which
•shows that the output is the sum of two effects. When one path has fast dynamics
and a negative gain, the process output initially decreases; however, if the second
path has slower dynamics but a positive gain of larger magnitude, the ultimate
output response will be positive. Thus, an inverse response occurs.

Figure 5.11 also shows that the output can have transient values greater than
its final value when x3 > X\ and x3 > x2. This behavior is termed overshoot and
results from the parallel path. This behavior can be explained by considering the
system in Figure 5.10. When one path has fast dynamics and a large positive gain,
the process output initially increases a large amount; when the effects of the second
slower path are negative but smaller in magnitude, the output decreases from its
maximum, but remains positive. Thus, the overshoot occurs although the process
is overdamped, i.e., nonperiodic.

The importance of inverse response or overshoot can be recognized by thinking
about how you would drive an automobile that had steering dynamics with either
of these behaviors. Only a skilled driver could maintain the vehicle on the road, and
no driver could achieve good performance. Therefore, the design engineer should
seek to avoid processes that experience these behaviors through process equipment
selection. Note that the dynamics are monotonic for many systems in Figure 5.11
when x3 ^ 0, so that only parallel structures with specific ranges of parameters
yield these unique and usually undesirable behaviors. In Appendix I, some realistic
parallel-path process examples are presented that experience interesting and im
portant dynamic behavior. Approaches to improve dynamic performance through
control are discussed throughout the book.

In summary, parallel paths exist in many processes due to either complex
interconnecting flow structures of individual systems or due to parallel effects
within a single process. Since the poles are unaffected by a parallel structure,
stability and damping of the overall system is not affected. This can be seen from
equation (5.47), in which the denominator of the overall transfer function has
the poles of the individual transfer functions. However, the parallel paths can
have a significant effect on the dynamic behavior of the system, and the most
complex behavior—overshoot or inverse response—occurs when parallel paths
have significantly different speeds of response, so that parallel responses from an
input affect the output at different times. Also, the approximate time to reach 63
percent of the output change for a step input is affected by the numerator, and it
is not simply the sum of the individual time constants. The behavior of parallel
systems of first-order individual systems is summarized in Table 5.2.

The behavior presented in this section can cause some difficulty in termi
nology, since a stable overdamped system (f > 1) is usually thought to have a
monotonic response to a step input. This is true when the transfer function numer
ator is a constant, but it is not necessarily true when the numerator is a function of
s. The potential dynamic behavior is summarized in Table 5.2.

Poles Response to nonperiodic input Monotonic response to step

Complex
Real

Periodic
Nonperiodic

Not possible
Possible, depends on numerator



TABLE 5.2

Properties of parallel systems with first-order elements
Individual first-order
systems
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Each is first order
Each is stable
Poles are 1/r,-

Step response
Frequency response

Parallel system

Order of the highest order in a parallel path
Stable, not periodic
Poles are 1/r,-, / = l,...,n
hi% 7^ St,-
Can be monotonic or experience overshoot or inverse response
Amplitude ratio can exceed steady-state process gain (for some
frequency range)

The emphasis on complex dynamic responses in this section does not indicate that
all systems with numerator zeros give unfavorable dynamics such as large overshoot
or inverse response.

The engineer can analyze the physical process for possible parallel paths
with different dynamics to identify potentially complex dynamics and then use
quantitative methods to determine whether the behavior may cause difficulty for
control. Each input must be considered separately, because the characteristics of
the output dynamic response differ for different inputs.

5.5 m RECYCLE STRUCTURES

Recycle structures are used often in process plants, to return valuable material for
reprocessing and to recover energy from effluent streams through heat exchange.
Such interconnections, termed process integration, are often cited as potential
causes of difficulty in plant operations in spite of their advantages in the steady
state; therefore, it is important to understand the effects of recycle on process
dynamics. This structure will be introduced through a process example and then
will be generalized.
EXAMPLE 5.3. Reactor with feed-effluent heat exchanger.
The process design shown in Figure 5.12 has a feed-effluent heat exchanger that
can be used for a chemical reactor with a high feed temperature and a need for
cooling the product effluent stream.
Formulation. The analysis begins with the transfer functions of the following indi
vidual input-output relationships, represented in the block diagram in Figure 5.13.

Tiis) = GH]is) = Kh\
To is ) " " " ' zms + \

T3is) = T,is) + T2is)

T2js)
T4is)
T4is)

= GH2is) =

= GRis) =

Kh2
zH2s + 1
Kr

(5.49)

his) "N" zRs + l
The block diagram shows the output of the reactor returning to influence an input

U-

FIGURE 5.12
Reactor with feed-effluent heat

exchanger in Example 53.

w
Gmis)

hW s 'h<s)
GRis)

I4fi)
i

T2is)

GH2is)

FIGURE 5.13

Block diagram of reactor-exchanger in
Example 5.3.
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to the reactor. This is feedback that has been introduced into the process by a
recycle of energy. To determine the behavior of the integrated system, the overall
input-output transfer function must be determined using block diagram algebra.

T4is) = GRis)T3is) = GRis)[Tiis) + T2is)]
= GRis)[GH2is)T4is) + Gmis)T0is)]

T4js) = GRis)GHljs)
Tois) 1 - GRis)GH2is)

(5.50)

It is immediately apparent from the overall transfer function that recycle has
fundamentally changed the behavior of the system, because the characteristic
polynomial in equation (5.50) has been influenced and the poles of the overall
system are not the poles of the individual units. Thus, the stability of the overall
system cannot be guaranteed, even if each individual system is stable!

To investigate the behavior of a recycle system further, models are defined for
each of the individual processes in Figure 5.12. The following transfer functions are
very simple, but the recycle system with these models experiences characteristics
typical of realistic processes.

GRis) = 10*+ 1 G„ds)=0A0

With recycle:
Without recycle:

GH2is) = 0.30
GH2is) = 0

The gains are dimensionless (°C/°C), and time is in minutes. The recycle heat
exchanger model, Gmis), represents the effect of the recycle stream temperature
on the reactor inlet temperature. If no recycle existed, i.e., if the effluent did not
exchange heat with the reactor feed, T4is) would have no effect on T3is), so that
GH2is) would not exist, which is represented by GH2is) = 0. These transfer function
models can be substituted into equation (5.50) to determine the overall effect of
a change in the process inlet temperature, Tois), on the reactor temperature with
and without recycle.

With recycle:

T4js)
Tois)

\\0s + \)
(0.40) 12

1 -
VlOs + lJ (0.30)

100* + 1 (5.51)

Without recycle (G//2(.v) = 0):
T4js)
Tois)

= GH]is)GRis) = 1.2
10*+ 1 (5.52)

Results analysis. The foregoing expressions and the dynamic responses for
a step input of 2°C in T0 in Figure 5.14 show the dramatic effect of recycle on
the steady-state gain and time constant; both increase by a factor of 10 due to
recycle. This change can be understood by analyzing the interaction between the
exchanger and reactor in the recycle system during a transient; an increase in T0
causes an increase in T3 and then T4, which causes an increase in T2, which causes
an increase in T4, and so on; in short, the output change is reinforced through the
recycle (feedback) exchanger. The system is still stable and self-regulatory, be
cause of the dominant inherent negative feedback for the parameter values in this
example, but the recycle has created an inherent positive feedback in the process,
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FIGURE 5.14
Dynamic responses for a 2°C step in T0 at time = 0 with and without recycle.

(Note different scales.) Results from Example 53.

which has significantly affected the dynamic response. The potentially unfavorable
dynamic effects of recycle can be reduced through automatic control strategies,
which retain most of the process performance benefits, as demonstrated for this
chemical reactor design in Figure 24.11.

The simple example in this section demonstrates the potential effects of recycle
on dynamic behavior:

1. Recycle can alter the stability and possibility for periodic behavior of the
overall system, because it affects the poles of the overall system.

2. The time constants and steady-state gain of the overall system with recycle
can be changed substantially from their values without recycle.

Again, understanding the effect of recycle on dynamic responses is an important
aspect of process dynamics, and the material in this section is enhanced by reference
to the studies of recycle in the Additional Resources at the end of this chapter.

5.6 o STAGED PROCESSES

Staged processes are used widely in the process industries for multiple contact
ing of streams and can be considered as a special interconnection of elements, in
which an element exchanges material and energy with only the adjoining stages.
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Some common examples are vapor-liquid equilibrium (Treybal, 1955), multieffect
evaporation (Nisenfeld, 1985), and flotation (Narraway et al., 1991). Staged sys
tems can experience a wide variety of dynamic behavior depending on the physical
processes (e.g., mass transfer, heat transfer, and chemical reaction) that occur at
each stage.

The fundamental model for a staged system must include all significant bal
ances on every stage. However, the variables at every stage are not always of great
importance for the overall performance of the process, because only the properties
of the streams leaving the process are usually of interest. In some cases, a few
intermediate variables could be important; an example is the flows on stages of a
stripping tower, which might approach or exceed the hydraulic limits for proper
contacting efficiency. We will assume in this section that the only output properties
of interest are in the product streams.

In this section the dynamics of a distillation tower, shown in Figure 5.15, are
considered as an example of staged systems to introduce the modelling approach
and describe typical dynamic behavior. An accurate model of a multicomponent
distillation tower must consider complex thermodynamic relationships and em
ploy special numerical algorithms for the simultaneous solution of equilibrium
expressions and material and energy balances. To simplify the presentation while
maintaining a realistic model, the tower considered will separate only two compo
nents, and the phase equilibrium is assumed to be well represented by a constant
relative volatility (Smith and Van Ness, 1987). Also, the energy balance at each
stage can be simplified by the assumption of equal molal overflow, which implies
that the heats of vaporization of both components are equal and mixing and sensible
heat effects are negligible.

The assumptions are

1. The liquid level on every tray remains above the weir height.
2. Equal molal overflow applies.
3. Relative volatility a and heat of vaporization A. are constant.
4. Holdup in vapor phase is negligible.

r \

Feed
FM,

0Z3
FM* FMD Distillate

VMq
W

rcbr=TT
FMB Bottoms
XB

FIGURE 5.15

Distillation tower.



The following nomenclature is used:

MM = molar holdup of liquid on tray
FM = molar flow rate of liquid

X = mole fraction of light component in liquid
A. = heat of vaporization

VM = molar flow rate of vapor
Y = mole fraction of light component in vapor

The schematic of a general tray in Figure 5.16 shows that every tray has the
potential for feed and product flows and heat transfer. With the assumptions and
the general tray structure, the basic overall and component balances for each stage
or tray (i = 1 n) can be formulated as

Overall material (molar) balance on liquid phase:
d M M Q i
-£- = FM,+, - FM/ + FM/, - FM,, - -y-

Quasi-steady-state overall material (molar) balance on vapor phase:

vm,=vm;_! -vmpi
VM?,, = VM,_,+VM/f

WMi-iYt- i+WMftYft

♦ f

i7-i VMi - l

Light component balance on the tray
diMMiXi)

dt
= FM/+,X/+i + FMfiXfi - (FM„ + FM,)X,

- (VM/ + VMpi)Yj + VMU*^

(5.53)

(5.54)

(5.55)

(5.56)

(5.57)

This formulation is adequate for every equilibrium tray in the tower. For most
trays, feed flows, product flows, and heat transferred are zero, while at least one
tray has a nonzero feed. The top tray has a liquid feed, which is reflux, and its vapor
stream goes to the total condenser. The bottom tray has its liquid go to the kettle
reboiler, which is also an equilibrium stage. Note that although the equations can
be formulated as shown, the computer implementation in this form would involve
extensive multiplications for the zero streams; thus, an efficient implementation
for a specific design would eliminate streams that are always zero.

Since there are many more variables than equations in the conservation bal
ances, the model is not completely specified by these balances alone. The model
requires constitutive expressions to relate liquid and vapor compositions. The phase
equilibrium equation for a binary system with constant relative volatility a is

aXi
Yi = (5.58)1 + (a - \)Xi

The model also requires constitutive expressions to relate liquid flows and
inventories on the trays. The liquid flow from a tray is related to the level (L, =
MMi/pntA) above the weir height, Lw, by (Foust et al., 1980)

F M / = K W t - L w
V PmA

(5.59)
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FIGURE 5.16

General tray used in modelling
distillation.
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with A being the cross-sectional area and pM moles/m3. The modelling effort is
not complete until models are developed for the associated equipment, which for
this distillation tower includes the heat exchangers that vaporize part of the liquid
accumulated in the bottom drum and condense the overhead vapor. The behavior of
these is not particularly complex but requires feedback control to model properly.
To maintain simple model structures without the need for control at this point,
the reboiler duty is assumed to be proportional to the heating medium flow, and
the vapor overhead is assumed to be completely condensed without subcooling,
so that the pressure is maintained at a constant value by adjusting the condensing
duty, thus

Qcond = VM„*

Qreb = ^reb^reb

(5.60)
(5.61)

Also, the volumes in the overhead and bottom accumulators can be modelled
by overall and component balances. In reality, the levels of these inventories would
be controlled by adjusting the product flows; in this example, the levels are assumed
exactly constant, so that the models become

FMD = VM„ - FM/?
FMB = FM, - VM0

(5.62)
(5.63)

The composition in the overhead accumulator (X„+, = Xq) can be deter
mined from a component material balance:

MMD dXo
dt

= VM„y„ - XD(¥MD + FM*) = VM„(y„ - XD) (5.64)

Again, with the inventory constant, the kettle reboiler can be modelled with a
component material balance (Xn = XB), equilibrium relationship, and a calcula
tion of vapor flow based on heat transferred.

MMB dXB
dt

Y* =

= FM,X, - FMbXb - VMoFo

aXB

VMo =

\ + (a-\)XB
Qreb

(5.65)

(5.66)

(5.67)
To specify the system completely, sufficient external input variables must be

defined so that the degrees of freedom are zero. The feed flow and composition must
be specified along with two additional variables, here selected to be the distillate
product flow Fo and the reboiler heating flow Freb. With these external variables
specified, the degrees-of-freedom analysis summarized in Table 5.3 shows that the
system is exactly specified. The number of equations is equal to the number of de
pendent variables; thus, there are zero degrees of freedom. Note that the parameters
(k, a, Kw, MM/>, KKb, MMB, and Lw) were excluded from the analysis, because
they are always constant. Also, the feed variables are determined by upstream pro
cess conditions. Typically, external variables like the reboiler heating flow rate and
the distillate product flow rate are adjusted to achieve the desired product compo
sitions; here, they are assumed known external variables. The model formulation
included assumptions, like constant accumulator levels and pressure, that are not
necessary but simplify the model and presentation.



TABLE 5.3
Distillation degrees off freedom for n trays

Equations
External specified

Variables (dependent) variables (independent)
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Trays (5.53) to (5.59) for each MM, FM, VM, X,
t r a y Y , Y * , V * f o r e a c h t r a y

p\usFMn+ltXn+x, V0,
O n ) Y 0 ( 7 n + 4 )

Overhead (5.60), (5.62), and 0cond
( 5 . 6 4 ) ( 3 ) ( 1 )

Reboiler (5.61), (5.63), (5.65), XB, FMfi, and QKb
( 5 . 6 6 ) , a n d ( 5 . 6 7 ) ( 5 ) ( 3 )

T o t a l I n + 8 I n + 8

F M / J / . V M / . Y / ,
FMp, VMP, Q for each
tray

FM*orFMDlMMD

Freb, MM5

(7/2)

(2)

(2)
7« + 4

TABLE 5.4
Base case design parameters for example
binary distillation

Relative volatility
Number of trays
Feed tray
Analyzer dead times
Feed light key
Distillate light key
Bottoms light key
Feed flow
Reflux flow
Distillate flow
Vapor reboiled
Tray holdup
Holdup in drums

2.4
17
9
2 min
XF = 0.50
XD = 0.98 fraction
XB = 0.02 fraction
FM/r = 10.0 kmole/min
FM/? = 8.53 kmole/min
FMD = 5.0 kmole/min
VM0 = 13.53 kmole/min
MM,- = l.Okmole
MMfl=MMD = lO.Okmole

EXAMPLE 5.4.
Determine the dynamic behavior of a binary distillation tower with the parameters
in Table 5.4. The model equations can be integrated numerically to determine the
response of the system from specified initial conditions for any values or func
tions of the external variables. The dynamic responses are obtained by estab
lishing a steady-state operating condition and introducing a single step change
to one of the external variables; each step is 1 percent of the base case input
value. (This is exactly how the experiment would be performed on the physical
tower, as explained in Chapter 6.) The results are shown in Figure 5.17a and
b. The composition responses are smooth monotonic sigmoidal curves, in spite
of the complexity of the process. Note that changing a single input affects both
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Response of distillate and bottoms products in Example 5.6: (a) to reboiler step
change; ib) to reflux step change. (These dynamic composition responses are
obtained without sensor delays when the pressure and the distillate and bottoms
accumulator levels are maintained constant.)



product compositions—an important factor in subsequent control design as dis
cussed in Chapters 20 and 21.

S 3 3 » I P § i ! i ^

This summary presents a small sample of the results available on distillation
dynamics. They have been presented as general guidelines for the behavior of
two-product distillation with simple thermodynamics (e.g., no azeotropes) and no
chemical reaction. The reader is encouraged to refer to the citations and Additional
Resources for further details. This distillation example will be considered in later
chapters, where the control of the product compositions, through adjustments to
such variables as the reboiler duty and reflux flow, will be investigated.
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5.7 □ MULTIPLE INPUT-MULTIPLE OUTPUT SYSTEMS

Many, but not all, of the systems modelled in Chapters 3,4, and 5 have involved a
single input and output. If intermediate variables existed, they could be eliminated
using transfer functions and block diagram algebra to develop a single input-single
output (SISO) equation. This approach helped to simplify our task of learning how
to model dynamic responses and is applicable to some realistic processes. However,
the majority of processes have several inputs, and process operation is concerned
with more than one output simultaneously. For example, the nonisothermal chem
ical reactor in Section 3.6 has coolant flow and inlet concentration as inputs and
reactor concentration and temperature as outputs. Also, the distillation tower in the
previous section has distillate product flow, reboiler flow, and all feed properties
and flow rate as inputs and concentration of both product streams as outputs.

The methods described in the previous two chapters for developing fundamen
tal models—linearization, transfer functions, block diagrams—are all applicable
to these multiple input-multiple output (MIMO) systems. Again, we see that many
intermediate variables can exist in a process; in the distillation tower, the tray com
positions and holdups are intermediate variables. These intermediate variables are
included in the fundamental model and eliminated algebraically from the linearized
input-output relationship.

EXAMPLE 5.5.
Determine the dynamic response of the concentration in the CSTR with second-
order reaction in Example 3.5 to step changes in the inlet concentration and the
feed flow rate. The definitions of the changes are

ACao = 0.0925 mol/m3
AF = -0.0085 m3/min

Feed concentration step:
Feed flow rate step:

at t = 2 min
at t = 7 min

The effect of several input variables on a single output variable can be determined
through the individual input-output models. The fundamental model for the reactant
component material balance is repeated here:

d_C*
dtV ^ = F i C M - C A ) - V k C 2 A (5.68)

'AO

U
do

To clarify the linearity of the model, all constants are substituted in equation (5.68)
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to give

(2.1)^ = F(CA0 - CA) - (2.1)(0.040)CJat
The model is nonlinear because of the product of variables and the concentra
tion terms. The model in equation (5.68) can be linearized for a change in the
inlet concentration (with flow constant) or for a change in the feed flow (with inlet
concentration constant), giving

dCi
TCAO- dt + C'K = KcaoCaAO

with

TCAO =

Z F =

dCi

^ C A O =

(5.69)

(5.70)

Fs+2VkCAs

V
KF =

Fs + 2VkCAs

(CaOs ~ CAs
Fs + 2VkCAs "' Fs+2VkCAs

These two models can be solved for step changes to give

[Ca(01cao = ACaoKcao(1 - <T'l/rcA0) with tx = t - 2 > 0
- < 2 / T F ) \ N \ t h t 2 - t - l > 0

(5.71)

(5.72)[C'Ait)]F = AFKFi\-e-
Note that the times from the steps are represented by different symbols (h and t2)
because the two step changes are introduced at different times; also, the reactant
concentration change is zero until tx > 0 or t2 > 0, respectively. The total change
in reactor concentration of A is the sum of the changes due to inlet concentration
and flow.

CA(f) = CKit) + [CA(f)]cA0 + [C'Ait)]F

For the data in Example 3.5, the following values can be determined:
(5.73)

V = 2.1 m3
Caos = 0.925 mole/m3

KCA0 = 0.146

Fs = 0.085 m3/min
Ca5 = 0.236 mole/m3
zF = 3.62 min

k = 0.50 [(mole/m3)min]_1
tcao == 3.62 min
KF = 1.19 (mol/m3)/(m3/min)

The results from the linearized analysis in equations (5.71) to (5.73) are given
in Figure 5.18. Clearly, the output concentration is the sum of two first-order step
responses beginning at different times. This modelling approach can be extended
to any number of input variables affecting an output.

EXAMPLE 5.6.
Sketch a block diagram showing the relationship between the input variables,
reflux flow and reboiled vapor, and the output variable, light component mole
fraction in the distillate and bottoms products.

The data in Figure 5.16 show that both input variables affect both output vari
ables. Thus, each input has two transfer functions, one for each of the output
variables. The sketch for this process is shown in Figure 5.19. A natural ques
tion is "How are the transfer functions determined?" In previous examples, the

CC
Stamp
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FIGURE 5.18

Dynamic response of reactant concentration for a step increase in inlet
concentration (/ = 2) and step decrease in flow rate (t = 7) in

Example 5.5.

fundamental model has been linearized and all intermediate variables eliminated
by algebraic manipulations. However, the fundamental model for the distillation
process is large, involving about 150 equations, so that the analytical procedure
would be excessively time-consuming. Fortunately, the transfer functions can be
determined experimentally from data very similar to Figure 5.16, and this empirical
modelling procedure is explained in the next chapter.
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FMRis)-

VM0is)

cxdr(*) <5>-**Xd(*)

GXDV(*)

gxbr(*)

GXBVW •>©-•* X„(5)

FIGURE 5.19

Block diagram for the linearized models
for a two-product distillation process.

5 . 8 □ C O N C L U S I O N S

The results of this chapter clearly demonstrate that process structures have strong
effects on dynamic behavior and that these effects can be predicted using the
methods presented in the previous chapters. Many of the strongest results relate
to the "long-time" behavior of the systems, because they are determined by the
poles of the transfer function and are independent of the numerator zeros. These
properties involve stability and the related tendency for over- or underdamped
behavior. However, the numerators also play an important role in the dynamic
response, as shown by the examples in the section on parallel structures.

It is worth noting that each of these process structures is covered individually
to clarify the analysis of their effects on dynamic behavior. Naturally, a process
may contain several of these structures, all of which will influence its behavior.
The study of complex processes is delayed until Parts V and VI, which address
the control of multiple input-multiple output systems.

Finally, in the last three chapters, dynamic responses of many processes to
a step input have been shown to have a sigmoidal shape. This means that these
processes could be approximated by adjusting parameters in a model of simple
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structure. While this observation is not especially helpful for analytical modelling,
it is very important for empirical modelling, which develops models based on
experimental data. This is the topic of the next chapter.
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The guidance before the questions in Chapters 3 and 4 is appropriate here as well.
The key new issue introduced in this chapter and demonstrated in these questions is
the effect of structure on the behavior of relatively simple individual elements.

QUESTIONS
5.1. A linearized model for a stirred-tank heat exchanger is derived in Example

3.7 for a change in the coolant flow rate. Extend these results by deriv
ing the model for simultaneous changes in the coolant flow rate and inlet
temperature. Also, determine an analytical expression for the outlet tem
perature T'it), for simultaneous step changes in the coolant flow and inlet
temperature. (You may use all results from Example 3.7 without deriving.)

5.2. The jacketed heat exchanger in Figure Q5.2 is to be modelled. The input
variable is Tq, and the output variable is T. The inlet coolant temperature
is constant. The following assumptions may be made:

(1) Both vessels are well mixed.
(2) Physical properties are constant.
(3) Flows and volumes are constant.

7b

'cO

do
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(4) Q = UAiT - Tc)
(5) The dynamic balances on both volumes must be solved simulta

neously.
id) Write the basic balances for both volumes in deviation variables.
ib) Take the Laplace transforms.
(c) Combine into the transfer function T'is)/ Tq(s).
id) Analyze this result to determine whether the dynamic behavior is (i)

stable and (ii) periodic. Remember that these properties are defined by
the denominator of the transfer function.

ie) The transfer function ignores initial conditions of the system. Briefly
explain why the transfer function is useful—in other words, what prop
erties can be determined easily using the transfer function?

5.3. The continuous-time systems of two stages shown in Figure Q5.3a and b
are to be analyzed. Assumptions are the following:

(1) Liquid holdups are constant = M.
(2) Constant molal overflow; the liquid (L) and vapor (V) flows are

constant.
(3) The concentrations x3 (and x2 in Figure Q5.3b) are constant.
(4) The accumulation in the vapor phase is negligible.
(5) Equilibrium can be modelled as yi = Kxt for this binary system.

The nature of the dynamic behavior is to be determined for the input-output
x2(s)/yo(s).
(a) Derive the time-domain equations describing the dynamics of the con

centrations on the two trays, x[ (t) and ^(0.t0 tne input variable y'0(t),
in deviation variables.

(b) Combine the results of (a) into the single transfer function x2 (s)/yo(s).
(c) Determine the nature of the response. Is it (i) stable, (ii) over- or un

derdamped?
(d) Is the response of x2 to a step change in yn in Figure Q5.3« faster or

slower than in the system in Figure Q5.3& (with the same parameter
values and x2 constant)?

5.4. The series of four chemical reactors are shown in Figure Q5.4. Each reactor
is constant volume and constant temperature, and the flow rate is constant.
The reaction is A ->• B with the rate expression ta = —kC&. The con
centration of component A in the last reactor is to be controlled, and the
feed concentration of the inlet to the first reactor is a potential manipulated
variable.
(a) Derive the model (algebraic and differential equations) relating Cao

to CA4-
(b) Combine these equations into one input-output model that has only

Cao and Ca4, with other relevant variables eliminated. (Hint: Taking
the Laplace transform of the equations in deviation variables is a good
approach.)

(c) Based on the model in (b), determine
(i) The order of the system
(ii) The stability of the system

(iii) The damping of the system



(iv) The gain of the system
(v) The shape of the response of Ca4 to a step in Cao

(d) Based on your results in (c), does a causal relationship exist between
Cao and Ca4?

(e) Based on your results in (d), is it possible to control CA4 by adjusting
Cao?

169

Questions

FIGURE Q5.4

Series stirred-tank reactors.

5.5. The recycle mixing system in Figure Q5.5 is to be considered. The feed
flow is 1 unit, and the recycle flow is 9 units. The pipe has a dead time
of 10 seconds, and the recycle has negligible dynamics. The system is
initially at steady state with pure solvent entering as feed. At time = 0, the
concentration of the feed increases to 10%A. Plot the concentration at the
exit of the pipe from t = 0 to the new steady state.

5.6. The chemical reactor without control of temperature or concentration in
Figure Q5.6 is to be modelled and analyzed. The assumptions are as follows:

(1) Cp(Cp = Cv), density, UA are constant.
(2) Q = UA(T - Tcin)
(3) F, Tc, T0, level are constant.
(4) Disturbance is Cao(0'
(5) Heat of reaction is significant.
(6) Heat losses are insignificant.
(7) System is initially at steady state.
(8) Rate of reaction =

mole

F = l

-rA=k0e-E'RTCA (m3)(min)
(a) Derive the material and energy balances for this reactor. Carefully

define the system, state all assumptions, and show all steps, especially
in the energy balance.

-a F =

F„=9

FIGURE Q5.5

-A0

(wm
^

i

Cooling FIGURE Q5.6
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nents of the dynamic response, and establish criteria for the qualitative
characteristics.)

(d) Repeat (c) for underdamped behavior.
(e) Repeat (c) for unstable behavior.

5.7. A single isothermal CSTR has the following elementary reactions.

C a s e L A ^ B C a s e l L A ^ B

Only component A is in the feed stream, and its concentration, Cao, can
change as the input to the system. Answer the following questions for both
Cases I and II.
(a) Derive the model describing the concentration of component B in the

reactor.
(b) Which of the general system structures covered in this chapter de

scribes this system?
(c) Determine whether the system can experience underdamped, over-

damped, and unstable behavior for physically possible parameter
values.

(d) Describe the response of this system to feed concentration step changes
in Cao and determine which system would have a faster response.

(e) Repeat all parts of this question, with the composition of A in the
reactor being the output variable.

5.8. Figure 5.1 can be expanded to include more process systems and more
inputs.
(a) Include the following systems, with a sketch of a physical process: (1)

\/(xs + l)3 and (2) e~es/(xs + 1).
(b) Include the following inputs for all systems: (1) ramp (CO and (2)

pulse of finite duration.

5.9. The dynamic response of Ts in the heat exchanger and stirred-tank sys
tem in Figure Q5.9 is to be determined for a step increase in the flow to
the exchanger Fex, with the total coolant flow Fc constant. (Assume that
negligible transportation lag occurs in the pipes.)
(a) Derive the models for both stirred tanks.
(b) Determine the individual transfer functions.
(c) Derive the overall transfer function.
(d) Which of the general system structures covered in this chapter de

scribes this system?
(e) Explain the numerator zeros (if any) and poles in the system.
(f) Describe the dynamic response of this system for the input step change

in F«v.
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5.10. The system of vessels in Figure Q5.10 has gas flowing through it, and F0
is independent of Pi.
(a) Assume that the flow through the restrictions is subsonic.

(1) Derive linearized models for the pressure in each system.
(2) Determine the transfer function for F2(s)/Fq(s).
(3) Describe the response of this system to a step in Fo.

(b) Repeat the analysis in part (a) for sonic flow through the restrictions.

FIGURE Q5.10

5.11. Answer the following questions.
(a) Demonstrate that the dynamic behavior of a series of stable, first-order

systems approaches the dynamic behavior of a dead time as the number
of first-order systems becomes large, with xn = x\/n. Determine the
value of the dead time.

(b) For the reactor with recycle in Example 5.5, determine the value of the
heat exchanger gain, Kh2, that would cause the system to be unsta
ble. Explain the expected dynamic response to an increase in the feed
temperature.

(c) Discuss the manual control of a series of noninteracting time constants,
a parallel system with overshoot, and a parallel system with inverse
response. What would be your thought process for feedback control?
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reactor.

A + B -▶ 2B + other products rA = kCAC&

(a) Formulate a dynamic model of the reactor to predict the concentration
of B in the reactor.

(b) Determine the possible steady-state values for Cb when only A is
present in the feed. (Hint: Two possible steady states exist.)

(c) Under what conditions does the reactor go to each steady state?
(d) Reformulate the model and answer all questions for the case in which

the product is separated and some pure B is returned to the reactor as
a recycle. What would be the advantage of this recycle? How would
the recycle affect the gain and time constant of Cb in response to a
change in Cao?

5.13. For each of the systems in Figure Q5.13, demonstrate through a funda
mental model whether the system inventory is self-regulating or not for
changes in flow in. In all cases, the flow in (Fm) can change independent
of the inventory in the vessel.
(a) A heat exchanger in which the pure-component liquid entering at its

boiling point in the vessel boils and the duty is proportional to the heat
transfer area.

(b) A liquid-filled tank with a constant flow out.
(c) A gas-filled system with a moving roof and a constant mass on the

roof. The gas exits through a partially open restriction.
(d) A gas-filled system with constant volume. The gas exits through a

partially open restriction.
5.14. The stirred-tank mixing process in Figure Q5.14 is to be analyzed. The

system has a single feed, two tanks, and a single product. All flow rates,
along with the levels, are constant. Answer the following questions com
pletely. You may assume that (1) the tanks are well mixed, (2) the density
is constant, and (3) transportation delays due to the pipes are negligible.
For parts (a) through (c), F3 = Fo.
(a) Derive the analytical model for the input-output system Cao and Ca2

with all flows constant.
(b) What is the general structure of the system in (a)?
(c) What conclusions can be determined for the system in id) regarding

the stability, periodicity, and either overshoot or inverse response for
a step input?

id) Determine the answers for ia) through (c) for (i) F3 = 0 and (ii) F3 =
very large.

5.15. The system in Figure Q5.15 has two stirred tanks; the first is a heat ex
changer, and the second is a CSTR. The product of the reactor exchanges
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heat with the feed in the heat exchanger. A single, zeroth-order reaction of A
->• products occurs in the second reactor with a heat of reaction (—A Hnn).
id) Formulate a model of the system to predict the temperature response in

both tanks to a change in the feed temperature with all flows constant,
and linearize the model. Determine to which process structure category
this process belongs.

ib) Determine under what conditions the system would experience (i) pe
riodic behavior and (ii) unstable behavior,

(c) Discuss your results and limitations in the model.
[Hint: This system is simpler than Example 3.10, in that the coolant flow
is constant; thus, UA = aF^ is constant. It is more complex in that the
energy balances for the two tanks must be solved simultaneously.]

5.16. The recycle system in Figure Q5.16 has a well-mixed, isothermal, constant-
volume reactor and subsequent separation unit, in which the unreacted
feed is separated from the product and returned to the reactor. A single
step change occurs in the reactor temperature, which can be considered a
step in the rate constant of the first-order reaction. Model the system and
determine and compare the dynamics for two operating methods.

FIGURE Q5.15
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id) The flow FA is constant.
ib) The flow FAr is constant.

5.17. A tubular heat exchanger with plug flow in the tube has steam at a constant
temperature on the shell side. The system is initially at steady state with
no temperature driving force, and the steam is introduced in a step to the
shell.
id) Determine the tube outlet temperature as a function of time. This will

require analyzing a distributed-parameter model.
ib) Formulate a lumped-parameter model that would give an approximate

result for the tube outlet temperature.

5.18. One way to account for imperfect mixing in a single stirred tank is to
include commonly occurring nonidealities and fit parameters in a model
to empirical data. For the nonideal model in Figure Q5.18, plot the shapes
of the step and impulse responses for various values of the nonidealities.
Could you fit an imperfect model using one of these sets of data?

5.19. Derive the models reported in Figures 5.2 and 5.3 for the electrical and
mechanical systems.

5.20. From the principles in this chapter (and Appendix D), estimate the shape
and ?63% of the step change for the following systems: id) Example 3.3, ib)
Example 3.10, (c) Question 4.15, and (d) Question 4.18.

5.21. A nonisothermal CSTR with heat transfer is modelled in Section C-2 in
Appendix C. For each of the following situations, describe the possible
shapes of the dynamic response of the concentration, Ca, to a step change
in the coolant flow rate. There may be more than one per situation. Ex
plain your answers by discussing, for example, the interaction between the
material and energy balances.
id) No chemical reaction, Ko = 0
ib) Nonzero chemical reaction, but AHrxn = 0
(c) General case with nonzero reaction and heat of reaction
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To this point, we have been modelling processes using fundamental principles,
and this approach has been very valuable in establishing relationships between
parameters in physical systems and the transient behavior of the systems. Unfortu
nately, this approach has limitations, which generally result from the complexity
of fundamental models. For example, a fundamental model of a distillation col
umn with 10 components and 50 trays would have on the order of 500 differential
equations. In addition, the model would contain many parameters to character
ize the thermodynamic relationships (equilibrium K values), rate processes (heat
transfer coefficients), and model nonidealities (tray efficiencies). Therefore, mod
elling most realistic processes requires a large engineering effort to formulate the
equations, determine all parameter values, and solve the equations, usually through
numerical methods. This effort is justified when very accurate predictions of dy
namic responses over a wide range of process operating conditions are needed.

This chapter presents a very efficient alternative modelling method specifi
cally designed for process control, termed empirical identification. The models
developed using this method provide the dynamic relationship between selected
input and output variables. For example, the empirical model for the distillation
column discussed previously could relate the reflux flow rate to the distillate com
position. In comparison to this simple empirical model, the fundamental model
provides information on how all of the tray and product compositions and temper
atures depend on variables such as reflux. Thus, the empirical models described in
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this chapter, while tailored to the specific needs of process control, do not provide
enough information to satisfy all process design and analysis requirements and
cannot replace fundamental models for all applications.

In empirical model building, models are determined by making small changes
in the input variable(s) about a nominal operating condition. The resulting dynamic
response is used to determine the model. This general procedure is essentially an
experimental linearization of the process that is valid for some region about the
nominal conditions. As we shall see in later chapters, linear transfer function
models developed using empirical methods are adequate for many process control
designs and implementations. Because the analysis methods are not presented until
later chapters, we cannot yet definitively evaluate the usefulness of the models,
although we will see that they are quite useful. Thus, it is important to monitor
the expected accuracy of the modelling methods in this chapter so that it can be
considered in later chapters. As a rough guideline, the model parameters should
be determined within ±20 percent, although much greater accuracy is required for
a few multivariable control calculations.

The empirical methods involve designed experiments, during which the pro
cess is perturbed to generate dynamic data. The success of the methods requires
close adherence to principles of experimental design and model fitting, which are
presented in the next section. In subsequent sections, two identification methods are
presented. The first method is termed the process reaction curve and employs sim
ple, graphical procedures for model fitting. The second and more general method
employs statistical principles for determining the parameters. Several examples
are presented with each method. The final section reviews some advanced issues
and other methods not presented in this chapter so that the reader will be able to
select the most appropriate technology for model building.

6.2 a AN EMPIRICAL MODEL BUILDING PROCEDURE

Empirical model building should be undertaken using the six-step procedure shown
in Figure 6.1. This procedure ensures that proper data is generated through careful
experimental design and execution. Also, the procedure makes the best use of
the data by thoroughly diagnosing and verifying results from the initial model
parameter calculations. The schematic in Figure 6.1 highlights the fact that some a
priori knowledge is required to plan the experiment and that the procedure can, and
often does, require iteration, as shown by the dashed lines. At the completion of
the procedure described in this section, an adequate model should be determined,
or the engineer will at least know that a satisfactory model has not been identified
and that further experimentation is required.

Throughout this chapter several examples are presented. The first example
is shown in Figure 6.2, which has two stirred tanks. The process model to be
identified relates the valve opening in the heating oil line to the outlet temperature
of the second tank.

Experimental Design
An important and often underestimated aspect of empirical modelling is the need
for proper experimental design. Since every method requires some type of input
perturbation, the design determines its shape and duration. It also determines the
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ditions about which the process model is accurate. Finally, the magnitude of the ^jH«aii^^^iM«^
input perturbation is determined. This magnitude must be small enough to ensure An Empirical Model
that the key safety and product quality limitations are observed. It is important to Building Procedure
begin with a perturbation that is on the safe (small) side rather than cause a severe
process disturbance.

Clearly, the design requires a priori information about the process and its
dynamic responses. This information is normally available from previous operating
experience; if no prior information is available, some preliminary experiments must
be performed. For the example in Figure 6.2, the time constants for each tank could
be used to determine a first estimate for the response of the entire system.

The result of this step is a complete plan for the test which should include

1. A description of the base operating conditions
2. A definition of the perturbations
3. A definition of the variables to be measured, along with the measurement

frequency
4. An estimate of the duration of the experiment

Naturally, the plan should be reviewed with all operating personnel to ensure that
it does not interfere with other plant activities.

Plant Experiment
The experiment should be executed as close to the plan as possible. While varia
tion in plant operation is inevitable, large disturbances during the experiment can
invalidate the results; therefore, plant operation should be monitored during the
experiment. Since the experiment is designed to establish the relationship between
one input and output, changes in other inputs during the experiment could make
the data unusable for identifying a dynamic model. This monitoring must be per
formed throughout the experiment, using measuring devices where available and
using other sources of information, such as laboratory analysis, when process sen
sors are not available. For the example in Figure 6.2, variables such as the feed inlet
temperature affect the outlet temperature of the second tank, and they should be
monitored to ensure that they are approximately constant during the experiment.

Determining Model Structure
Currently, many methods are available to calculate the parameters in a model
whose structure is set; however, few methods exist for determining the structure
of a model (e.g., first- or second-order transfer function), based solely on the data.
Typically, the engineer must assume a model structure and subsequently evaluate
the assumption. The initial structure is selected based on prior knowledge of the
unit operation, perhaps based on the structure of a fundamental model, and based
on patterns in the experimental data just collected. The assumption is evaluated in
the latter diagnostic step of this procedure.

The goal is not to develop a model that exactly matches the experimental data.
Rather, the goal is to develop a model that describes the input-output behavior of
the process adequately for use in process control.
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Empirical methods typically use low-order linear models with dead time. Often
(but not always), nrst-order-with-dead-time models are adequate for process control
analysis and design.

At times, higher-order models are required, and advanced empirical methods are
available for determining the model structure (Box and Jenkins, 1976).

Parameter Estimation
At this point a model structure has been selected and data has been collected. Two
methods are presented in this chapter to determine values for the model parameters
so that the model provides a good fit to the experimental data. One method uses
a graphical technique; the other uses statistical principles. Both methods provide
estimates for parameters in transfer function models, such as gain, time constant,
and dead time in a first-order-with-dead-time model. The methods differ in the
generality allowed in the model structure and experimental design.

Diagnostic Evaluation
Some evaluation is required before the model is used for control. The diagnostic
level of evaluation determines how well the model fits the data used for parameter
estimation. Generally, the diagnostic evaluation can use two approaches: (1) a
comparison of the model prediction with the measured data and (2) a comparison
of the results with any assumptions used in the estimation method.

Verification
The final check on the model is to verify it by comparison with additional data
not used in the parameter estimation. Although this step is not always performed,
it is worth comparing the model to data collected at another time to be sure that
typical variation in plant operation does not significantly degrade model accuracy.
The methods used in this step are the same as in the diagnostic evaluation step.

It is appropriate to emphasize once again that the model developed by this
procedure relates the input perturbation to the output response. The process mod
elled includes all equipment between the input and output; thus, the typical model
includes the dynamics of valves and sensors as well as the process equipment. As
we will see later, this is not a limitation; in fact, the empirical model provides the
proper information for control analysis, because it includes the elements in the
control loop.

Finally, two conflicting objectives must always be balanced in performing
this experimental procedure. The first objective is the maintenance of safe, smooth,
and profitable plant operation, for which a small experimental input perturbation is
desired. However, the second objective is the development of an accurate model for
process control design that will be improved by a relatively large input perturbation.
The proper experimental procedure must balance these two objectives by allowing
a short-term disturbance so that the future plant operation is improved through
good process control.
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The process reaction curve is probably the most widely used method for identifying
dynamic models. It is simple to perform, and although it is the least general method,
it provides adequate models for many applications. First, the method is explained
and demonstrated through an example. Then it is critically evaluated, with strong
and weak points noted.

The process reaction curve method involves the following four actions:

The Process Reaction
Curve

1. Allow the process to reach steady state.
2. Introduce a single step change in the input variable.
3. Collect input and output response data until the process again reaches steady

state.
4. Perform the graphical process reaction curve calculations.

The graphical calculations determine the parameters for a first-order-with-
dead-time model: the process reaction curve is restricted to this model. The form
of the model is as follows, with Xis) denoting the input and Yis) denoting the
output, both expressed in deviation variables:

Yis) Kpe-es
Xis) xs + 1 (6.1)

There are two slightly different graphical techniques in common use, and both
are explained in this section. The first technique, Method I, adapted from Ziegler
and Nichols (1942), uses the graphical calculations shown in Figure 6.3 for the
stirred-tank process in Figure 6.2. The intermediate values determined from the

FIGURE 6.3

Process reaction curve, Method I.
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graph are the magnitude of the input change, 8', the magnitude of the steady-state
change in the output, A; and the maximum slope of the output-versus-time plot, S.
The values from the plot can be related to the model parameters according to the
following relationships for a first-order-with-dead-time model. The general model
for a step in the input with t > 9 is

Y ' ( t ) = K p S [ l - e - { t - e ) ' r ] ( 6 . 2 )
The slope for this response at any time t > 9 can be determined to be

« = | { V [ l - - ^ ] } = f ^ - ^ (6.3)

(6.4)

The maximum slope occurs at t = 9, so S = A/x. Thus, the model parameters
can be calculated as

KP = A/5
x = A/S
9 = intercept of maximum slope with initial value

(as shown in Figure 6.3)
A second technique, Method II, uses the graphical calculations shown in Fig

ure 6.4. The intermediate values determined from the graph are the magnitude of
the input change, 8; the magnitude of the steady-state change in the output, A;
and the times at which the output reaches 28 and 63 percent of its final value.
The values from the plot can be related to the model parameters using the general
expression in equation (6.2). Any two values of time can be selected to determine
the unknown parameters, 9 and r. The typical times are selected where the tran
sient response is changing rapidly so that the model parameters can be accurately
determined in spite of measurement noise (Smith, 1972). The expressions are

Y(9 + x) = A(l - e~l) = 0.632A
Y(9 + r/3) = A(l - e~l/3) = 0.283A
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Thus, the values of time at which the output reaches 28.3 and 63.2 percent of its
final value are used to calculate the model parameters.

x
hz% - 9 + - t63% = 9 + x3 ( 6 . 6 )

X — 1.5(̂ 3% — *28%) 9 — f63% — X

Ideally, both techniques should give representative models; however, Method
I requires the engineer to find a slope (i.e., a derivative) of a measured signal.
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Because of the difficulty in evaluating the slope, especially when the signal has high-
frequency noise, Method I typically has larger errors in the parameter estimates; thus,
Method II is preferred.

EXAMPLE 6.1.
The process reaction experiments have been performed on the stirred-tank system
in Figure 6.2 and the data is given in Figures 6.3 and 6.4 for Methods I and II,
respectively. Determine the parameters for the first-order-with-dead-time model.
Solution. The graphical calculations are shown in Figure 6.3 for Method I, and
the calculations are summarized as

8 = 5.0% open
A = 13.1°C

KP = A/8 = (13.1°C)/(5% open) = 2.6°C/% open
5 = 1.40°C/min
r = A/5 = (13.1°C)/(1.40°C/min) = 9.36 min
9 = 3.3 min

The graphical results are shown in Figure 6.4 for Method II, and the calculations
are summarized below. Note that the calculations for KPl A, and 8 are the same
and thus not repeated. Also, time is measured from the input step change.

0.63A = 8.3°C f63* = 9.7 min
0.28A = 3.7°C t2m = 5.7 min

r = \.5(t63% - f28%) = 1-5(9.7 - 5.7) min = 6.0 min
9 — t(,3% — r = (9.7 — 6.0) min = 3.7 min

w
db

cb
%

Further details for the process reaction curve method are summarized below with
respect to the six-step empirical procedure.

Exper imental Design
The calculation procedure is based on a perfect step change in the input as demon
strated in equation (6.2). The input can normally be changed in a step when it is a
manipulated variable, such as valve percent open; however, some control designs
will require models for inputs such as feed composition, which cannot be manip
ulated in a step, if at all. The sensitivity of the model results to deviations from a
perfect input step are shown in Figure 6.5 for an example in which the true plant
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FIGURE 6.5

Sensitivity of process reaction curve to an imperfect step input, true
process 0/(0 + t) = 0.33.

had a dead time of 0.5 and a process time constant (Tpr0cess) of 1.0. The step change
was introduced through a first-order system with a time constant (Tinput) that varied
from 0.0 (i.e., a perfect step) to 1.0. This case study demonstrates that very small
deviations from a perfect step input are acceptable but that large deviations lead
to significant model parameter errors, especially in the dead time.

In addition to the input shape, the input magnitude is also important. As
previously noted, the accuracy of the model depends on the magnitude of the
input step change. The output change cannot be too small, because of noise in
the measured output, which is caused by many small process disturbances and
sensor nonidealities. The output signal is the magnitude of the change in the output
variable. Naturally, the larger the input step, the more accurate the modelling results
but the larger the disturbance to the process.

A rough guideline for the process reaction curve is that the signal-to-noise ratio
should be at least 5.

The noise level can be estimated as the variation experienced by the output
variable when all measured inputs are constant. For example, if an output temper
ature varies ±1°C due to noise, the input magnitude should be large enough to
cause an output change A of at least 5°C.

Finally, the duration of the experiment is set by the requirement of achieving
a final steady state after the input step. Thus, the experiment would be expected
to last at least a time equal to the dead time plus four time constants, 9 +4z.
In the stirred-tank example, the duration of the experiment could be estimated
from the time constants of the two tanks, plus some time for the heat exchanger



and sensor dynamics. If the data is not recorded continuously, it should be col
lected frequently enough for the graphical analysis; 40 or more points would be
preferable, depending on the amount of high-frequency noise.

Plant Experiment
Since model errors can be large if another, perhaps unmeasured, input variable
changes, experiments should be designed to identify whether disturbances have
occurred. One way to do this is to ensure that the final condition of the manipulated
input variable is the same as the initial condition, which naturally requires more
than one step change. Then, if the output variable also returns to its initial condition,
one can reasonably assume that no long-term disturbance has occurred, although
a transient disturbance could take place and not be identified by this checking
method. If the final value of the output variable is significantly different from its
initial value, the entire experiment is questionable and should be repeated. This
situation is discussed further in Example 6.3.

Diagnostic Evaluation
The basic technique for evaluating results of the process reaction curve is to plot the
data and the model predictions on the same graph. Visual comparison can be used
to determine whether the model provides a good fit to the data used in calculating
its parameters. This procedure has been applied to Example 6.1 using the results
from Method II, and the comparison is shown in Figure 6.6. Since the data and
model do not differ by more than about 0.5°C throughout the transient, the model
would normally be accepted for most control analyses.

Most of the control analysis methods presented in later parts of the book require
linear models, and information on strong nonlinearities would be a valuable result
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Comparison of measured and predicted outputs.
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Time
FIGURE 6.7

Example of experimental design to evaluate the linearity of a
process.

of empirical model identification. The linearity can be evaluated by comparing
the model parameters determined from experiments of various magnitudes and
directions, as shown in Figure 6.7. If the model parameters are similar, the process
is nearly linear over the range investigated. If the parameters are very different,
the process is highly nonlinear, and control methods described in Chapter 16 may
have to be applied.

Ve r i fi ca t i on

If additional data is collected that is not used to calculate the model parameters, it
can be compared with the model using the same techniques as in the diagnostic step.

EXAMPLE 6.2.
A more realistic set of data for the two stirred-tank heating process is given in
Figure 6.8. This data has noise, which could be due to imperfect mixing, sensor
noise, and variation in other input variables. The application of the process reaction
curve requires some judgment. The reader should perform both methods on the
data and note the difficulty in Method I. Typical results for the methods are given
in the following table, but the reader can expect to obtain slightly different values
due to the noise.

Method Method II

KP 2.6 2.6 °C/%open
0 2.4 3.7 min
r 10.8 5.9 min



FIGURE 6.8

Process reaction curve for Example 6.2.

FIGURE 6.9

Experiment data for process reaction curve when input is returned to its
initial condition.

EXAMPLE 6.3.
Data for two step changes is given in Figure 6.9. Determine a dynamic model
using the process reaction curve method.

Note that there is no difference between the initial and final values of the
input valve opening. However, the output temperature does not return to its initial
value. This is due to some nonideality in the experiment, such as an unmeasured

do 1
do
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disturbance or a sticky valve that did not move as expected. Naturally, the output
variable will not return to exactly the same value, but the difference between the
initial and final values in this example seems suspiciously large, because 4°C is
50 percent of the temperature change occurring during the experiment. Therefore,
this data should not be used, and the experiment should be repeated.

EXAMPLE 6.4.
A fundamental model for a tank mixing process similar to Figure 6.10a will be
developed in Chapter 7, where the time constant of each tank is shown to be
volume/volumetric flow rate (V/F). Determine approximate models for this process
at three flow rates of stream B given below when each tank volume is 35 m3.

This example demonstrates the usefulness of the insight provided from funda
mental modelling, even though a simplified model is determined empirically. The
process reaction curve experiment was performed for this process at the three flow

$
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FIGURE 6.10
For Example 6.4: (a) Three-tank mixing process; ib) process reaction
curve for base case.



rates, all at a base exit concentration of 3 percent A, and the results at the base
case flow are shown in Figure 6.106. The results are summarized in the following
table.
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Simplified Fundamental
Flow
(m3/min)

KP
(% A/% open)

0
(min)

T
(min)

0 + T
(min) (min)

5.1
7.0
8.1

0.055
0.04
0.036

7.6
5.5
4.7

14.5
10.5
9.1

22.1
16.0
13.8

20.7
15.0 +- base case
12.9
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The fundamental model demonstrates that the time constants (r = V/F)
depend on the flow rate, decreasing as the flow increases. This trend is confirmed
in the simplified model as well. Also, the approximate relationship for systems of
noninteracting time constants in series, equation (5.41 b), that the sum of the dead
times plus time constants is unchanged by model simplification, is rather good for
this process.

The most important characteristics of the process reaction curve method are
summarized in Table 6.1. The major advantages of the process reaction curve
method are its simplicity and short experimental duration, which result in its fre
quent application for simple control models.

TABLE 6.1
Summary off the process reaction curve

Characteristic Process reaction curve

Input magnitude

Experiment duration

Input change
Model structure

Accuracy with unmeasured disturbances

Diagnostics
Calculations

Large enough to give an output signal-to-noise ratio
greater than 5
The process should reach steady state; thus the
duration is at least 0 + 4z
A nearly perfect step change is required
The model is restricted to first-order with dead time;
this model structure is adequate for processes having
overdamped, monotonic step responses
Accuracy can be strongly affected (degraded) by
significant disturbances
Plot model versus data; return input to initial value
Simple hand and graphical calculations
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6.4 a STATISTICAL MODEL IDENTIFICATION
The previously described graphical method had two major limitations: a first-order-
with-dead-time model and a perfect step input. Statistical model identification
methods provide more flexible approaches to identification that relax these limits
to model structure and experimental design. In addition, the statistical method
uses all data and not just a few points from the response, which should provide
better parameter estimates from noisy process data. A simple version of statistical
model fitting is presented here to introduce the concept and provide another useful
identification method. The same six-step procedure described in Section 6.2 is
used with this method.

The statistical method introduced here involves the following three actions:

1. Introduce a perturbation (or sequence of perturbations) in the input variable.
There is no restriction on the shape of the perturbation, but the effect on the
output must be large enough to enable a model to be identified.

2. ''Collect input and output response data. It is not necessary that the process regain
steady state at the end of the experiment.

3. Calculate the model parameters as described in the subsequent paragraphs.

The statistical method described in this section uses a regression method to fit
the experimental data, and the closed-form solution method requires an algebraic
equation with unknown parameters. Thus, the transfer function model must be
converted into an algebraic model that relates the current value of the output to
past values of the input and output. There are several methods for performing this
transform; the most accurate and general for linear systems involves z-transforms,
which serve a similar purpose for discrete systems as Laplace transforms serve
for continuous systems (see Appendix L). The method used here is much simpler
and is adequate for demonstrating the statistical identification method and fitting
models of simple structure, such as first-order with dead time (see Appendix F).

The first-order-with-dead-time model can be written in the time domain ac
cording to the equation

JY'it) +Y'it) = KpX'it-0)
dt (6.7)

Again, the prime denotes deviation from the initial steady-state value. This differ
ential equation can be integrated from time f,- to t-t + At assuming that the input
X'it) is constant over this period. Note that the dead time is represented by an
integer number of sample delays (i.e., T = 9/ At). The resulting equation is

y/+1 = e-"'TYt' + Kpi\ - e-A"*)Xl (6.8)
In further equations the notation is simplified according to the equation

y / + l = a y ; + * x ; _ r ( 6 . 9 )
The challenge is to determine the parameters a, b, and T that provide the best
model for the data. Then the model parameters Kp,z, and 9 can be calculated.

The procedure used involves linear regression, which is briefly explained here
and is thoroughly presented in many references (e.g., Box et al., 1978). Assume



for the moment that we know the value of r, the dead time (this assumption will be
addressed later in the method). Typical data from the process experiment is given
in Table 6.2; note that the measurements are provided at equispaced intervals.
Since we want to fit an algebraic equation of the form in equation (6.9), the data
must be arranged to conform to the equation. This is done in Table 6.2, where
for every measured value of (Y{+l)m the corresponding measured values of (7/),,,
and (Xj_r)m are provided on the same line. Using the model it is also possible
to predict the output variable at any time, with (Yi+\)p representing the predicted
value, using the appropriate measured variables.

(Y'i+l)p=a(Y!)m+b(X'i_r)l (6.10)

Note that the subscript m indicates a measured value, and the subscript p
indicates a predicted output value. The "best" model parameters a and b would
provide an accurate prediction of the output at each time; thus, the goal is to
calculate the values of the parameters a and b so that (Y'i+l)m and (Y[+l)p are as
nearly equal as possible. The common technique for determining the parameters
is to apply the least squares method, which minimizes the sum of error squared
between the measured and predicted values over all samples, i = r + 1 to n. The
error can be expressed as follows:

n n n

i = r + \ / = r + i / = r + i
(6.11)

The minimization of this term requires that the derivatives of the sum of error
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TABLE 6.2
Data for statistical model identification

Data in original format as collected
in experiment

Data in restructured format for regression model
fitting, first-order-with-dead-time model with

dead time of two sample periods

Input , X Ou tpu t , Y
Sample
no. i

z vector in
equat ion

(6.16)

U matrix
X' = X
Y' = Y

in equation (6.16)
- Xs with X, = 50
- Ys with Ys = 75

T i m e r Output, y;+1
De layed

Output , F / input , X(_2

0 50 75 1
0.2 50 75 2
0.4 52 75 3 0 0 0
0.6 52 75 4 0.05 0 0
0.8 52 75.05 5 0.1 0.05 2
1.0 52 75.1 6 0.3 0.1 2
1.2 52 75.3 7 0.6 0.3 2
1.4 52 75.6 8 0.7 0.6 2
1.6 52 75.7

Table contiinued for diiration of experiment
I - .MKK,* 'Mm^M^^m^i i^ i^ i i i^^^mmm^^^^ikm®s^mmiimm$immMM&mmz^mmuMx&i
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squares with respect to the parameters are zero.

_3_
da

d_
lb

U=r+i

L/=r+i

71

= -2 E (y/)« IW+i)« " «G7)« - *(*/-r>«] = 0
/=r+i

(6.12)

= -2 J] <*/-r>« IW+i)» - flW)m - b(X'{_r)m] = 0
i=r+i

(6.13)
Equations (6.12) and (6.13) are linear in the two unknowns a and b, as is perhaps
""*~ easily recognized when the equations are rearranged as follows:more

n n n
« E (y/)» +* E (*7)*(*/-r)« = E (^"W+i)" (6'14>

j = r + i i = r + i i = r + i

E <*/)-(Xl-r)«+* E (X-!-r)» = E (X/-r)-(i7+i)« (615)
= r + i / = r + i i = r + i

The values of the unknowns can be determined using various methods for solving
linear equations (Anton, 1987); however, a more convenient approach is to use a
computer program that is designed to solve the least squares problem. With these
programs, the engineer simply enters the data in the form of Table 6.2, and the
program automatically sets up and solves equations (6.14) and (6.15) for a and b.

These programs are designed to solve the least squares method by matrix
methods. The measured values for this problem can be entered into the following
matrices:

U =

Y'

Y 'M

Y'\Jn-\

X'
x\

X '

3-r
4 - r

n - r - i j

z = n
Y1_ n_

(6.16)

The least squares solution for the parameters can be shown to be (Graupe, 1972)

= ( U T U ) _ , U T z ( 6 . 1 7 )

Many computer programs exist for solving linear least squares, and simple problems
can be solved easily using a spreadsheet program with a linear regression option.

Given this method for determining the coefficients a and b, it is necessary to return
to the assumption that the dead time, T = 9/At, is known. To determine the dead
time accurately, it is necessary to solve the least squares problem in equations
(6.14) and (6.15) for several values of T, with the value of T giving the lowest
sum of error squared (more properly, the sum of error squared divided by the
number of degrees of freedom, which is equal to the number of data points minus
the number of parameters fitted) being the best estimate of the dead time. This
approach, which is essentially a search in one direction, is required because the
variable T is discrete (i.e., it takes only integer values), so that it is not possible



to determine the analytical derivative of the sum of errors squared with respect
to dead time. Caution should be used, because the relationship between the dead
time and sum of errors squared may not be monotonic; if more than one minimum
exists, the dead time resulting in the smallest sum of errors squared should be
selected.

The statistical method presented in this section, minimizing the sum of er
rors squared, is an intuitively appealing approach to finding the best values of
the parameters. However, it depends on assumptions that, if violated significantly,
could lead to erroneous estimates of the parameters. These assumptions are com
pletely described in statistics textbooks (Box et al., 1978). The most important
assumptions are the following:
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1. The error £,- is an independent random variable with zero mean.
2. The model structure reasonably represents the true process dynamics.
3. The parameters a and b do not change significantly during the experiment.

The following assumptions are also made in the least squares method; how
ever, the model accuracy is not as strongly affected when they are slightly violated:

4. The variance of the error is constant.
5. The input variable is known without error.

When all assumptions are valid, the least squares assumption will yield good
estimates of the parameters. Note that the experimental and diagnostic methods
are designed to ensure that the assumptions are satisfied.

EXAMPLE 6.5.
Determine the parameters for a first-order-with-dead-time model for the stirred-
tank example data in Figure 6.3.

The data must be sampled at equispaced periods, which were chosen to be
0.333 minutes for this example. Since the data arrays are very long, they are not
reported. The data was organized as shown in Table 6.2. Several different values
of the dead time were assumed, and the regression was performed for each. The
results are summarized in the following table.

Dead time, r Y,e2
7 0.964 0.101 7.52
8 0.9605 0.108 6.33
9 0.9578 0.1143 5.86
10 0.9555 0.1196 6.21

(minimum)

The dead time is selected to be the value that gives the smallest sum of errors
squared; thus, the estimated dead time is 3 minutes, 0 = (O(Af) = 9(0.333). The
other model parameters can be calculated from the regression results.

r = -At/(\na) = -0.333/(-0.0431) = 7.7 min
Kp = b/(\ -a) = 0.1143/(1 - 0.9578) = 2.7°C/%open
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The comments in Section 6.3 regarding the process reaction curve and the
six-step procedure are also relevant for this statistical method. Some additional
comments specific to the statistical method are given here.

Exper imental Design
The input change can have a general shape (i.e., a step is not required), although
Example 6.5 demonstrates that the statistical method works for step inputs. This
generality is very important, because it is sometimes necessary to build models for
inputs that are not directly manipulated, such as measured disturbance variables.

Sufficient input changes are required to provide enough information to over
come random noise in the measurement. Also, the data selected from the transient
for use in the least squares determines which aspects of the dynamic response are
fitted best. For example, if the duration of the experiment is too short, the method
will provide a good fit for the initial part of the transient, but not necessarily for
the steady-state gain. For this method with one or a few input changes, the in
put changes should be large enough and of long enough duration that the output
variable reaches at least 63 percent of its final value. Note that more sophisticated
experimental design methods (beyond the treatment in this book) are available that
require much smaller output variation at the expense of longer experiment duration
(Box and Jenkins, 1976).

Finally, the dead time cannot be determined with accuracy greater than the
data collection sample period At. Thus, this period must be small enough to satisfy
control system design requirements explained in later parts of the book. For now,
a rough guideline can be used that At should be less than 5 percent of the sum of
the dead time plus time constant.

Plant Exper imentat ion

The input variable must be measured without significant noise. If this is not the
case, more sophisticated statistical methods must be used.

Model Structure

Equations have been derived for a first-order model in this chapter. Other models
could be derived in the same manner. The simplest model structure that provides
an adequate fit should be selected.

Diagnost ic Procedure
One of the assumptions was that the error—the deviation between the model predic
tion and the measurement—is a random variable. The errors, sometimes referred to
as the residuals, can be plotted against time to determine whether any unexpected,
large correlation in time exists. This is done for the results of the following example.
EXAMPLE 6.6.
Data has been collected for the same stirred-tank system analyzed in Example
6.2; however, the data in this example contains noise, as shown in Figure 6.8.
Determine the model parameters using the statistical identification method.
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FIGURE 6.11
Comparison of measured and predicted output values from Example 6.6.

The procedure for this data set is the same as used in Example 6.5. No judg
ment is required in fitting slopes or smoothing curves as was required with the
process reaction curve method. The results are as follows, plotted in Figure 6.11:

At = 0.33 min T = 11 a = 0.9384 b = 0.2578
9 = 3.66 min r = 5.2 min Kp = 2.56°C/% open

Note that the model parameters are similar to the Method II results without noise,
but that a slightly different value is determined for the dead time. The graphical
comparison indicates a good fit to the experimental data.

Further diagnostic analysis is possible by plotting the residuals to determine
whether they are nearly random. This is done on Figure 6.12. The plot shows little
correlation; note that some correlation is expected, because the simple model
structure selected will not often provide the best possible fit to a set of data. Since
the errors are only slightly correlated and small, the model structure and dead time
are judged to be valid.
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EXAMPLE 6.7.
The dynamic data in Figure 6.13 was collected, showing the relationship between
the inlet and outlet temperatures of the stirred tanks in Figure 6.2. Naturally, this
data would require an additional sensor for the inlet temperature to the first tank.
When this data was collected, the heating valve position and all other input vari
ables were constant. Note that the input change was not even approximately a
step, because the temperature depends on the operation of upstream units. De
termine the parameters for a first-order-with-dead-time model.

Again, the statistical procedure was used. The results are as follows:
r = 11 a = 0.9228 b = 0.0760

9 = 3.66 min z = 4.2 min Kp = 0.98°C/°C
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Plot of residuals between measured and predicted outputs from
Example 6.6.
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FIGURE 6.13

Experimental data and model prediction for an input that is not a perfect
step, analyzed in Example 6.7.

The model is compared with the data in Figure 6.13. The dynamic response is
somewhat faster than the previous response, as might be expected because this
model does not include the heat exchanger dynamics. The data in this example
could not be analyzed using the graphical process reaction curve method because



the input deviates substantially from a perfect step. However, the statistical method
provided good parameter estimates from this data.

The linear regression identification method for a first-order-with-dead-time
model is more general than the process reaction curve and can be used to fit
important industrial processes. However, it also has limitations. Although it is
easier to use and yields more accurate parameter values when the data has noise,
it gives erroneous results when the noise is too large compared with the output
change caused by the experiment—the same trend as with the process reaction
curve.

EXAMPLE 6.8.
Figure 6.14 gives data recorded when a very small input change is introduced into
the valve opening in the stirred tank system in Figure 6.2. The statistical method
can be used, but the results (r = 0.6 min, 9 = 3.66 min, and Kp - 2.3° C/%open)
deviate from the previously reported, more accurate results obtained with larger
input disturbances. Clearly, a model from such a small input change is not reliable.

^ m ^ 1MmM*^UUmmmilMm*UimiimilUMMm*^^m

In addition, the simple statistical method used here is susceptible to unmea
sured disturbances. The experimental design shown in Figure 6.9 is recommended
to identify such disturbances. The statistical identification method described in
this section is summarized in Table 6.3.

195

Statistical Model
Identification

5

0

-5

„rt .■'". *ii* ■?*-*■

J I I I I I L

15

10
U
o

d3a
5 i

10 15 20
Time

25 30 35
-5

40

FIGURE 6.14

Example of empirical identification with an input perturbation that is
too small.
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TABLE 6.3

Summary of the statistical identification method
Characteristic Statistical identification

Input

Experiment duration
Input change
Model structure

Accuracy with
unmeasured disturbances
Diagnostics

Calculations

If the input change approximates a step, the pro
cess output should deviate at least 63% of the
potential steady-state change.
The process does not have to reach steady state.
No requirement regarding the shape of the input.
Model structures other than first-order-with-
dead-time are possible, although the equations
given here are restricted to first-order-with-
dead-time.
Accuracy is strongly affected by significant
disturbances.
Plot model versus data, and plot residuals versus
time.
Calculations can be easily performed with a
spread sheet or special-purpose statistical
computer program.

6.5 o ADDITIONAL TOPICS IN IDENTIFICATION

Some additional topics in identification are addressed in this section. The topics
relate to both the process reaction curve method and the statistical method, unless
otherwise noted.

Other Model Structures

The methods presented here provide satisfactory models for processes that give
smooth, sigmoidal-shaped responses to a step input. Most, but not all, processes
are in this category. More complex model structures are required for the higher-
order, underdamped, and inverse response systems. Graphical methods are avail
able for second-order systems undergoing step changes (Graupe, 1972); however,
the methods seem useful only when the output data has little noise, since they
appear sensitive to noise.

Many advanced statistical methods are available for more complex model
structures (Cryor, 1986; Box and Jenkins, 1976). The general concept is unchanged,
but the major difference from the method demonstrated in this chapter is that the
least squares equations, similar to equations (6.14) and (6.15), cannot be arranged
into a set of linear equations in variables uniquely related to the model parameters;
therefore, a nonlinear optimization method is required for calculating the param
eters. Also, confidence intervals provide useful diagnostic information. Again,
the engineer must assume a model structure and employ diagnostics to determine
whether the assumed structure is adequate.
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Sometimes models are desired between an input and several outputs. For example, mmmmmmmmmsmmmm
we may need the transfer function models between the reflux and the distillate and AddW identification
bottoms product compositions of a distillation column. These models could be
determined from one set of experimental data in which the reflux flow is perturbed
and both compositions are recorded, as shown in Figure 5.lib. Then each model
would be evaluated individually using the appropriate method, such as the process
reaction curve.

Operating Conditions
The operating conditions for the experiment should be as close as possible to the
normal operation of the process when the control system, designed using the model,
is in operation. This is only natural, because significant deviation could introduce
error into the model and reduce the effectiveness of the control. For example, the
dynamic response of the stirred-tank process in Figure 6.2 depends on the feed
flow rate, as we would determine from a fundamental model. If the feed flow rate
changes from the conditions under which the identification is performed, the linear
transfer function model will be in error.

An associated issue relates to the status of the control system when the exper
iment is performed. A full discussion of this topic is premature here; however, the
reader should appreciate that the process, including associated control strategies,
must respond during the experiment as it would during normal operation. This
topic is covered as appropriate in later chapters.

Frequency Response
As an alternative identification method, the frequency response of some physical
systems, such as electrical circuits, can be determined experimentally by intro
ducing input sine waves at several frequencies. Models can then be determined
from the amplitude and phase angle relationships as a function of frequency. This
method is not appropriate for complex chemical processes, because of the extreme
disturbances caused over long durations, although it has been demonstrated on
some unit operations (Harriott, 1964).

As a more practical manner for using the amplitude and phase relationships,
the process frequency response can be constructed from a single input perturbation
using Fourier analysis (Hougen, 1964). This method has some of the advantages
of the statistical method (for example, it allows inputs of general shape), but the
statistical methods are generally preferred.

Identification Under Control
The empirical methods presented in this chapter are for input-output relation
ships without control. After covering Part I on feedback control, you may wonder
whether the process model can be identified when being controlled. The answer
is yes, but only under specific conditions, as explained by Box and MacGregor
(1976).
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6 . 6 □ C O N C L U S I O N S

Transfer function models of most chemical processes can be identified empirically
using the methods described in this chapter. The general, six-step experimental
procedure should be employed, regardless of the calculation method used.

It is again worth emphasizing that the vast majority of control strategies are based on
empirical models; thus, the methods in this chapter are of great practical importance.

Model Error

Model errors result from measurement noise, unmeasured disturbances, imperfect
input adjustments, and applying simple linear models to truly nonlinear processes.
The examples in this chapter give realistic results, which indicate that model pa
rameters are known only within ±20 percent at best for many processes. However,
these models appear to capture the dominant dynamic behavior. Engineers must al
ways consider the sensitivity of their decisions and calculations to expected model
errors to ensure good performance of their designs. We will investigate the ef
fects of model errors in later chapters and will learn that moderate errors do not
substantially degrade the performance of single-loop controllers. A summary of a
few sensitivity studies, which are helpful when reviewing modelling and control
design, are given in Table 6.4.

TABLE 6.4

Summary of sensitivity of control stability and performance to
modelling errors
Case Issue studied

Example 9.2

Example 9.5

Example 10.15

Example 10.18

Figure 13.16 and discussion

The effect on performance of using controller
tuning parameters based on an empirical model
that is lower-order than the true process
The effect on performance of using controller
tuning parameters based on an empirical model
that is substantially different from the true
process
The effect of modelling error on the stability of
feedback control, showing the change of model
parameters likely to lead to significant differ
ences in dynamic behavior
The effect of modelling error on the stability of
feedback control, showing the critical frequency
range of importance
The effect of modelling error on the perfor
mance of feedback control, showing the
frequency range of importance



Experimental Design
The design of the experimental conditions, especially the input perturbation, has a
great effect on the success of empirical model identification. The perturbation must
be large enough, compared with other effects on the output, to allow accurate model
parameter estimation. Naturally, this requirement is in conflict with the desire to
minimize process disturbances, and some compromise is required. Model accuracy
depends strongly on the experimental procedure, and no amount of analysis can
compensate for a very poor experiment.
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Six-Step Procedure
Empirical model identification is an iterative procedure that may involve several
experiments and potential model structures before a satisfactory model has been
determined. The procedure in Figure 6.1 clearly demonstrates the requirement
for a priori information about the process to design the experiment. Since this
information may be inexact, the experimental procedure may have to be repeated,
perhaps using a larger perturbation, to obtain useful data. Also, the results of the
analysis should be evaluated with diagnostic procedures to ensure that the model
is accurate enough for control design. It is essential for engineers to recognize
that the calculation procedure always yields parameter values and that they must
judge the validity of the results based on diagnostics and knowledge of the process
behavior based on fundamental models.

No process is known exactly! Good results using models with (unavoidable) errors
is not simply fortuitous; process control methods have been developed over the years
to function well in realistic situations.

In conclusion, empirical models can be determined by a rather straightforward ex
perimental procedure combined with either a graphical or a statistical parameter es
timation method. Usually, the models take the form of low-order transfer functions
with dead time, which, although not capable of perfect prediction of all aspects of
the process performance, provide the essential input-output relationships required
for process control. The important topic of model error is considered in many of
the subsequent chapters, where it is shown that models of the accuracy achieved
with these empirical methods are adequate for many control design calculations.
However, the selection of algorithms and determination of adjustable parameters
must be performed with due consideration for the likely model errors. Therefore,
lessons learned in this chapter about accuracy are applied in many later chapters.
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ADDITIONAL RESOURCES
Advanced statistical model identification methods are widely used in practice.
The following reference provides further insight into some of the more popular
approaches.

Vandaele, W, Applied Time Series and Box-Jenkins Models, Academic Press,
New York, 1983.

The following proceedings give a selection of model identification applica
tions.

Ekyhoff, P., Trends and Progress in System Identification, Pergamon Press,
Oxford, 1981.

Computer programs are available to ease the application of statistical methods.
The programs noted below can be applied to simple linear regression (Excel and
Corel Quattro), to general statistical model fitting (S AS), and to empirical dynamic
modelling for process control (MATLAB).

Excel®, Microsoft
MATLAB® and Identification Toolbox, The MathWorks
Corel Quattro®, Corel
SAS®, SAS Institute

International standards have been established for testing and reporting dy
namic models for process control equipment. A good summary is provided in

ISA-S26-1968 and ANSI MC4.1-1975, Dynamic Response Testing of Pro
cess Control Instrumentation, Instrument Society of America, Research
Triangle Park, NC, 1968.



Good results from the empirical method depend on proper engineering practices in
experimental design and results analysis. The engineer must always cross-check the
empirical model against the possible models based on physical principles.

201

Questions

QUESTIONS
6.1. An experiment has been performed on a fired heater (furnace). The fuel

valve was opened an additional increment of 2 percent in a step, giving
the resulting temperature response in Figure Q6.1. Determine the model
parameters using both process reaction curve methods and estimate the in
accuracies in the parameter values due to the data and calculation methods.

6.2. Data has been collected from a chemical reactor. The inlet concentration
was the only input variable that changed when the data was collected. The
input and output data is given in Table Q6.2.

TABLE Q6.2

Time
(min)

Input
( % o p e n )

O u t p u t
(°C)

T i m e
(min)

I n p u t
( % o p e n )

O u t p u t
(°C)

T i m e
(min)

I n p u t
(% open)

O u t p u t
(°C)

0 30 69.65 36 38 70.22 72 38 75.27
4 30 69.7 40 38 71.32 76 38 75.97
8 30 70.41 44 38 72.33 80 38 76.30
12 30 70.28 48 38 72.92 84 38 76.30
16 30 69.55 52 38 73.45 88 38 75.51
20 30 70.32 56 38 74.09 92 38 74.86
24 38 69.97 60 38 75.00 96 38 75.86
28 38 69.96 64 38 75.25 100 38 76.20
32 38 69.68 68 38 74.78 104 38 76.0
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FIGURE Q6.3

(a) Use the statistical identification method to estimate parameters in a
first-order-with-dead-time model.

ib) Determine whether the model structure is adequate for this data,
(c) Estimate the inaccuracies in the parameter values due to the data and

calculation method.
You may use a spreadsheet or statistical computer program. Note that the
number of data points is smaller than desired for good estimation; this is
solely to reduce the effort of typing the data into your program.

6.3. id) The chemical reactor system in Figure Q6.3 is to be modelled. The
relationship between the steam valve on the preheat exchanger and the
outlet concentration is to be determined. Develop a complete experi
mental plan for a process reaction curve experiment. Include in your
plan all actions, variables to be recorded or monitored, and any a priori
information required from the plant operating personnel.

ib) Repeat the discussion for the experiment to model the effect of the
flow of the reboiler heating medium on the distillate composition for
the distillation tower in Figure 5.18.
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6.4. Several experiments were performed on the chemical reactor shown in
Figure Q6.3. In each experiment, the heat exchanger valve was changed and
the reactor outlet temperature T4 was recorded. The dynamic data are given
in Figure Q6.4a through d. Discuss the results of each experiment, noting
any deficiencies and stating whether the data can be used for estimation
and if so, which estimation method(s)—process reaction curve, statistical,
or both—could be used.

6.5. Individual experiments have been performed on the process in Figure Q6.3.
The following transfer function models were determined from these exper
iments:

T3js) _ 0.55g-°-5* T4js) _ 3Ae~2As
T2is) ~ 2s + 1 his) ~ 2.1s + 1

id) What are the units of the gains and do they make sense? Is the reaction
exothermic or endothermic?

ib) Determine an approximate first-order-with-dead-time transfer function
model for T$(s)f T2(s).

(c) With better planning, could the model requested in (b) have been de
termined directly from the experimental data used to determine the
models given in the problem statement?

6.6. This question addresses dynamics of the mixing process in Figure Q6.6a,
which has a mixing point, a pipe, and three identical, well-mixed tanks.
Some information about the process follows.
(i) The flow of pure component A is linear with the valve % open; Fa =

KAv.
(ii) The flow of pure component A is very small compared with the flow

of B; Fa <$C Fr. Also, no component A exists in the B stream,
(iii) Delays in the pipes designated by single lines are all negligible,
(iv) The two materials have the same density, and xa is the volume percent

(or weight %).
(v) Fq is not influenced by the valve opening.

(a) An experimental process reaction curve is given in Figure Q6.6b for a
step change in the valve of +5% at time = 7.5 minutes.
(i) Discuss the good and poor aspects of this experimental data that

affect its usefulness for empirical modelling,
(ii) Determine the model parameters for a model between the valve

and the concentration in the third tank.
(b) In this question, you are to model the physical process and determine

whether the response in Figure Q6.6b is possible, i.e., consistent with
the fundamental model you derive.

(i) Develop the time-domain models for each process element in
linear (or linearized) form in deviation variables.

(ii) Take the Laplace transform of each model and combine into an
overall transfer function between v'(s) and x'A3is).

(iii) Compare the model with the data and conclude whether the fun
damental model and data are or are not consistent. You must
provide an explanation!
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FIGURE Q6.6

id) Mixing, delay, and series reactors; ib) process reaction curve.

6.7. The difference equation for a first-order system was derived from the con
tinuous differential equation in Section 6.4 by assuming that the input was
constant over the sample period At. An alternative approach would be to
approximate the derivative(s) by finite differences. Apply the finite differ
ence approach to a first-order and a second-order model. Discuss how you
would estimate the model parameters from a set of experimental data using
least squares.

6.8. Although such experiments are not common for a process, frequency re
sponse modelling is specified for some instrumentation (ISA, 1968). As
sume that the data in Table Q6.8 was determined by changing the fluid
temperature about a thermocouple and thermowell in a sinusoidal manner.
(Refer to Figure 4.9 for the meaning of frequency response.) Determine an
approximate model by answering the following:



id) Plot the amplitude ratio, and estimate the order of the model from this
plot.

ib) Estimate the steady-state gain and time constant(s) from the results in
{a).

ic) Plot the phase angle from the data and determine the value of the dead
time, if any, from the plot.
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TABLE Q6.8

Frequency Ampl i tude rat io Phase angle (°)

0.0001 1.0 - 1
0.001 0.99 - 7
0.005 0.85 - 3 2
0.010 0.62 -51
0.015 0.44 - 6 3
0 . 0 5 0 0 . 1 6 - 8 0

6.9. It is important to use our knowledge of the process to design experiments
and determine the range of applicability of the empirical models. Assume
that the dynamic models for the following processes have been identified,
for the input and output stated, using methods described in this chapter
about some nominal operating conditions. After the experiments, the nom
inal operating conditions change as defined in the following table by a
"substantial" amount, say 50 percent. You are to determine
id) whether the input-output dynamic behavior would change as a result

of the change in nominal conditions
ib) if so, which parameters would change and by how much
ic) whether the empirical procedure should be repeated to identify a model

at the new nominal operating conditions

Process
(all are worked examples)

Input
va r iab le

O u t p u t
va r iab le

Process variable that
changes for the new
nominal operat ing
cond i t i on

Example 3.1: Mixing tank Cao cA (Cao)j
Example 3.1: Mixing tank Cao CA F
Example 3.2: Isothermal CSTR Cao Ca T
Example 3.5: Isothermal CSTR Cao Ca (Cao)s
Section 5.3: Noninteracting mixing tanks Cao Ca (Cao)*
Section 5.3: Interacting levels Fo L 2 ( F 0 ) ,

6.10. Use Method II of the process reaction curve to evaluate empirical models
from the dynamic responses in Figure 5.17a. Explain why you can obtain
two models from one experiment.
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6.12. The graphical methods could be extended to other forcing functions. For
both first- and second-order systems with dead time, develop methods for
fitting parameters from an impulse response.

6.13. We will be using first-order-with-dead-time models often. Sketch an ideal
process that is exactly first-order with dead time. Derive the fundamen
tal model and relate the equipment and operating conditions to the model
parameters. Discuss how well this model approximates more complex pro
cesses.

6.14. Develop a method for testing whether the empirical data can be fitted using
equation (6.2). The method should involve comparing calculated values to
a straight-line model.

6.15. Both process reaction curve methods require that the process achieve a
steady state after the step input. For both methods, suggest modifications
that would relieve the requirement for a final steady state. Discuss the rela
tive accuracy of these modified methods to those presented in the chapter.
Could you apply your method to the first part of the transient response in
Figure 3.10c?

6.16. Often, more than one input to a process changes during an experiment. For
the process reaction curve and the statistical method:
id) If possible, show how models for two inputs could be determined from

such experiments. Clearly state the requirements of the experimental
design and calculations.

ib) Assume that the model between one of the inputs and the output is
known. Show how to fit the parameters for the remaining input.

6.17. For each of the processes and dynamic data, state whether the process
reaction curve, the statistical model fitting method, or both can be used.
Also, state the model form necessary to model the process adequately. The
systems are Examples 3.3,5.1, and Figure 5.5 (with n = 10).

6.18. The residual plot provides a visual display of goodness of fit. How could
you use the calculated residuals to test the hypothesis that the model has
provided a good fit? What could you do if the result of this test indicates
that the model is not adequate?

6.19. id) Experiments were performed to obtain the process reaction curves in
Figure 5.20a and b. How do you think that the results would change if
(1) The step magnitudes were halved? doubled?
(2) The step signs were inverted?
(3) Both steps were made simultaneously?

ib) Describe how the inventories (liquid levels) were controlled during the
experiments.

ic) Would the results change if the inventories were controlled differently?
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To this point we have studied the dynamic responses of various systems and learned
important relationships between process equipment and operating conditions and
dynamic responses. In this part, we make a major change in perspective: we change
from understanding the behavior of the system to altering its behavior to achieve
safe and profitable process performance. This new perspective is shown schemat
ically in Figure ni.l for a physical example given in Figure III.2. In discussing
control, we will use the terms input and output in a specific manner, with input
variables influencing the output variables as follows:

Input Process Output

Feedback

Here we see a difference in terminology between modelling and feedback control.
In feedback control the input is the cause and the output is the effect, and there
is no requirement that the input or output variables be associated with a stream
passing through the boundary defining the system. For example, the input can be
a flow and the output can be the liquid level in the system.

There is a cause/effect relationship in the process that cannot be directly in
verted. In the process industries we usually desire to maintain selected output vari
ables, such as pressure, temperature, or composition, at specified values. Therefore,
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Schematic of feedback system.
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FIGURE 111.2
Process example of feedback.

feedback is applied to achieve the desired output by adjusting an input. This ex
plains why the feedback control algorithm is sometimes described as the inverse
of the process relationship.

First, the engineer selects the measured outlet variable whose behavior is
specified; it is called the controlled variable and typically has a substantial effect
on the process performance. In the example, the temperature of the stream leaving
the stirred tank is the controlled variable. Many other output variables exist, such
as the outlet flow rate and the exit heating oil temperature. Next, the variables that
have been referred to as process inputs are divided into two categories: manipulated
and disturbance variables. A manipulated variable is selected by the engineer for
adjustment in a control strategy to achieve the desired performance in the controlled
variable. In the physical example, the valve position in the heating oil pipe is
the manipulated variable, since opening the valve increases the flow of heating
oil and results in greater heat transfer to the fluid in the tank. All other input
variables that influence the controlled variable are termed disturbances. Examples
of disturbances are the inlet flow rate and inlet temperature.

To achieve the desired behavior of the output variable, an additional compo
nent must be added to the system. Here we consider feedback control, which was
introduced in Chapter 1 as a method for adjusting an input variable based on a
measured output variable. In the simplest case, the feedback system could involve
a person who observes a thermometer reading and adjusts the heating valve by
hand. Alternatively, feedback control can be automated by providing a computing
device with an algorithm for adjusting the valve based on measured temperature
values. To automate the feedback, the sensor must be designed to communicate
with the computing device, and the final element must respond to the command
from the computing device.

Among the most important decisions made by the engineer are the selec
tion of controlled and manipulated variables and the algorithm and parameters
in the calculation. In this part, the greatest emphasis is placed on understanding
the feedback principles through the analysis of particular feedback control algo-
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is introduced here and expanded in later chapters. While this part emphasizes the Mm*mummikmiA
control algorithm, one must never lose sight of the fact that the process is part part in
of the control system! Since chemical engineers are responsible for designing the Feedback Control
process equipment and determining operating conditions to achieve good process
performance, the material in this part provides qualitative and quantitative methods
for evaluating the likely dynamic performance of process designs under feedback
control.
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7.1 n INTRODUCTION
Now that we are prepared with a good understanding of process dynamics, we
can begin to address the technology for automatic process control. The goals of
process control—safety, environmental protection, equipment protection, smooth
operation, quality control, and profit—are achieved by maintaining selected plant
variables as close as possible to their best conditions. The variability of variables
about their best values can be reduced by adjusting selected input variables using
feedback control principles. As explained in Chapter 1, feedback makes use of
an output of a system in deciding the way to influence an input to the system,
and the technology presented in this part of the book explains how to employ
feedback. This chapter builds on the chapters in Part I of the book, which were
more qualitative and descriptive, by establishing the key quantitative aspects of a
control system.

It is important to emphasize that we are dealing with the control system, which
involves the process and instrumentation as well as the control calculations. Thus,
this chapter begins with a section on the feedback loop in which all elements are
discussed. Then, reasons for control are reviewed, and because engineers should
always be prepared to define measures of the effectiveness of their efforts, quan
titative measures of control performance are defined for key disturbances; these
measures are used throughout the remainder of the book. Because the process
usually has several input and output variables, initial criteria are given for select
ing the variables for a control loop. Finally, several general approaches to feedback
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control, ranging from manual to automated methods, are discussed, along with
guidelines for when to employ each approach.

7.2 Q PROCESS AND INSTRUMENT ELEMENTS
OF THE FEEDBACK LOOP
All elements of the feedback loop can affect control performance. In this section,
the process and instrument elements of a typical loop, excluding the control cal
culation, are introduced, and some quantitative information on their dynamics is
given. This analysis provides a means for determining which elements of the loop
introduce significant dynamics and when the dynamics of some fast elements can
usually be considered negligible.

A typical feedback control loop is shown in Figure 7.1. This discussion will
address each element of the loop, beginning with the signal that is sent to the
process equipment. This signal could be determined using feedback principles
by a person or automatically by a computing device. Some key features of each
element in the control loop are summarized in Table 7.1.

The feedback signal in Figure 7.1 has a range usually expressed as 0 to 100%,
whether determined by a controller or set manually by a person. When the signal is
transmitted electronically, it usually is converted to a range of 4 to 20 milliamperes
(mA) and can be transmitted long distances, certainly over one mile. When the
signal is transmitted peumatically, it has a range of 3 to 15 psig and can only be
transmitted over a shorter distance, usually limited to about 400 meters unless
special signal reinforcement is provided. Pneumatic transmission would normally
be used only when the controller is performing its calculations pneumatically,
which is not common with modern equipment. Naturally, the electronic signal

Feedback
Display

Compressed
air

200-300'C
0-100% - — ^

4-20mA
4-20mA

3-15 psi

Valve Process

Thermocouple
in thermowell

FIGURE 7.1

Process and instrument elements in a typical control loop.
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Key features of control loop elements, excluding the process

Loop element* Function typical range
Typical dynamic
response, t63% ••
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Controller output

Transmission

Signal conversion

Final control element

Sensor

Initiate signal at a
remote location
intended for the final
element
Carry signal from
controller to final
element and from the
sensor to the controller
Change transmission
signal to one
compatible with final
element
Implement desired
change in process
Measure controlled
variable

Operator/controller use
0-100%

Pneumatic: 3-15 psig Pneumatic: 1-5 s

Electronic: 4-20
milliamp (mA)
Electronic to pneumatic:
4-20 mA to 3-15 psig
Sensor to electronic:
mV to 4-20 mA
Valve: 0-100% open

Scale selected to give
good accuracy, e.g.,
200-300°C

Electronic:
Instantaneous
0.5-1.0 s

1-4 s

Typically from a few
seconds to several
minutes

The terms input and output are with respect to a controller.
**Time for output to reach 63% after step input.
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transmission is essentially instantaneous; the pneumatic signal requires several
seconds for transmission. Note that the standard signal ranges (e.g., 4 to 20 mA)
are very important so that equipment manufactured by different suppliers can be
interchanged.

At the process unit, the output signal is used to adjust the final control element:
the equipment that is manipulated by the control system. The final control element
in the example, as in over 90 percent of process control applications, is a valve. The
valve percent opening could be set by an electrical motor, but this is not usually
done because of the danger of explosion with the high-amperage power supply a
motor would require. The alternative power supply typically used is compressed air.
The signal is converted from electrical to pneumatic; 3 to 15 psig is the standard
range of the pneumatic signal. The conversion is relatively accurate and rapid,
as indicated by the entry for this element in Table 7.1. The pneumatic signal is
transmitted a short distance to the control valve, which is specially designed to
adjust its percent opening based on the pneumatic signal. Control valves respond
relatively quickly, with typical time constants ranging from 1 to 4 sec.

The general principles of a control valve are demonstrated in Figure 7.2.
The process fluid flows through the opening in the valve, with the amount open
(or resistance to flow) determined by the valve stem position. The valve stem

Air pressure

Diaphragm

Valve plug and seat
FIGURE 7.2

Schematic of control valve.
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The Feedback Loop the diaphragm in Figure 7.2 would be deformed upward because of the greater

force from the spring, and the valve stem would be raised, resulting in the greatest
opening for flow. For a maximum signal (15 psig), the diaphragm in Figure 7.2
would be deformed downward by the greater force from the air pressure, and
the stem would be lowered, resulting in the minimum opening for flow. Other
arrangements are possible, and selection criteria are presented in Chapter 12.

After the final control element has been adjusted, the process responds to the
change. The process dynamics vary greatly for the wide range of equipment in the
process industries, with typical dead times and time constants ranging from a few
seconds (or faster) to hours. When the process is by far the slowest element in the
control loop, the dynamics of the other elements are negligible. This situation is
common, but important exceptions occur, as demonstrated in Example 7.1.

The sensor responds to the change in plant conditions, preferably indicating
the value of a single process variable, unaffected by all other variables. Usually,
the sensor is not in direct contact with the potentially corrosive process materi
als; therefore, the protective equipment or sample system must be included in the
dynamic response. For example, a thin thermocouple wire responds quickly to a
change in temperature, but the metal sleeve around the thermocouple, the ther-
mowell, can have a time constant of 5 to 20 sec. Most sensor systems for flow,
pressure, and level have time constants of a few seconds. Analyzers that perform
complex physicochemical analyses can have much slower responses, on the order
of 5 to 30 minutes or longer; they may be discrete, meaning that a new analyzer
result becomes available periodically, with no new information between results.
Physical principles and performance of sensors are diverse, and the reader is en
couraged to refer to information in the additional resources from Chapter 1 on
sensors for further details.

The sensor signal is transmitted to the controller, which we are considering to
be located in a remote control room. The transmission could be pneumatic (3 to
15 psig) or electrical (4 to 20 mA). The controller receives the signal and performs
its control calculation. The controller can be an analog system; for example, an
electronic analog controller consists of an electrical circuit that obeys the same
equations as the desired control calculations (Hougen, 1972). For the next few
chapters, we assume that the controller is a continuous electronic controller that
performs its calculations instantaneously, and we will see in Chapter 11 that es
sentially the same results can be obtained by a very fast digital computer, as is
used in most modern control equipment.

EXAMPLE 7.1.
The dynamic responses of two process and instrumentation systems similar to Fig
ure 7.1, without the controller, are evaluated in this exercise. The system involves
electronic transmission, a pneumatic valve, a first-order-with-dead-time process,
and a thermocouple in a thermowell. The dynamics of the individual elements are
given in Table 7.2 with the time in seconds for two different systems, A and B. The
dynamics of the entire loop are to be determined. The question could be stated,
"How does a unit step change in the manual output affect the displayed variable,
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Element Uni ts* Case A Case B

Manual station mA/% output 0.16 0.16
Transmission 1.0 1.0
Signal conversion psi/mA 0.75/(0.5*+ 1) 0.75/(0.5* 4-1)
Final element %open/psi 8.33/(1.5*+ 1) 8.33/(1.5*4-1)
Process °C/psi 1.84e-107(3* + l) 1.84*-,007(300*4-1)
Sensor mV/°C 0.11/(10*4-1) 0.11/(10*4-1)
Signal conversion mA/mV 1.48/(0.51*4-1) 1.48/(0.51*4-1)
Transmission 1.0 1.0
Display °C/mA 6.25/(1.0*4-1) 6.25/(1.0*4-1)

*Time is in seconds.
l*j8W!»ISflIBtJKKMHBI^^

Process and
Instrument Elements
of the Feedback Loop

which is also the variable available for control, in the control house?" Note that the
two systems are identical except for the process transfer functions.

The physical system in this problem and shown in Figure 7.1 is recognized
as a series of noninteracting systems. Therefore, equation (5.40) can be applied
to determine the transfer function of the overall noninteracting series system. The
result for Case B is

Yjs)
Xis)

n-\
= f]G„_,(*)

1=0
-100sYjs) _ (0.16)(1.0)(0.75)(8.33)(1.84)(0.11)(1.48)(1.0)(6.25)g

Xis) ~ (0.5* 4- 1)(1.55 4- 0(300* 4- 0(10* 4- 0(0.51* 4- 0(* 4- 0
Before the simulation results are presented for this example, it is worthwhile

performing an approximate analysis, using the simple approximation introduced
in Chapter 5 for series processes. The overall gains and approximate 63 percent
times for both systems that relate the manual signal to the display are shown in
the following table:

Process gain KP = Y\ K,
Time to 63% ^ E(r;4-0()

Case A Case B

1 . 8 4 1 . 8 4
% 17.5 % 413.5

'C/(% controller output)
seconds

The two cases have been simulated, and the results are plotted in Figure 7.3a and
o. The results of the approximate analysis compare favorably with the simulations.
Note that for system A, which involves a fast process, the sensor and final element
contribute significant dynamics, resulting in a substantial difference between the
true process temperature and the displayed value of the temperature, which would
be used for feedback control. In system B the process dynamics are much slower,

2000

FIGURE 7.3

Transient response for Example 7.1 with
a 1% step input change at time = 0.

(a) Case A; ib) Case B.



216

CHAPTER 7
The Feedback Loop

and the dynamic effects of all other elements in the loop are negligible. This is a
direct consequence of the time-domain solution to the model of this process for a
step (1/*) input, which has the form

Y\t) = C, 4- C2e~t/T* + C3e-"« + • • •
Clearly, a slow "mode" due to one especially long time constant will dominate
the dynamic response, with the faster elements essentially at quasi-steady state.
One would expect that a dynamic analysis that considered the process alone
for control design would not be adequate for Case A but would be adequate for
Case B.

HWWW#%8g

It is worth recalling that the empirical methods for determining the "process"
dynamics presented in Chapter 6 involve changes to the manipulated signal and
monitoring the response of the sensor signal as reported to the control system. Thus,
the resulting model includes all elements in the loop, including instrumentation and
transmission. Since the experiments usually employ the same instrumentation used
subsequently for implementing the control system, the dynamic model identified
is between the controller output and input—in other words, the system "seen" by
the controller. This seems like the appropriate model for use in design control
systems, and that intuition will be supported by later analysis.

FIGURE 7.4

Continuous-flow chemical reactor
example for selecting control loop
variables.

7.3 eh SELECTING CONTROLLED AND MANIPULATED
VARIABLES

Feedback control provides a connection between the controlled and manipulated
variables. Perhaps the most important decision in designing a feedback control sys
tem involves the selection of variables for measurement and manipulation. Some
initial criteria are introduced in this section and applied to the continuous-flow
chemical reactor in Figure 7.4. As more details of feedback control are presented,
further criteria will be presented throughout Part III for a single-loop controller.

We begin by considering the controlled variable, which is selected so that the
feedback control system can achieve an important control objective. The seven
categories of control objectives were introduced in Chapter 2 and are repeated
below.

Control objective Process variable Sensor
1. Safety
2. Environmental protection
3. Equipment protection
4. Smooth plant operation

and production rate
5. Product quality —▶-

6. Profit optimization
7. Monitoring and diagnosis

Concentration of —▶
reactant A in the effluent

Analyzer in reactor
effluent measuring
the mole % A
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objective. Here, we consider the product quality objective and decide that the most laiiiftiMiii
important process variable associated with product quality is the concentration of Selecting Controlled
reactant A in the reactor effluent. The process variable must be measured in real and Manipulated
time to make it available to the computer, and the natural selection for the sensor Variables
would be an analyzer in the effluent stream. In practice, an onstream analyzer
might not exist or might be too costly; for the next few chapters we will assume
that a sensor is available to measure the key process variable and defer discussions
of using substitute (inferential) variables, which are more easily measured, until
later chapters.

The second key decision is the selection of the manipulated variable, because
we must adjust some process variable to affect the process. First, we identify
all input variables that influence the measured variable. The input variables are
summarized below for the reactor in Figure 7.4.

Input variables that affect Selected adjustable flow Manipulated valve
the measured variable

Disturbances:
Feed temperature
Solvent flow rate
Feed composition, before mix
Coolant inlet temperature

Adjustable:
F l o w o f p u r e A ▶ • F l o w o f p u r e A ▶ v A
Flow of coolant

Six important input variables are identified and separated into two categories:
those that cannot be adjusted (disturbances) and those that can be adjusted. In
general, the disturbance variables change due to changes in other plant units and
in the environment outside the plant, and the control system should compensate
for these disturbances. Disturbances cannot be used as manipulated variables.

Only adjustable variables can be candidates for selection as a manipulated
variable. To be an adjustable flow, a valve must influence the flow. (In general,
manipulated variables include adjustable motor speeds and heater power, and so
forth, but for the current discussion, we restrict the discussion to valves.) Criteria
for selecting an adjustable variable include

1. Causal relationship between the valve and controlled variable (required)
2. Automated valve to influence the selected flow (required)
3. Fast speed of response (desired)
4. Ability to compensate for large disturbances (desired)
5. Ability to adjust the manipulated variable rapidly and with little upset to the

remainder of the plant (desired)

As a method for ensuring that the manipulated variable has a causal relationship
on the controlled variable, the dynamic model between the valve and controlled
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variable must have a nonzero value, i.e., ACa/AFA = Kp ^ 0. An important
aspect of chemical plant design involves providing streams which accommodate
the five criteria above; examples are cooling water, steam, and fuel gas, which are
distributed and made available throughout a plant.

Two potential adjustable flows exist in this example, and based on the infor
mation available, either is acceptable. For the present, we will arbitrarily select
the valve affecting the flow of pure component A, uA. After we have analyzed the
effects of feedback dynamics more thoroughly, we will reconsider this selection
in Example 13.12.

In conclusion, the feedback system for product quality control connects the effluent
composition analyzer to the valve in the pure A line.

The next section discusses desirable features of dynamic behavior for a control
system and how these features can be characterized quantitatively. The calculations
performed by the controller to determine the valve opening are presented in the
next chapter.

7.4 Q CONTROL PERFORMANCE MEASURES FOR COMMON
INPUT CHANGES
The purpose of the feedback control loop is to maintain a small deviation between
the controlled variable and the set point by adjusting the manipulated variable. In
this section, the two general types of external input changes are presented, and
quantitative control performance measures are presented for each.

•*A0

hdb' *A1

& ■
c£> *A2

hdro"
*A3

^

FIGURE 7.5

Example feedback control system,
three-tank mixing process.

Set Point Input Changes
The first type of input change involves changes to the set point: the desired value
for the operating variable, such as product composition. In many plants the set
points remain constant for a long time. In other plants the values may be changed
periodically; for example, in a batch operation the temperature may need to be
changed during the batch.

Control performance depends on the goals of the process operation. Let us here
discuss some general control performance measures for a change in the controller
set point on the three-tank mixing process in Figure 7.5. In this process, two
streams, A and B, are mixed in three series tanks, and the output concentration
of component A is controlled by manipulating the flow of stream A. Here, we
consider step changes to the set point; these changes represent the situation in
which the plant operator occasionally changes the value and allows considerable
time for the control system to respond. A typical dynamic response is given in
Figure 7.6. This is somewhat idealized, because there is no measurement noise or
effect of disturbances, but these effects will be considered later. Several facets of
the dynamic response are considered in evaluating the control performance.

OFFSET. Offset is a difference between final, steady-state values of the set point
and of the controlled variable. In most cases, a zero steady-state offset is highly
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Typical transient response of a feedback control
system to a step set point change.

desired, because the control system should achieve the desired value, at least after
a very long time.

RISE TIME. This (Tr) is the time from the step change in the set point until
the controlled variable ./to reaches the new set point. A short rise time is usually
desired.

INTEGRAL ERROR MEASURES. These indicate the cumulative deviation
of the controlled variable from its set point during the transient response. Several
such measures are used:

Integral of the absolute value of the error (IAE):
/•OO

IAE= / |SP(/)-CV(0|df
Jo

Integral of square of the error (ISE):
/•OO

ISE = / [SP(r) - CW(t)fdt
Jo

Integral of product of time and the absolute value of error (ITAE):

ITAE
/•OO

= / t \S?i t ) -CVi t ) \dt
Jo

Integral of the error (DE):

IE
./o

[SP(0 - CWit)]dt

(7.1)

(7.2)

(7.3)

(7.4)

The IAE is an easy value to analyze visually, because it is the sum of areas above
and below the set point. It is an appropriate measure of control performance when
the effect on control performance is linear with the deviation magnitude. The ISE
is appropriate when large deviations cause greater performance degradation than
small deviations. The ITAE penalizes deviations that endure for a long time. Note
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DECAY RATIO (B / A). The decay ratio is the ratio of neighboring peaks in an
underdamped controlled-variable response. Usually, periodic behavior with large
amplitudes is avoided in process variables; therefore, a small decay ratio is usually
desired, and an overdamped response is sometimes desired.

THE PERIOD OF OSCILLATION (P). Period of oscillation depends on the
process dynamics and is an important characteristic of the closed-loop response.
It is not specified as a control performance goal.

SETTLING TIME. Settling time is the time the system takes to attain a "nearly
constant" value, usually ±5 percent of its final value. This measure is related to
the rise time and decay ratio. A short settling time is usually favored.

MANIPULATED-VARIABLE OVERSHOOT (C/D). This quantity is of con
cern because the manipulated variable is also a process variable that influences per
formance. There are often reasons to prevent large variations in the manipulated
variable. Some large manipulations can cause long-term degradation in equipment
performance; an example is the fuel flow to a furnace or boiler, where frequent,
large manipulations can cause undue thermal stresses. In other cases manipulations
can disturb an integrated process, as when the manipulated stream is supplied by
another process. On the other hand, some manipulated variables can be adjusted
without concern, such as cooling water flow. We will use the overshoot of the
manipulated variable as an indication of how aggressively it has been adjusted.
The overshoot is the maximum amount that the manipulated variable exceeds its
final steady-state value and is usually expressed as a percent of the change in ma
nipulated variable from its initial to its final value. Some overshoot is acceptable
in many cases; little or no overshoot may be the best policy in some cases.

Disturbance Input Changes
The second type of change to the closed-loop system involves variations in uncon
trolled inputs to the process. These variables, usually termed disturbances, would
cause a large, sustained deviation of the controlled variable from its set point if
corrective action were not taken. The way the input disturbance variables vary with
time has a great effect on the performance of the control system. Therefore, we
must be able to characterize the disturbances by means that (1) represent realis
tic plant situations and (2) can be used in control design methods. Let us discuss
three idealized disturbances and see how they affect the example mixing process
in Figure 7.5. Several facets of the dynamic responses are considered in evaluating
the control performance for each disturbance.

STEP DISTURBANCE. Often, an important disturbance occurs infrequently
and in a sudden manner. The causes of such disturbances are usually changes to
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FIGURE 7.7
Transient response of the example process in Figure 7.5 in response to a step disturbance (a) without

feedback control; ib) with feedback control.

other parts of the plant that influence the process being considered. An example
of a step upset in Figure 7.5 would be the inlet concentration of stream B. The
responses of the outlet concentration, without and with control, to this disturbance
are given in Figure 1.1a and b. We will often consider dynamic responses similar to
those in Figure 7.7 when evaluating ways to achieve good control that minimizes
the effects of step disturbances. The explanations for the measures are the same
as for set point changes except for rise time, which is not applicable, and for
the following measure, which has meaning only for disturbance responses and is
shown in Figure 1.1b:

MAXIMUM DEVIATION. The maximum deviation of the controlled variable
from the set point is an important measure of the process degradation experienced
due to the disturbance; for example, the deviation in pressure must remain below
a specified value. Usually, a small value is desirable so that the process variable
remains close to its set point.

STOCHASTIC INPUTS. As we recognize from our experiences in laboratories
and plants, a process typically experiences a continual stream of small and large
disturbances, so that the process is never at an exact steady state. A process that
is subjected to such seemingly random upsets is termed a stochastic system. The
response of the example process to stochastic upsets in all flows and concentrations
is given in Figure 7.8a and b without and with control.

The major control performance measure is the variance, cr£w, or standard
deviation, ocv, of the controlled variable, which is defined as follows for a sample
of n data points:

ctcv =
N

—Lyvcv-cv,);n — 1 ~1=1
(7.5)
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FIGURE 7.8

Transient response of the example
process (a) without and ib) with
feedback control to a stochastic

disturbance.
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Transient response of the example
system (a) without and ib) with control
to a sine disturbance.

= cv=i£cv, (7.6)
/=i

This variable is closely related to the ISE performance measure for step distur
bances. The relationship depends on the approximations that (1) the mean can be
replaced with the set point, which is normally valid for closed-loop data, and (2)
the number of points is large.

-L- VVCV - CV,)2 « I f (SP - CV)2*7
n - l f f T J o

(7.7)

Since the goal is usually to maintain controlled variables close to their set points, a
small value of the variance is desired. In addition, the variance of the manipulated
variable is often of interest, because too large a variance could cause long-term
damage to equipment (fuel to a furnace) or cause upsets in plant sections provid
ing the manipulated stream (steam-generating boilers). We will not be analyzing
stochastic systems in our design methods, but we will occasionally confirm that
our designs perform well with example stochastic disturbances by simulation case
studies. As you may expect, the mathematical analysis of these statistical distur
bances is challenging and requires methods beyond the scope of this book. How
ever, many practical and useful methods are available and should be considered
by the advanced student (MacGregor, 1988; Cryor, 1986).

SINE INPUTS. An important aspect of stochastic systems in plants is that the
disturbances can be thought of as the sum of many sine waves with different
amplitudes and frequencies. In many cases the disturbance is composed predom
inantly of one or a few sine waves. Therefore, the behavior of the control system
in response to sine inputs is of great practical importance, because through this
analysis we learn how the frequency of the disturbances influences the control per
formance. The responses of the example system to a sine disturbance in the inlet
concentration of stream B with and without control are given in Figure 7.9a and
b. Control performance is measured by the amplitude of the output sine, which is
often expressed as the ratio of the output to input sine amplitudes. Again, a small
output amplitude is desired. We shall use the response to sine disturbances often
in analyzing control systems, using the frequency response calculation methods
introduced in Chapter 4.

In summary, we will be considering two sources of external input change:
set point changes and disturbances in input variables. Usually, we will consider
the time functions of these disturbances as step and sine changes, because they
are relatively easy to analyze and yield useful insights. The measures of control
performance for each disturbance-function combination were discussed in this
section.

It is important to emphasize two aspects of control performance. First, ideally
good performance with respect to all measures is usually not possible. For example,
it seems unreasonable to expect to achieve very fast response of the controlled
variable through very slow adjustments in the manipulated variable. Therefore,
control design almost always involves compromise. This raises the second aspect:
that control performance must be defined with respect to the process operating
objectives of a specific process or plant. It is not possible to define one set of
universally applicable control performance goals for all chemical reactors or all



distillation towers. Guidance on setting goals will be provided throughout the book
via many examples, with emphasis on the most common goals.

Feedback reduces the variability of the controlled variable at the expense of increased
variability of the manipulated variable.
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Finally, the responses to all changes have demonstrated by example an impor
tant point that will be proved in later chapters. The application of feedback control
does not eliminate variability in the process plant; in fact, the "total variability"
of the controlled and manipulated variables may not be changed. This conclu
sion follows from the observation that a manipulated variable must be adjusted
to reduce the variability in the output controlled variable. If these variables are
selected properly, the performance of the plant, as measured by safety, product
quality, and so forth, improves. The availability of manipulated variables depends
on a skillful process design that provides numerous utility systems, such as cool
ing water, steam, and fuel, which can be adjusted rapidly with little impact on the
performance of the plant.
EXAMPLE 7.2.
One of the example processes analyzed several times in Part III is the three-tank
mixing process in Figure 7.5. This process is selected for its simplicity, which
enables us to determine many characteristics of the feedback system, although
it is complex enough to exhibit realistic behavior. The process design and model
are introduced here; the linearized model is derived; and the selection of variables
is discussed.

Goal. The outlet concentration is to be maintained close to its set point. Derive the
nonlinear and linearized models and select controlled and manipulated variables.

Assumptions.
1. All tanks are well mixed.
2. Dynamics of the valve and sensor are negligible.
3. No transportation delays (dead times) exist.
4. A linear relationship exists between the valve opening and the flow of com

ponent A.
5. Densities of components are equal.

Data.
V = volume of each tank = 35 m3

FB = flow rate of stream B = 6.9 m3 min
xm = concentration of A in all tanks and outlet flow = 3% A
FA = flow rate of stream A = 0.14 m3/min

(xa)b = concentration of stream B = 1% A
(jca)a = concentration of stream A = 100% A

v = valve position = 50% open

(base case)
(base case)
(base case)

(base case)

Thus, the product flow rate is essentially the flow of stream B\ that is, FB » FA.
Formulation. Since the variable to be controlled is the concentration leaving the
last tank, component material balances on the mixing point and each mixing tank
are given below.

VA0

m VA1

f c t*r lA2

t*ri
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*A0
FbJXa)b + FA(xA)A

FB + FA

dxAj

dt
= (Fa + FB)ixM-\ - xM) for / = 1,3

(7.8)

(7.9)

Note that the differential equations are nonlinear, because the products of flow
and concentrations appear. (If you need a refresher, see Section 3.4 for the defini
tion of linearity.) We will linearize these equations and determine how the process
gains and time constants depend on the equipment and operating variables. The
linearized models are now summarized, with the subscripts representing the initial
steady state and the prime representing deviation variables.

m3/min
FA = Kvv'

cao —

Kv = 0.0028
%open

{(*A/0.v — (*ab)s)

dt
A , FAs + FbsH - x

(FBx + FAsY

FAs + Fbs

n
At v A i - l for / = 1,3

(7.10)

(7.ii;

(7.12)V ™ V
The total flow is assumed to be approximately constant. By taking the Laplace
transforms of these equations and performing standard algebraic manipulations,
the feedback process relating the valve (v) to concentration (xA3) transfer function
can be derived:

Feedback: *A3(S)

v(s)
= Gp(s) = Kr

(zs + l)3

with Kp — Kv\
Fbs (*aa — xab)s

(FAs + Fbs)
= 0.039 %A

% opening

(7.13)

(7.14)

T = = 5.0 min (7.15)Fbs + FAs
It can be seen that the gain and all time constants are functions of the volumes and
total flow. These expressions give an indication, which will be used in later chap
ters, of how the dynamic response changes as a result of changes in operating
conditions.

The closed-loop block diagram also includes the disturbance transfer function
Gd(s): the effect of the disturbance if there were no control. This can be derived
by assuming that the flows are all constant and that the important input variable
that changes is (xA)B. The resulting model is

FBM:F a + F b ] < a b * x ' a b ( 7 - 1 6 )
This equation can be combined with equation (7.12) to give the disturbance trans
fer function,

Disturbance: * A 3 f r )

xab(s)
= Gd(s) = Kd 1.0

(zs + l)3 (zs + l)3 (7.17)

Notice that two models have been developed for the same physical system,
and they both relate an external input variable to the dependent output variable. The

CC
Stamp



model Gp(s) relates the manipulated valve to the concentration in the third tank.
This provides the dynamic response for the feedback control system; as we shall
see, favorable performance requires a large gain magnitude and fast dynamics. The
model G(t(s) relates the inlet concentration disturbance to the concentration in the
third tank. This provides the disturbance response without control; favorable per
formance requires a small gain magnitude and slow dynamics. The reader should
recognize and understand the difference between the two models.

The selection of the controlled variable is summarized in the following
analysis.
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Control objective P r o c e s s v a r i a b l e S e n s o r

1. Safety
2. Environmental

protection
3. Equipment protection
4. Smooth plant operation

and production rate
5. Product quality —▶■ Concentration of reactant —▶» Analyzer in reactor effluent

A in the third tank measuring the mole % A
6. Profit optimization
7. Monitoring and

diagnosis
M S » « 8 S S » J i l ^

The reader will notice that the concentration of A in the upstream tanks has a
direct influence on the third tank and might wonder if measuring concentration
in these tanks might be useful. Feedback does not require other measurements,
but additional measurements can improve the dynamic behavior, as explained in
Chapters 14 (cascade) and 15 (feedforward).

The selection of the manipulated variable is straightforward, because only one
valve exists. However, the analysis is presented here to complete the example for
the reader.

Input variables that affect
the measured variable

Selected adjustable
fl o w Manipulated valve

Disturbances:
Solvent flow rate
Feed composition, (*a)b
Composition of "pure A"
stream

Adjustable:
Flow of pure A ▶- Flow of pure A vA

W M M t e & s a M M ^ ^

The selection criteria presented in Section 7.3 are reviewed in the following
steps.
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1. Causal relationship (required). Yes, because AXa3/Aua = Kp = 0.039 ^ 0.
2. Valve to influence the selected flow (required). Yes, because a valve exists in

the pure A pipe.
3. Fast speed of response (desired). We cannot evaluate this with the methods

presented to this point in the book, but we will be evaluating this factor in
Chapters 9 to 13.

4. Ability to compensate for large disturbances (desired). Yes, the reader can
confirm that the exit concentration of 3 percent can be achieved for solvent
flow rates of 0-13.8 m3/min. If the solvent flow is larger, the valve will be 100
percent open and the effluent concentration will decrease below 3 percent.

5. Ability to adjust the manipulated variable rapidly and with little upset to the
remainder for the plant (desired). Further information is required to evaluate
this factor. We will assume that the pure A is taken from a large storage tank,
so that changes in the flow of A do not disturb other parts of the plant.

Because the three-tank mixing process is used in many examples in the remainder
of the book, readers are strongly encouraged to fully understand the modelling and
variable selection in Example 7.2.

lA0m VA1

$ " iM* A3

AC)

EXAMPLE 7.3.
Assume that the feedback control has been implemented on the mixing tanks
problem with the goal of maintaining the outlet concentration near 3.0 percent. As
an example of the control performance measures, the previous example is con
trolled using feedback principles. The disturbance was a step change in the feed
concentration, xAB, of magnitude +1.0 at time = 20. A feedback control algorithm
explained in the next chapter was applied to this process with two different sets of
adjustable parameters in Cases A and B, and the resulting control performance
is shown in Figure 7.10a and b and summarized as follows.

Measure Case A Case B

Offset from SP None None
IAE 7.9 30.5
ISE 2.1 12.8
IE -6.9 -30.5
CV maximum deviation 0.42 0.66
Decay ratio <.1 (Overdamped)
Period (min) 37 (Overdamped)
MV maximum overshoot 6.9/25 = 28% 0% (expressed as % of

steady-state change)

The controlled variable in Case A returns to its desired value relatively quickly,
as indicated by the performance measures based on the error. This response re
quires a more "aggressive" (i.e., faster) adjustment of the manipulated variable.
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FIGURE 7.10

Feedback responses for Example 7.3. (a) Case A;
(b) Case B.

The general trend in feedback control is to require fast adjustments in the manipu
lated variable to achieve rapid return to the desired value of the controlled variable.
One might be tempted to generally conclude that Case A provides better control
performance, but there are instances in which Case B would be preferred. The
final evaluation requires a more complete statement of control objectives.

Two important conclusions can be made based on Example 7.3.

1. The desired control performance must be matched to the process requirements.
2. Both the controlled and manipulated variables must be monitored in order to

evaluate the performance of a control system.
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placed in perspective.

No Control

Naturally, the easiest approach is to do nothing other than to hold all input variables
close to their design values. As we have seen, disturbances could result in large,
sustained deviations in important process variables. This approach could have se
rious effects on safety, product quality, and profit and is not generally acceptable
for important variables. However, a degrees-of-freedom analysis usually demon
strates that only a limited number of variables can be controlled simultaneously,
because of the small number of available manipulated variables. Therefore, the
engineer must select the most important variables to be controlled.

Manual Operation
When corrective action is taken periodically by operating personnel, the approach
is usually termed manual (or open-loop) operation. In manual operation, the mea
sured values of process variables are displayed to the operator, who has the ability
to manipulate the final control element (valve) by making an adjustment in the
control room to a signal that is transmitted to a valve, or, in a physically small
plant, by adjusting the valve position by hand.

This approach is not always bad or "low-technology," so we should understand
when and why to use it. A typical strategy used for manual operation can be related
to the basic principles of statistical process control and can best be described with
reference to the data shown in Figure 7.11. Along with the measured process vari
able, its desired value and upper and lower action values are plotted. The person ob
serves the data and takes action only "when needed." Usually, the decision on when
to take corrective action depends on the deviation from the desired value. If the pro
cess variable remains within an acceptable range of values defined by action limits,
the person makes no adjustment, and if the process variable exceeds the action lim
its, the person takes corrective action. A slight alteration to this strategy could con
sider the consecutive time spent above (or below) the desired value but within the
action limits. If the time continuously above is too long, a small corrective action
can be taken to move the mean of the process variable nearer to the desired value.

This manual approach to process control depends on the person; therefore,
the correct application of the approach is tied to the strengths and weaknesses of
the human versus the computer. General criteria are presented in Table 7.3. They
indicate that the manual approach is favored when the collection of key information
is not automated and has a large amount of noise and when slow adjustments with
"fuzzy," qualitative decisions are required. The automated approach is favored
when rapid, frequent corrections using straightforward criteria are required. Also,
the manual approach is favored when there is a substantial cost for the control effort;
for example, if the process operation must be stopped or otherwise disrupted to
effect the corrective action. In most control opportunities in the process industries,
the corrective action, such as changing a valve opening or a motor speed, can be
effected continuously and smoothly without disrupting the process.
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Lower

Time
FIGURE 7.11

Transient response of a process under manual control to
stochastic disturbances.

TABLE 7.3
Features off manual and automatic control
Control approach Advantages Disadvantages

Manual
operation

Automated
control

Reduces frequency of control
corrections, which is
important when control
actions are costly or disruptive
to plant operation
Possible when control action
requires information not
available to the computer
Draws attention to causes of
deviations, which can then
be eliminated by changes in
equipment or plant operation
Keeps personnel's attention
on plant operation
Good control perfomance for
fast processes

Can be applied uniformly to
many variables in a plant
Generally low cost

Performance of controlled
variables is usually far from
the best possible

Applicable only to slow
processes

Personnel have difficulty
maintaining concentration
on many variables

Compensates for
disturbances but does not
prevent future occurrences
Does not deal well with
qualitative decisions
May not promote people's
understanding of process
operation

Manual operation should be seen as complementary to the automatic ap
proaches emphasized in this book. Statistical methods for monitoring, diagnosing,
and continually improving process operation find wide application in the process
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industries (MacGregor, 1988; Oakland, 1986), and they are discussed further in
Chapter 26.

On-Offff Control
The simplest form of automated control involves logic for the control calcula
tions. In this approach, trigger values are established, and the control manipula
tion changes state when the trigger value is reached. Usually the state change is
between on and off, but it could be high or low values of the manipulated variable.
This approach is demonstrated in Figure 7.12 and was modelled for the common
example of on-off control in room temperature control via heating in Example 3.4.
While appealing because of its simplicity, on/off control results in continuous cy
cling, and performance is generally unacceptable for the stringent requirements of
many processes. It is used in simple strategies such as maintaining the temperature
of storage tanks within rather wide limits.

Continuous Automated Control
The emphasis of this book is on process control that involves the continuous sens
ing of process variables and adjustment of manipulated variables based on control
calculations. This approach offers the best control performance for most process
situations and can be easily automated using computing equipment. The types of
control performance achieved by continuous control are shown in Figure 7.10a
and b. The control calculation used to achieve this performance is the topic of the
subsequent chapters in Part III. Since the control actions are performed continu
ously, the manipulated variable is adjusted essentially continuously. As long as the
adjustments are not too extreme, constant adjustments pose no problems to valves
and their associated process equipment that have been designed for this application.

Emergency Controls
Continuous control performs well in maintaining the process near its set point.
However, continuous control does not ensure that the controlled variable remains

Controlled
variable:

Room
temperature

Manipulated
variable:

Furnace fuel

22°C

~* 18°C

Time
FIGURE 7.12

Example of a process under on/off control.
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point, leading to process conditions that are hazardous to personnel and can cause t<,^^&*w*<*^^m
damage to expensive equipment. For example, a vessel may experience too high Conclusions
a pressure and rupture, or a chemical reactor may have too high a temperature
and explode. To prevent safety violations, an additional level of control is applied
in industrial and laboratory systems. Typically, the emergency controls measure
a key variable(s) and take extreme action before a violation occurs; this action
could include stopping all or critical flow rates or dramatically increasing cooling
duty.

As an example of an emergency response, when the pressure in a vessel with
flows in and out reaches an upper limit, the flow of material into the vessel is
stopped, and a large outflow valve is opened. The control calculations for emer
gency control are usually not complex, but the detailed design of features such as
sensor and valve locations is crucial to safe plant design and operation. The topic
of emergency control is addressed in Chapter 24. You may assume that emergency
controls are not required for the process examples in this part of the book unless
otherwise stated.

In industrial plants all five control approaches are used concurrently. Plant
personnel continuously monitor plant performance, make periodic changes to
achieve control of some variables that are not automated, and intervene when
equipment or controls do not function well. Their attention is directed to po
tential problems by audio and visual alarms, which are initiated when a process
measurement exceeds a high or low limiting value. Continuous controls are ap
plied to regulate the values of important variables that can be measured in real
time. The use of continuous controls enables one person to supervise the op
eration of a large plant section with many variables. The emergency controls
are always in reserve, ready to take the extreme but necessary actions required
when a plant approaches conditions that endanger people, environment, or equip
ment.

7.6 Q CONCLUSIONS
A review of the elements of a control loop and of typical dynamic responses of
each element, with an example of transient calculation, shows that all elements in
the loop contribute to the behavior of the controlled variable. Depending on the
dynamic response of the process, the contributions of the instrument elements can
be negligible or significant. Material in future chapters will clarify and quantify
the relationship between dynamics and performance of the feedback system.

The principles and methods for selecting variables and measuring control per
formance discussed here for a single-loop system can be extended to processes with
several controlled and manipulated variables, as will be shown in later chapters.

A key observation is that feedback control does not reduce variability in a
plant, but it moves the variability from the controlled variables to the manipulated
variables. The engineer's challenge is to provide adequate manipulated variables
that satisfy degrees of freedom and that can be adjusted without significantly
affecting plant performance.

The techniques used for continuous automated rather than manual control are
emphasized because:
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CHAPTER 7 2. It provides a sound basis for evaluating the effects of process design on the
The Feedback Loop dynamic performance. A thorough understanding of feedback control perfor

mance provides the basis for designing more easily controlled processes by
avoiding unfavorable dynamic responses.

3. It introduces fundamental topics in dynamics, feedback control, and stability
that every engineer should master. The study of automatic control theory
principles as applied to process systems provides a link for communication
with other disciplines.

In this chapter the feedback controller has been left relatively loosely defined.
This has allowed a general discussion of principles without undue regard for a
specific approach. However, to build systems that function properly, the engineer
will require greater attention to detail. Thus, the most widely used feedback control
algorithm will be introduced in the next chapter.
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Questions

Many important decisions can be made based on the understanding of feedback
control, without consideration of the control calculation. These questions give some
practice in thinking about the essential aspects of feedback.

QUESTIONS
7.1. Consider the CSTR in Figure Q7.1. No product is present in the feed stream,

a single chemical reaction occurs in the reactor, and the heat of reaction is
zero. Determine whether each of the following single-loop control designs
is possible. [Hint: Does a causal process relationship exist?] Consider each
question separately.
(a) Control the product concentration in the reactor by adjusting the valve

in the pure A pipe.
(b) Control the product concentration in the reactor by adjusting the valve

in the coolant flow pipe.
(c) Control the product concentration in the reactor by adjusting the valve

in the solvent pipe.
(d) Control the temperature in the reactor by adjusting the valve in the

pure A pipe.
(e) Control the temperature in the reactor by adjusting the valve in the

coolant flow pipe.
if) Control the temperature in the reactor by adjusting the valve in the

solvent pipe.

lTY-&\-+- ) So lvent
F CAO

4VA

Pure A CD
±±~

r„

*Xvc

FIGURE Q7.1
CSTR process
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CHAPTER 7 controlled variable is 0 to 20 weight %. Determine the response of the
The Feedback Loop indicator (or controller input) to a step change in the output signal from the

manual station (or controller output).
(a) The time unit in the models is not specified. Using engineering judg

ment, what units would expect to be correct: seconds, minutes, or
hours?

(b) First estimate the response, te3%, using an approximate method.
(c) Give an estimate for how much the sensor, transmission, and valve

dynamics affect the overall response.
(d) Determine the response by solving the entire system numerically.

TABLE Q7.2
Dynamic models
Element Units Case A Case B

Manual station psi/% output 0.083 0.083
Transmission 1.0/(1.35 + 1) 1.0
Signal conversion psi/mA 0.75/(0.55 + 1) 0.75/(0.55 + 1)
Final element %open/psi 8.33/(1.55 + 1) 8.33/(1.55 + 1)
Process m3/psi 0.50e"0-57(305 + l) 0.50e-207(305 + l)
Sensor 1.0/(15 + 1) 1.0/(105 + 1)
Signal conversion mA/mV — —
Transmission 1.0 1.0
Display wt%/mA 1.25/(1.05 + 1) 1.25/(1.05 + 1)

7.3. For the series reactors in Figure Q7.3, the outlet concentration is controlled
at 0.414 mole/m3 by adjusting the inlet concentration. At the initial base
case operation, the valve is 50% open, giving Cao = 0.925 mole/m3. One
first-order reaction A -▶ B occurs; the data are V = 1.05 m3, F = 0.085
m3/min, and k = 0.040 min-1. The process transfer function is derived
in Example 4.2 as CA2(s)/CAo(s) = 0.447/(8.25* + l)2; the additional
model relates the valve to inlet concentration, which for a linear valve and
small flow of A (F » FA) gives CA0(s)/v(s) = 0.925/50 = 0.0185
(mole/m3)/% open; you may assume for this question that the sensor dy
namics are negligible. Answer the following questions about the operating
window of the process:
(a) Can the desired value of CA2 = 0.414 mole/m3 be achieved if the

solvent flow changes from its base value of 0.085 m3/min to 0.12
m3/min?

(b) Can the desired value of CA2 = 0.414 mole/m3 be achieved if the
concentration of A in the solvent changes from its base value of 0.0 to
1.0 mole/m3?

(c) Can the outlet concentration of A be increased to 0.828 mole/m3?
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7.4. (a) Discuss the three types of disturbances described in this chapter and
give a process example of how each could be generated by an upstream
process.

(b) An alternative disturbance is a pulse function. Describe a pulse func
tion, give control performance measures for a pulse disturbance, and
give a process example of how it could be generated by an upstream
process.

7.5. Dynamic responses for several different control systems in response to
a change in the set point are given in Figure Q7.5. Discuss the control
performance of each with respect to the measures explained in Section 7.4.
(Note that the control performance cannot be evaluated exactly without a
better definition of control objectives. Further exercises will be given in
later chapters, when the objectives can be more precisely defined.)

7.6. A process with controls is shown in Figure Q7.6. The objective is to achieve
a desired composition of B in the reactor effluent. The process consists of a
feed tank of reactant A, which is maintained within a range of temperatures
and is fed into the reactor, where the following reactions take place.

A - > B
A - > C

If the reactor level is too high, the pump motor should be shut off to prevent
spilling the reactor contents. Identify at least one variable that is controlled
by each of the five approaches to control presented in this chapter. Discuss
why the approach is (or is not) a good choice.

7.7. Note that the electrical and pneumatic transmission ranges have a nonzero
value for the lowest value of the range. Why is this a good selection for the
range; that is, what is the advantage of this range selection?



236

CHAPTER 7
The Feedback Loop

t M A A M A a a
a I S * » t n n i n t

Controlled

Set point

Set point

Controlled

Manipulated

FIGURE Q7.5

100
Time, /

(c)

200

200

Set point

Manipulated

100
Time, t

(b)

Set point

Controlled

' { ^Manipulated

100
Time, t

id)

200

200

Periodic
deliveries

Electrical
heater

FIGURE Q7.6

Schematic drawing of process and control design.

^ t'
Sample

tap

Laboratory
measures

%B



7.8. Confirm that the gains in the instrument models used in Example 7.1 are
reasonable. The sensor is an iron-constantan thermocouple.

7.9. The proposal was made to select the control pairing for one single-loop
controller for the nonisothermal CSTR in Section 3.6 and Figure 3.17.
Evaluate each using the criteria in Section 7.3.
(a) Control the reactor temperature by adjusting the coolant flow rate.
(b) Control the reactant concentration in the reactor by adjusting the coolant

flow rate.
(c) Control the coolant outlet temperature by adjusting the coolant flow

rate.

7.10. The proposal was made to make one of the control pairings for the binary
distillation tower in Example 5.4. Evaluate each using the criteria in Section
7.3.
(a) Control the distillate composition by adjusting the reboiler heating

flow.
(b) Control the distillate composition by adjusting the distillate flow.
(c) Control both the distillate and bottoms compositions simultaneously

by adjusting the reboiler heating flow.
7.11. Answer the following questions, which address the range of a control sys

tem.
(a) The process in Example 1.1 (in Appendix I) is to control the process

temperature after the mix by adjusting the flow ratio. Over what range
of inlet temperatures 7b can the outlet temperature T3 be maintained
at 90°C?

(b) The nonisothermal CSTR in Section C.2 (in Appendix C) is to be
operated at 420 K and 0.20 kmole/m3. Can this condition be achieved
for the range of inlet concentration (Cao) of 1.0 to 2.0 mole/m3 and
coolant flow rate (Fc) of 0 to 16 m3/min? If not, which range(s) has to
be expanded and by how much?

(c) For the CSTR in Example 3.3, can the outlet concentration of reactant
be controlled at 0.85 mole/m3 by adjusting the inlet concentration? By
adjusting the temperature of one reactor?

7.12. Answer the following questions on selecting control variables. Are there
any limitations to the operating conditions for your answers?
(a) In Example 1.2 (in Appendix I), can the outlet concentration be con

trolled by adjusting the solvent flow rate?
(b) How many valves influence the liquid level in the flash drum in Figure

1.8? Which of these valves would you recommend for use in feedback
control?

(c) In Figure 2.6, through adjustments of the air flow rate, can (i) the
efficiency and (ii) the excess oxygen in the flue gas be controlled?

7.13. Evaluate the control design in Figure Q7.6.
(a) Prepare a table for the selection of measured controlled variables based

on the seven control objectives using the format presented in Section
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CHAPTER 7 (fr) Prepare a table for the selection of a control valve (final element) to
The Feedback Loop be connected to each controlled variable using the format presented in

Section 7.3. Do you find the connections in Figure Q7.6 to be correctly
selected?

7.14. For the process shown in Figure 1.8,
(a) Prepare a table for the selection of measured controlled variables based

on the seven control objectives using the format presented in Section
7.3.

(b) Prepare a table for the selection of a control valve (final element) to
be connected to each controlled variable using the format presented in
Section 7.3.

(Note: This is a challenging exercise, but it will help you to understand
the manner that many single-loop controllers can be used to control a
complex process. Do the best you can at this point; multiple-loop systems
are addressed in detail later in the book.)

7.15. Sketch the operating window for the three-tank mixing process. The vari
ables on the axes, which define the operating window, are (1) the outlet
concentration (defining the range of achievable desired product) and (2)
the concentration of A in the feed B, (xa)b (defining the range of distur
bances that can be compensated by adjusting the valve). Discuss the shape
of the window; is it rectangular?
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8.1 m INTRODUCTION
Continuous feedback control offers the potential for improved plant operation by
maintaining selected variables close to their desired values. In this chapter we
will emphasize the control algorithm, while remembering that all elements in the
feedback loop affect control performance. Engineers should fully understand the
algorithm for three reasons. First, the performance of the entire feedback system
depends on the structure of the algorithm and the parameters used in the algorithm.
Second, all other elements are process equipment and instrumentation, which are
costly and time-consuming to alter, so a key area of flexibility in the loop is the
control calculation. Third, while engineers use only a few algorithms, as will be
explained, they are responsible for determining the values of adjustable parameters
in the algorithms.

In this chapter, we will learn about the proportional-integral-derivative (PID)
control algorithm. The PID algorithm has been successfully used in the process
industries since the 1940s and remains the most often used algorithm today. It
may seem surprising to the reader that one algorithm can be successful in many
applications—petroleum processing, steam generation, polymer processing, and
many more. This success is a result of the many good features of the algorithm,
which are covered initially in this chapter and expanded on and evaluated in later
chapters.

This algorithm is used for single-loop systems, also termed single input-
single output (SISO), which have one controlled and one manipulated variable.
Usually, many single-loop systems are implemented simultaneously on a process,



240 and the performance of each control system can be affected by interaction with the
immmmmmmmmMm other loops. However, the next few chapters will concentrate on ideal single-loop
CHAPTER 8 systems, in which interaction is negligible or nonexistent; extensions, including
The PID Algorithm interaction, are covered in Parts V and VI.

As we cover the PID control algorithm here and in subsequent chapters, we
will address important theoretical issues in feedback control including stability,
frequency response, tuning, and control performance. Thus, by covering the PID
controller in depth, we will acquire key analytical techniques applicable to all
feedback control systems, including PID and alternative control algorithms, along
with important knowledge about current practice.

8.2 □ DESIRED FEATURES OF A FEEDBACK
CONTROL ALGORITHM

Many of the desired characteristics for feedback control were discussed in the
previous chapter under quantitative measures of control performance. Here, a few
of these characteristics are extended for use in this and upcoming chapters.

Key Performance Feature: Zero Offset
The performance measures discussed previously could be combined into two cat
egories: dynamic (IAE, ISE, damping ratio, settling time, etc.) and steady-state.
The steady-state goal—returning to set point—is further discussed here. This goal
can be stated mathematically as follows by using the final value theorem,

l i m E ( t ) = l i m s E ( s ) = 0 ( 8 . 1 )
f - > o o s - * 0

with E denoting the error: the difference between the (desired value) set point
and (measured) controlled variable. It would seem unreasonable to demand that
the control system return to set point for all fluctuations in inputs. Therefore, we
select the most important, most often occurring input (disturbance) variation from
among the following cases:

1. The input variable varies but ultimately returns to its initial value; an example
is a pulse. For this input type most (but not all) processes would require no
feedback control to satisfy the condition in equation (8.1).

2. The input variable varies for some time and then attains a steady value different
from its initial value; this type we shall term steplike, because the transition
from initial to different final value does not have to be a perfect step. Feedback
control is required to achieve zero steady-state offset.

3. The input variables never attain a steady state; for this discussion, a ramp input
is often considered, D(t) = at, D(s) = a/s2.

Case 2 is the most typical situation, while case 3 occurs occasionally, as in a batch
system where the set point is changed as a ramp. For case 2, the expression in
equation (8.1) becomes

lim E(t) = lim sE(s) = lim s ( ) G(s) = 0 (8.2)r - x x > s - > o s ^ o \ s J



where G(s) — E(s)/X(s), and X(s) is the input disturbance D(s) or set point
change SP(s). By satisfying equation (8.2), the control algorithm is guaranteed to
return the controlled variable to its set point for that particular process and input
function. Note that systems satisfying equation (8.2) are not guaranteed to achieve
zero steady-state offset for other inputs, such as a ramp. To evaluate the control
performance in this chapter, a step input, X(s) = \/s, will be used, because it
represents the most commonly occurring situation; other inputs will be considered
in later chapters.
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Insensitivity to Errors
As we learned in Part II, we can never model a process exactly. Because parameters
in all control algorithms depend on process models, control algorithms will always
be in error despite our best modelling efforts. Therefore, control algorithms should
provide good performance when the adjustable parameters have "reasonable" er
rors. Naturally, all algorithms will give poor performance when the adjustable
parameter errors are very large. The range of reasonable errors and their effects on
control performance are studied in this and several subsequent chapters.

Wide Applicability
The PID control algorithm is a simple, single equation, but it can provide good con
trol performance for many different processes. This flexibility is achieved through
several adjustable parameters, whose values can be selected to modify the behavior
of the feedback system. The procedure for selecting the values is termed tuning,
and the adjustable parameters are termed tuning constants.

Timely Calculations
The control calculation is part of the feedback loop, and therefore it should be
calculated rapidly and reliably. Excessive time for calculation would introduce an
extra slow element in the control loop and, as we shall see, degrade the control
performance. Iterative calculations, which might occasionally not converge, would
result in a loss of control at unpredictable times. The PID algorithm is exceptionally
simple—a feature that was crucial to its initial use but is not as important now due
to the availability of inexpensive digital computers for control. Because of its wide
use, the PID controller is available in nearly all commercial digital control systems,
so that efficiently programmed and well-tested implementations are available.

Enhancements
No single algorithm can address all control requirements. A convenient feature of
the PID algorithm is its compatibility with enhancements that provide capabilities
not in the basic algorithm. Thus, we can enhance the basic PID without discarding
it. Many of the common enhancements are presented in Part IV.

The main goal of this chapter is to explain the PID algorithm fully. Each ele
ment of the algorithm is termed a mode and uses the time-dependent behavior of the
feedback information in a different manner, as indicated by the name proportional-
integral-derivative. Each mode of the equation and the key capability it provides
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are discussed thoroughly. The complete PID equation, which is the sum of the
three modes as shown in Figure 8.1, is then reviewed, and a few example control
responses are presented. The reader is cautioned that there is no consistency in
commercial control equipment regarding the sign of the subtraction when form
ing the error; the convention used in this book is Eit) — SP(f) — CV(f). Some
preprogrammed equipment uses the opposite sign, a factor that does not affect
the principles of this book but certainly affects the performance of actual control
systems! (Since the error is multiplied by one of the adjustable tuning constants,
the sign of the constant can be adapted to the sign of the error to give the desired
direction of the control manipulation.)

8.3 m BLOCK DIAGRAM OF THE FEEDBACK LOOP
In this chapter, key quantitative features of a dynamic process controlled by the
proportional-integral-derivative (PID) controller will be presented. Since all ele
ments in the loop affect the dynamic behavior, the modelling must combine the
individual models of the process, instrumentation, and controller into one overall
dynamic model of the loop. We learned in Chapter 4 how to combine individual
models using block diagrams. Therefore, we begin the analysis of the control loop
by deriving the transfer function models of the loop based on its constituent ele
ments using block diagram algebra. By using general symbols of each of the loop
elements, e.g., Gpis) for the process, we will derive overall transfer function mod
els applicable to many specific systems. The model for any specific control loop
can be developed by substituting the element models, e.g., Gp(s) = Kp/izs +1)2
for a second-order process.

The block diagram is shown in Figure 8.2 with the terminology that will be
used throughout the book. Notice that the equipment elements in the feedback loop
are collected into three transfer functions: the valve or final element, Gvis); the
process, Gpis); and the sensor, Gsis). The computing element is the controller
Gc is). The process output variable selected to be controlled is termed the controlled
variable, CV(s), and the process input variable selected to be adjusted by the



Gcis)
MV(s)

CVJs)

Transfer Functions
Gcis) = Controller
Gvis) = Transmission, transducer, and valve
Gpis) = Process
Gsis) = Sensor, transducer, and transmission
Gdis) = Disturbance

Dis)- Gd is ) - i

Gvis) Gpis)
CV(5)

Gsis)

Variables
CVis) = Controlled variable
CVmis) = Measured value of controlled variable
Dis) = Disturbance
Eis) = Error
MVis) = Manipulated variable
SPis) = Set point

FIGURE 8.2
Block diagram of a feedback control system.
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control system is termed the manipulated variable, MV(s). The desired value,
which must be specified independently to the controller, is called the set point,
SPis); it is also called the reference value in some books on automatic control.
The difference between the set point and the measured controlled variable is termed
the error, Eis). An input that changes due to external conditions and affects the
controlled variable is termed a disturbance, Dis), and the relationship between the
disturbance and the controlled variable is the disturbance transfer function, Gjis).
First, the transfer function of the controlled variable to the disturbance variable,
CVis)/Dis), is derived, with the change in the set point, SPis), taken to be zero.

The system involves a recycle, since the process output variable is used in de
termining the process input variable—our definition of feedback; therefore, special
care must be taken in deriving the transfer function. The four-step procedure pre
sented in Chapter 4 is used here. The first step is to begin with the variable in the
numerator of the transfer function, which in this case is CV(^). In the second step,
the expression for this variable as a function of input variables is derived in reverse
direction to the information flow in the block diagram. The result is

(8.3)CVis) = Gpis)Gvis)MVis) + Gdis)Dis)
= Gpis)Gvis)Gcis)Gsis)[CVis)] + GdDis)

This procedure is followed until one of two situations is reached: the numerator
variable can be expressed as a function of the denominator variable alone (which
occurs for series systems), or the numerator variable can be expressed as a function
of itself and the denominator variable (which occurs for a simple feedback system).
The expression in equation (8.3) is clearly of the second type. The third step in
the procedure is to rearrange the equation so that the variables are separated as
follows:

[1 +Gpis)Gvis)Gcis)Gsis)]CVis) = Gdis)Dis) (8.4)
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Equation (8.4) can be rearranged to yield the closed-loop disturbance transfer
function, and the same procedure can be used to derive the set point transfer
function.

Closed-loop transfer functions for a feedback loop
C V i s ) G d i s )Disturbance response:

Set point response:

Dis) \ + Gp(s)Gv(s)Gc(s)Gs(s)
CVis) _ Gpis)Gvis)Gcis)
SP(5) 1 + Gpis)Gvis)Gcis)Gsis)

(8.5)

(8.6)

In summary, the block diagram procedure for deriving a transfer function involves
four steps:

1. Select the numerator of the transfer function.
2. Solve in reverse direction to the causal relationships (arrows) in the block

diagram to eliminate all variables except the numerator and denominator in
the transfer function.

3. Separate variables in the equation.
4. Divide by the denominator variable to complete the transfer function.

For simple systems like the one in Figure 8.2, the foregoing procedure will yield
the transfer function. In more complex systems, it will not be possible to eliminate
all intermediate variables immediately in step 2. Therefore, steps 2 and 3 must be
performed several times, as will be demonstrated in later chapters.

The use of block diagrams entails one potential difficulty, especially for the
person just learning process control. Since the block diagram represents the model
of the system, there is no distinction in the symbols used for various physical com
ponents in the system. For example, the block diagram in Figure 8.2 represents a
system composed of elements from the process, Gpis) and G</(s); instrumenta
tion, Gv(s) and Gs (s); and a control calculation performed by a computing device,
Geis).

Two generalizations can be made about the closed-loop transfer functions to
assist in checking the derived transfer functions using block diagram manipula
tions. First, the numerator is simply the product of all transfer functions between
the input (denominator variable) and the output (numerator variable). Second, the
denominator of the right-hand side is of the form 1 + G"(s). The term G"(s) is
the product of all elements in the feedback loop. These guidelines can be checked
by applying them to equations (8.5) and (8.6).

Finally, the transfer function notation is often simplified by lumping all in
strumentation and process dynamics into one term, Gp(s). This is equivalent to
the following expression.

G p ( s ) = G ' p ( s ) G v ( s ) G s ( s ) ( 8 . 7 )
with G'p(s) being the process alone. This is a natural simplification, since the dy
namics of all elements from the controller output to the controller input contribute
to the control system performance. Also, when the dynamics are determined em-



pirically, the only model determined is the overall product of all instrumentation
and process elements, and the individual elements are not known. The resulting
simplified transfer function is

C V i s ) G d
T7T = . , r ,,r , . with Gp(s) = G'p(s)Gv(s)Gs(s) (8.8)D ( s ) 1 - I - G p ( s ) G c ( s ) y *

This simplification is not used when the effects of sensors and final elements
are to be shown clearly; however, it is used often to simplify notation. If the
process transfer function Gp(s) is shown in a closed-loop block diagram or transfer
function without the sensor and final element, the reader should assume that it
includes the dynamics of the sensor and final element, since feedback control
requires all elements in the loop.
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The block diagram analysis yields several valuable results:

1. The block diagram provides a visual "picture of the equations" showing the
feedback loop.

2. The general closed-loop transfer function model can be applied to any specific
system by substituting the transfer function models for the loop elements.

3. Entries in the overall transfer function denominator demonstrate that only the
elements in the feedback loop affect the system stability; neither the disturbance
nor the set point change affects stability.

The results of the block diagram analysis are not restricted to the proportional-
integral-derivative (PID) controller. Any linear controller algorithm [Gc(s)] would
yield the conclusions in the boxed highlight above.

8.4 d PROPORTIONAL MODE
It seems logical for the first mode to make the control action (i.e., the adjustment
to the manipulated variable) proportional to the error signal, because as the error
increases, the adjustment to the manipulated variable should increase. This concept
is realized in the proportional mode of the PID controller:

Proportional mode: MVp(t) = KcE(t) + Ip
M V p ( s ) _ _ ( 8 . 9 )Gcis) = Eis)

= Kr

The controller gain Kc is the first of three adjustable parameters that enable
the engineer to tailor the PID controller to various applications. The controller
gain has units of [manipulated]/[controlled] variables, which is the inverse of the
process gain Kp. Note that the equation includes a constant term or bias, which
is used during initialization of the algorithm Ip. During initialization the value
of the manipulated variable should remain unchanged; therefore, the initialization
constant can be calculated at the time of initialization as

I p = [ M V i t ) - K c E i t ) ] \ t = 0 ( 8 . 1 0 )
The behavior of the proportional mode is summarized in Figure 8.3a and b. In

deviation variables, a plot of manipulated variable versus error gives a straight line

MV(r) - MV,

Note: slope = Kc

id)

MV(0

Time
Note: Eit) = constant

ib)
FIGURE 8.3

Summary of proportional
mode.
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with slope equal to the controller gain and zero intercept. A plot of the manipulated
variable versus time for constant error gives a constant value.

Although the concept seems logical, we do not yet know whether the control
performance of the proportional controller satisfies the desired control performance
goals presented in the previous chapter and Section 8.2. To evaluate performance
it is useful to have the closed-loop transfer function. The transfer function for
the disturbance response of the system in Figure 8.2 is given in equation (8.5).
Substituting the transfer function model for a proportional controller, Gds) = Kc,
gives the following transfer function:

C V j s ) = G d ( s )
Dis) \+Gpis)Gvis)KcGsis)

One of the most important goals in control performance is zero offset at the fi
nal steady state. For a disturbance response, the zero steady-state offset requires
E'it) |,-oo= -CV'(0 !,_>«,= 0.
EXAMPLE 8.1.
The three-tank mixing process under control modelled in Example 7.2 is now an
alyzed. Recall that the feedback and disturbance processes are third-order. The
steady-state value for error under proportional control can be determined by re
arranging equation (8.11), substituting the models for Gpis) and Gdis), and apply
ing the final value theorem to the system with a steplike disturbance, Dis) = AD/s.
Recall that the valve transfer function is included in Gpis), and the sensor transfer
function is assumed to be unity, implying instantaneous, error-free measurement.

Gsis) = 1 GPis)Gvis) = K,
izs +1)3 Gdis) = Kd

izs + l)3 Gds) = Ke

CV'it) = lim
5->0 is)iAD/s)-

Kd{rs + \)\zs + \)\zs + l)

1 + KcKt ( — ) ( — ) ( — )\zs + \J \zs + \J \zs + \J .
KdAD

1 + KcKt 7 * 0

(8.12)
Note that the feedback control system with proportional control does not

achieve zero steady-state offset! This result can be understood by recognizing
the proportional relationship between the error and the manipulated variable in the
controller algorithm; the only way in which the control equation (8.9) can have the
error return to zero is for the value of the manipulated variable to return to its initial
condition. However, for the error to be zero in the process equation, the manipu
lated variable must be different from its initial value, because it must compensate
for the disturbance. Thus, steady-state offset occurs with proportional-only control.
This is a serious shortcoming, which must be corrected by one of the remaining
two modes.

EXAMPLE 8.2.
Another important property of a control system is a fast response to a disturbance
or set point change. The expression for a disturbance response is analyzed using
equation (8.11) for a simple process with the disturbance and feedback processes
being first-order with the same time constant. This system can be thought of as the
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X „ P r o p o r t i o n a l M o d e
GP(s) = —±t Gd(s) = —2- Gds) = Ktz s + 1 z s + \

K „ K {
CVjs) _ ts + l _ \ + KcK (8.13)

£.
D i s ) K C K _

zs + \ I 1 + K c K j
with KcKp>0 for negative feedback control. The analytical solutions for the step
disturbance response, Dis) = AD/s, for the process with and without proportional
control are

CV'( f ) = ADKdi \ - e-"x) (no contro l ) (8.14)

CV'(f) = .A^5t (] " e-'/lx/(l+KcK")]) (proportional control) (8.15)1 + KcKp

Equation (8.15) demonstrates that the feedback controller alters both the time
constant of the closed-loop system and the final deviation from set point by a
factor of 1/(1 + KCKP) for a first-order process. This means that the feedback
system responds faster than the open-loop system to a step disturbance and has
a smaller deviation from set point. Both of these modifications to the system
behavior are generally desired. The results in equation (8.15) indicate that as the
controller gain is increased, the final value of the error decreases in magnitude
and the system reaches steady state faster. We might be tempted to generalize this
result (improperly) to all systems and apply high controller gains to all processes.

To test this idea on a more complex process, several dynamic responses for
the linearized model of the three-tank mixing process under proportional control
are shown in Figure 8.4a through d. Again, the input is a step disturbance in the
feed concentration. The case without control iKc = 0) shows the response of a
third-order system to a step input; it is overdamped and reaches a final value of the
disturbance magnitude. As the controller gain is increased to 10, the final value
of the error decreases, as predicted by equation (8.12). Also, the time to reach the
steady state decreases; that is, the dynamic response becomes faster, as predicted.
As the controller gain is increased to 100, the nature of the dynamic response
changes from overdamped to underdamped. As the controller gain is increased
further to 220, the system becomes unstable!

These results demonstrate an important feature of feedback control systems:
the closed-loop response can become underdamped and ultimately unstable as the
controller parameters are adjusted to make the controller very aggressive (increas
ing the controller gain, Kc). This example suggests, and later theoretical analysis
will confirm, that it is generally not possible to maintain the controlled variable
close to the set point by setting the controller gain to a very large value (although
this approach would work for the first-order process in Example 8.2). The reasons
for the instability and methods for predicting the stability limits are presented in
Chapter 10 after the control algorithm has been fully explained.
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the conventional form of the integral mode used in the commercial PID controller.
This form is used throughout the book for consistency and so that later correlations
for parameter values can be used. Again, the integral mode equation has a constant
of initialization.

The behavior of the integral mode is summarized in Figure 8.5. For a constant
error, the manipulated variable increases linearly with a slope of Eit)Kc/ Ti. This
behavior is different from the proportional mode, in which the value is constant
over time for a constant error.
EXAMPLE 8.3.
The effect of the integral mode can be determined by evaluating the offset of
the three-tank mixing process under integral-only control for a step disturbance,
Dis) -AD/s.

Gvis)GJs) =

CV'(f) |,=00 = lim

= 0

K, Gdis) =
K a Gds) = £

Tjs(zs + W ~av" (zs + W
" " " " " " *■ ( ; i t t ) ( ; ^ t ) ( ; i t t )

. ' ♦ * f e s W = i T ) ( s i r ) ( = W J

Gsis) = 1

(8.17)

The integral control mode achieves zero steady-state offset, which is the primary
reason for including this mode.

n

Again, some dynamic responses of the three-tank mixing process are plotted,
this time with an integral controller, in Figure 8.6a and b. As can be seen, the
manipulation of the controller output is slower for integral-only control than for
proportional-only control. As a result, the controlled variable returns to the set
point slowly and experiences a larger maximum deviation. If the integral time is
reduced small enough, as in Figure 8.66, the controller will be very aggressive,
and the system will become highly oscillatory; further reduction in Tj can lead
to an unstable system. Under integral-only control with properly selected tuning
constants, the controlled variable returns to its set point, but the other aspects of
control performance are usually not acceptable. In summary:

The integral mode is simple; achieves zero offset; adjusts the manipulated variable in
a slower manner than the proportional mode, thus giving poor dynamic performance;
and can cause instability if tuned improperly.

8 .6 □ DERIVATIVE MODE

If the error is zero, both the proportional and integral modes give zero adjustment
to the manipulated variable. This is a proper result if the controlled variable is not
changing; however, consider the situation in Figure 8.7 at time equal to / when
the disturbance just begins to affect the controlled variable. There, the error and
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Time
FIGURE 8.7
Assumed effect of disturbance on
controlled variable.
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integral error are nearly zero, but a substantial change in the manipulated variable
would seem to be appropriate because the rate of change of the controlled variable
is large. This situation is addressed by the derivative mode:

Derivative mode: dEit)MVd(t) = KcTd-j^ + Iddt

Gc = ~E(sT= Cd
(8.18)

The final adjustable parameter is the derivative time Td, which has units of time,
and the mode again has an initialization constant. Note that the proportional gain
and derivative time are multiplied together to be consistent with the conventional
PID algorithm.

Some further insight can be gained by examining the following development of
a proportional-derivative controller (Rhinehart, 1991). Again consider the dynamic
response in Figure 8.7, in which the data available at the current time t, which is
at the beginning of the disturbance response; is shown by the solid line. The future
response that would be obtained without feedback control is shown as the dotted
line; note that this is simply the disturbance response. The value of the Es, the total
effect of the disturbance on the controlled variable as time approaches infinity, can
be predicted using the assumption that the error is following a first-order response
with a time constant equal to the disturbance process time constant:

dE
zd— + E = Esdt (8.19)

Since the error will increase to Es ultimately, the manipulated variable will have to
be adjusted by a value proportional to Es, or MV = Es/Kc. Rather than wait until
the error becomes large, when the proportional and integral modes would adjust
the manipulated variable, the controller could anticipate the future error using the
foregoing equation to give

MV = Kc (e + zd^\ + Id (8.20)

Thus, the proportional-derivative modes are a natural result of the assumption
that the error will respond as given in Figure 8.7. If the assumption is good, the
derivative mode may improve the control performance.

The behavior of the calculation for the derivative-only mode is shown in
Figure 8.8. When the controlled variable is constant, the derivative mode makes
no change to the manipulated variable. When the controlled variable changes, the
derivative mode adjusts the manipulated variable in a manner proportional to the
rate of change.

EXAMPLE 8.4.
The offset of a derivative controller can be determined by applying the final value
theorem to the three-tank mixing process for a step disturbance, D(s) — AD/s.
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CV

Time
FIGURE 8.8

Example of the calculation of the derivative mode with constant
set point.

GMGM) = Kr
Gd(s) =

Ka
Gc(s) = KcTds

CV'(r)|,=00 = lim5-»0

( r j + 1 )3 ~av" ( r. y + 1 )3

( , ) (AD/^(^)(^)(_L_)
+ ^(T7TT)(T7TT)(77TT) .

(8.21)

= KdAD £ 0

As is apparent, the derivative mode does not give zero offset. In fact, it does not
reduce the final deviation below that for a system without control for any distur
bance whose derivative tends toward zero as time increases; thus, its only benefit
can be in improving the transient response. Since the derivative is never used as
the only controller mode, dynamic responses are not included in this section, but
dynamic responses for the PID controller will be given.
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The derivative mode amplifies sudden changes in the controller input signal,
causing potentially large variation in the controller output that can be unwanted for
two reasons. First, step changes to the set point lead to step changes in the error. The
derivative of a step change goes to infinity or, in practical cases, to a completely
open or closed control valve. This control action could lead to severe process upsets
and even to unsafe conditions. One approach to prevent this situation is to alter the
algorithm so that the derivative is taken on the controlled variable, not the error.
The modified derivative mode, remembering that Eit) = SP(0 — CV(/), is

MVrf(0 = -KcTd dCVjt)
dt + ld (8.22)

While equation (8.22) reduces the extreme variation in the manipulated
variable resulting from set point changes, it does not solve the problem of
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high-frequency noise on the controlled-variable measurement, which will also
cause excessive variation in the manipulated variable. An obvious step to reduce
the effects of noise is to reduce the derivative time, perhaps to zero. Other steps to
reduce the effects of noise are presented in Chapter 12. In summary:

The derivative mode is simple; does not influence the final steady-state value of error;
provides rapid correction based on the rate of change of the controlled variable; and
can cause undesirable high-frequency variation in the manipulated variable.

8.7 01 THE PID CONTROLLER

Naturally, it is desired to retain the good features of each mode in the final control
algorithm. This goal can be achieved by adding the three modes to give the final
expression of the PID controller. Where the derivative mode appears, two forms
are given: id) the standard and ib) the form recommended in this book because it
prevents set point changes from causing excessive response, as described in the
preceding section.

Time-Domain Controller Algorithms
PROPORTIONAL-INTEGRAL-DERIVATIVE.

MV(0 = Kc (Eit) + 1 j* Eit1) dt' + Td^^j + /

/ i f d C V i t ) \
MV(0 = Kc \E(t) + -Jo E(t') dt' - Td—^-j

(8.23a)

+ / (Recommended)
(8.232?)

Again, the controller has an initialization constant. Depending on the desired per
formance, various forms of the controller are used. The proportional mode is nor
mally retained for all forms, with the options being in the derivative and integral
modes. The most common alternative forms are as follows:

PROPORTIONAL-ONLY CONTROLLER.
MV(0 = Kc[E(t)] + I (8.24)

PROPORTIONAL-INTEGRAL CONTROLLER.

MV(0 = Kc (Eit) + yJ E(t') dA + 1 (8.25)

PROPORTIONAL-DERIVATIVE CONTROLLER.

MV(0 = KC( ev.n , rrdE(t)\ , rE(t) + Td—— ) +/dt )
(8.26a)

MV(0 = Kc (E(t) - Td (/) J + / (Recommended) (8.26fc)



Selection from among the four forms will be discussed after many features of
the controllers have been introduced.

Laplaee-Domain Transfer Functions
The control algorithms are used often in block diagrams and in closed-loop transfer
functions. In these analyses the main purposes are to determine limiting behavior
for control systems (stability and frequency response), usually for disturbance
response; thus, the PID form with derivative on the error is used for simplicity.
The transfer functions for the common forms are as follows. Note that each transfer
function is the output over the input, with the input and output taken with respect to
the controller, which is the opposite of the process. Also, since transfer functions
are always in deviation variables, the initialization constant does not appear.
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Analytical Expression
for a Closed-Loop

Response

PROPORTIONAL-INTEGRAL-DERIVATIVE.
MV(s)Gds) = ^^ = Kc (1 + - j - + Tds) (8.27)E ( s ) \ T , s J

PROPORTIONAL-ONLY.
MV(s)G c ( s ) = = K cE(s) (8.28)

PROPORTIONAL-INTEGRAL.
MV(s)Gds) = Eis) - * ( ■ ♦ £ )

(8.29)

PROPORTIONAL-DERIVATIVE.

Gds) = MVjs)
Eis)

= Kci\ + Tds) (8.30)

The reader is strongly encouraged to learn the various forms of the algorithms
in the time and Laplace domains, because they will be used in all subsequent topics.

8.8 m ANALYTICAL EXPRESSION FOR A CLOSED-LOOP
RESPONSE
It is clear that the algorithm structure and adjustable parameters affect the closed-
loop dynamic response. A straightforward method of determining how the pa
rameters affect the response is to determine the analytical solution for the linear
process with PID feedback. This is generally not done in practice, because of
the complexity of the analytical solution for realistic processes, especially when
the process has dead time. However, the analytical solution is derived here for a
simple process, to aid in understanding the interplay between the process and the
controller.
EXAMPLE 8.5.
To facilitate the solution, a simple process—the stirred-tank heater in Example
3.7—is selected, with the controlled variable being the tank temperature and the
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FIGURE 8.9
Heat exchanger control system in
Example 8.5.

manipulated variable being the coolant flow valve, as shown in Figure 8.9. Since
proportional control was considered in Example 8.2, a proportional-integral con
troller is selected, because this will ensure zero steady-state offset. The response
to a step set point change will be determined.

Formulation. The model for this process was derived in Example 3.7. It is re
peated here with the models for the other elements in the control loop: the valve
and the controller (the sensor is assumed to be instantaneous).

VpCp^=CppF(T0 -T ) -

FC=\KV

aFH+x
Fc + aEbc

2pcC,

(T-Tcin)

pc

(8.31)

(8.32)

v = Kc [(Tsv -T) + jJ^ (Tsp - T) dA + I (8.33)

First, the degrees of freedom of the closed-loop control system will be evalu
ated.

Dependent variables: T, FCi v
E x t e r n a l v a r i a b l e s : 7 b , F, Tc i a , Ts p D O F = 3 - 3 = 0
Constants: p, Cp, Cpc, a, b, Kv, AP, pct Kc, Tt, I, V

Thus, when the controller set point Tsp has been defined, the system is exactly
specified. Note that the system without control requires the valve position to be
defined, but that the controller now determines the valve opening based on its
algorithm in equation (8.33). The three equations can be linearized and the Laplace
transforms taken to obtain the following transfer functions:

Gp(s) =
K,

zs + \ (8.34)

GM = Kv 1.0

Gds) = v(s)
Tsp(s) - T(s) - * ( ■ ♦ £ )

(8.35)

(8.36)

The process gain and time constant are functions of the equipment design
and operating conditions and are given in Example 3.7. We assume that the valve
opening is expressed in fraction open and that Gv(s) = 1. The block diagram of
the single-loop control system is given in Figure 8.2, and the closed-loop transfer
function is rearranged to give

CV(s) = Gp(s)Gv(s)Gc(s)
\+Gp(s)Gv(s)Gc(s)Gs(s) S?(s) (8.37)

The general symbols are used for the controlled and set point variables,
CV(j) = T(s) and SP(.s) = Tsp(s). The transfer functions for the process, the PI
controller, and the instrumentation (Gs(s) = Gv(s) = 1) can be substituted into



equation (8.37) to give
GJs)Gcis)CVis) = -—pK ' cW SP(5)\+GJs)Gcis)

zs + \ c \ T, s )

. + --*'-
ZS+ 1 * ( ' ♦ £ )

■SP(J) (8.38)

77̂  + 1
rT, i Tjiy + KcKJ ±,* H zr-r.——s + 1

SP(5)

KcKp KCK.
This can be rearranged to give the transfer function for the closed-loop system:

S X W T O + 1 ( 8 . 3 9 )
S P ( j ) i z ' ) 2 s 2 + 2 $ z ' s + \ v '

This is presented in the standard form with the time constant (r') and damping
coefficient expressed as

1 / T, /\ + KcKp\
* 2 y K c K p \ J t ) z =

KCKr,
(8.40)

Equation (8.39) can be rearranged to solve for CVis) with SPis) = ASP/s
(step change). This expression can be inverted using entries 15 and 17 in Table
4.1 to give, forf < 1,

Tit) = ASP
r'yfT^T2

e-^ j£Ei ;

with <p = tan"

+ASP i - V^Fe-̂ 's[n(̂ LJlt + <p
(8.41)

or using entry 10 in Table 4.1 to give, for £ > 1

T'it) = ASP T,
(e-t/x[ _ e-tix'2\ x[e-"< - z!>e-"T'i* : ; " + 1 + - ' 2

Z\ Z-> r; - r (8.42)

with z[ and z'2 the real, distinct roots of the characteristic polynomial when £ > 1.0.
Solution. Before an example response is evaluated, some important observa
tions are made:

1. The feedback system is second-order, although the process is first-order.
Thus, we see that the integral controller increases the order of the system
by1.

2. The integral mode ensures zero steady-state offset, which can be verified by
evaluating the foregoing expressions as time approaches infinity.

3. The response can be over- or underdamped, depending on the parameters
in equation (8.40). Again, we see that feedback can change the qualitative
characteristics of the dynamic response.
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4. The response for this system is always stable (for negative feedback,
KCKP > 0); in other words, the output cannot grow in an unbounded man
ner, because of the structure of the process and controller equations. This is
not generally true for more complex and realistic process models (and es
sentially all control systems involving real processes), as will be explained in
Chapter 10.

The final observation concerns the manipulated variable, which is also important in
evaluating control performance. The transfer function for the manipulated variable
can be derived from block diagram algebra to be

Gds)MVjs)
SPis) ~ \+GJs)Gcis)Gvis)Gsis) (8.43)

The characteristic polynomials for the transfer functions in equations (8.37) and
(8.43) are identical; thus, the periodic nature of the responses (over- or under-
damped) of the controlled and manipulated variables are the same since they are
affected by the same factors in the control loop. Thus, it would not be possible to
obtain underdamped behavior for the controlled variable and overdamped behav
ior for the manipulated variable. The close relationship between these variables is
natural, because the manipulated variable is calculated by the PI controller based
on the controlled variable.

Results analysis. A sample dynamic response is given in Figure 8.10 for this
system with Kp = -33.9°C/(m3/min) and z = 11.9 min from Example 3.7 and
tuning constant values of Kc = -0.059(m3/min)/°C and T, = 0.95 min, giving
z' = 2.38 min and £ = 0.30, and SP'Cy) = 2/s. The response is clearly under-

FIGURE8.10
Dynamic response of feedback loop: set point (dotted), temperature (solid),
and limits on magnitude (dashed).



damped, as indicated by the damping coefficient being less than 1.0. Also shown
in the figure is the boundary defined by the exponential in the analytical solution,
which determines the maximum amplitude of the oscillation at any time. Note that
another set of controller tuning constants could yield overdamped behavior for the
closed-loop system. The parameters used in this example were selected some
what arbitrarily, and proper tuning methods are presented in the next two chapters.

Since both tuning constants, Kc and 7}, appear in z' and £, it is not possible
to attribute the damping or oscillations to a single tuning constant; they both affect
the "speed" and damping of the response. It is apparent from the expression
for £ that the response becomes more oscillatory as Kc is increased and as 7)
is decreased; the reason for the difference is that Kc is in the numerator of the
controller, whereas 7) is in the denominator of the control algorithm. It is also
apparent from equation (8.41) that the controlled-variable overshoot and decay
ratio increase as the damping coefficient decreases.
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This analysis could be extended to other simple systems, but it cannot be ap
plied to most realistic systems, for which the inverse Laplace transform cannot be
evaluated. Therefore, the derivation of complete analytical solutions will not be
extended here. However, the general principles learned in this example are appli
cable to the methods of analysis introduced in the next few chapters. Also, one
important class of processes—inventories (levels)—is simple enough to allow pro
cess equipment and controller design based on analytical solution of the linearized
models, as covered in Chapter 18.

8.9 □ IMPORTANCE OF THE PID CONTROLLER
The process industries, which operate equipment at high pressures and tempera
tures with potentially hazardous materials, needed reliable process control many
decades before digital computers became available. As a result, the control meth
ods developed many decades ago were tailored to the limited computing equipment
available at that time. The main method of automated computing during this period,
and one which continues to be used today, is analog computation. The principle
behind analog computing is the design of a physical system that follows the same
equations as the equations desired to be solved (Korn and Korn, 1972). Naturally,
the computing system must be simple and should have easy ways to alter param
eters. An example of an analog control system is shown schematically in Figure
8.11. Here the level in a tank is controlled by adjusting the flow into the tank. The
sensor is a float in the tank, and the final control element is the valve stem position.
The controller is a proportional-only algorithm, so that the controller output is
proportional to the error signal. This algorithm is implemented in the figure by a
bar that pivots on a fulcrum. As the level increases, the float rises and the valve
closes, reducing flow into the tank. The control parameters can be changed by (1)
increasing the height of the fulcrum to increase the set point (with an appropriate
adjustment of the connecting bars) or (2) altering the fulcrum position along the
bar to change the controller proportional gain.

Although a few systems like the one in Figure 8.11 are in use (indeed, a form
of that system is found in domestic toilet tanks), most of the analog controllers in
the process industries use more sophisticated pneumatic or electronic principles

Row out
set by
downstream
unit

FIGURE 8.11
Example of an analog level controller.
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258 to automate the PID algorithm. The typical industrial implementation yields the
mmiMmmmmmiiym\ following transfer function for an electronic analog controller calculation (Hougen,
C H A P T E R 8 1 9 7 2 ) :

mi = KJi±ZV£l \l±If] (8.44)
CVCs) L Tis ] 11+uTds ]

Equation (8.44), often referred to as the interactive PID algorithm, is an approx
imation to the PID algorithm when a is small. The tuning constants are adjusted
by changing values of resistors and capacitors used in the circuit. Note that since
the equation structure is different from the forms already introduced, this equation
would require different values of their tuning constants; the tuning rules in this
book are for the forms in equation (8.23/?). Analog controllers were used for many
decades prior to the introduction of digital controllers and continue to be used
today. Pneumatic analog controllers use air pressure as the source of power for the
calculation to approximate the PID calculation (Ogata, 1990).

The techniques in this book are based on the analysis of continuous systems,
because we will be using Laplace transforms and similar mathematical methods.
Most processes are continuous (e.g., stirred tanks and heat exchangers), and the
controller is also continuous when implemented with analog computation. How
ever, the controller is discrete when implemented by digital computation; discrete
systems perform their function only at specific times. For most of this book, the as
sumption is made that the control calculations are continuous, and this assumption
is generally very good for digital controllers as long as the time for calculation is
short compared with the process dynamic response. Since this situation is satisfied
in most process control systems, the approach taken here is usually valid. Special
features of digital control systems are introduced in Chapter 11 and covered there
after as appropriate for subsequent topics, and numerous resources are dedicated
entirely to the special aspects of digital control, for example, Appendix L, Franklin
and Powell (1980) and Smith (1972).

8.10 El CONCLUSIONS
In this chapter, the important proportional-integral-derivative control algorithm
was introduced, and the key features of each mode were demonstrated. The pro
portional mode provides fast response but does not reduce the offset to zero. The
integral mode reduces the offset to zero but provides relatively slow feedback
compensation. The derivative mode takes action based on the derivative of the
controlled variable but has no effect on the offset. The combination of the modes,
or a subset of the modes, is required to provide good control in most cases.

A few examples have demonstrated that the PID controller can achieve good
control performance with the proper choice of tuning constants. However, the
control system can perform poorly, and even become unstable, if improper values
of the controller tuning constants are used. An analytical method for determining
good values for the tuning constants was introduced in this chapter for simple first-
order processes with P-only and PI control. More general methods are presented
for more complex systems in the next two chapters.

The dramatic influence of feedback on the dynamic behavior of a process was
discussed in Chapter 7 and demonstrated mathematically in this chapter. Naturally,
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feature of feedback, but the potential change from an overdamped system to an mmmmMmmmmm
underdamped or even unstable one is a facet of feedback that must be understood Additional Resources
and monitored carefully to prevent unacceptable behavior. In Chapter 4, it was
demonstrated that the key facets of periodicity and stability are determined by the
roots of the characteristic equation, that is, by the poles of the transfer function.
For the three-tank mixing process without control, the characteristic equation is

( T 5 + l ) 3 = 0 ( 8 . 4 5 )

giving the repeated poles s = — 1 /r. Since they are real and negative, the dynamic
response is overdamped and stable. When proportional feedback is added, the
transfer function is given in equation (8.12), and the characteristic equation is

i t s + l ) 3 + K C K P = 0 ( 8 . 4 6 )

Thus, the controller gain influences the poles and the exponents in the time-domain
solution for the concentration. The influence of feedback control on stability is the
major topic of Chapter 10.

Finally, it is important to note that the PID controller is emphasized in this
book because of its widespread use and its generally good performance. The dom
inant position of this algorithm is not surprising, because it evolved over years of
industrial practice. However, in nearly no case is it an "optimal" controller in any
sense (i.e., minimizing IAE or maximum deviation). Thus, other algorithms can
provide better performance in particular situations. Some alternative algorithms
will be introduced in this book after the basic concepts of feedback control have
been thoroughly covered.
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With models for the process and controller now available, the dynamic behavior of
a closed-loop system can be analyzed quantitatively. These questions provide some
learning examples while usingme mathematical tools available; additional analytical
methods are introduced in the next chapters. The key concept is the manner in which
the process and controller both influence the feedback system.

QUESTIONS
8.1. Determine the analytical expression for a step set point change in the fol

lowing processes under P-only and PI feedback control. You should select
values for the tuning constant that give acceptable performance.
id) Example 3.1 with CA as the controlled variable, Cao as the manipulated

variable, and ASP = 0.1 mole/m3.
ib) Example 3.7 with T as the controlled variable, F as the manipulated

variable, and ASP = 3°C. (Fc is constant.)
ic) Example 3.3 with CA2 as the controlled variable, Cao as the manipu

lated variable, and ASP = 0.05 mole/m3.

8.2. Program a dynamic simulation for the three-tank mixing system based on
the equations derived in Example 7.2.
id) Determine the open-loop responses in the third tank outlet concentra

tion to a step change in
(1) The inlet concentration of component A in stream B (1 to 1.5% A)
(2) The valve position in the A stream (50 to 60% open)

ib) Determine the closed-loop (PID) responses of the third tank outlet
concentration to
(1) A step set point change (3 to 3.5% A)
(2) A disturbance step change in the concentration of component A

in stream 5(1 to 1.5% A)

8.3. Using the appropriate transfer functions and applying the final value theo
rem, determine the final values of the error for a step set point change for
the heater in Example 8.5 under P-only, PI, and PID control.

8.4. The control system given in Figure Q8.4 controls the level by adjusting
the valve position of the flow out of the tank. Because of the pump, the



flow out can be assumed to be a function of only the valve percent open
and not of the level. Assume that the valve-flow relationship is linear (i.e.,
^out = Kvv).
id) Derive the differential equation and transfer function relating the level

to the flows in and out.
ib) For the process with feedback control, determine the final value of the

error for a step change in the inlet flow for P-only and PI controllers.
Are the criteria for zero steady-state offset the same as for the three-
tank example? Explain why/why not.

ic) Discuss the differences between this and question 8.13.

8.5. The application to the final value theorem in equation (8.17) showed that
the three-tank mixing system under I-only control has zero steady-state
offset for a step disturbance. Is this a general conclusion for PID control
for all id) processes, ib) disturbance types, and (c) values of the tuning
constants? Discuss the implications of your answers on the success of
feedback control.

8.6. id) The final value theorem seems to demonstrate that the offset tends
to zero as the controller gain approaches infinity. Discuss this result,
especially with regard to the definition of the Laplace transform and
the dynamic responses shown in Figure 8.4a through d.

ib) The final value theorem provides one method for calculating the fi
nal value of a variable in a control system. Describe another way to
determine the final value of variables without using the final value the
orem. Use both methods to determine the final value of the manipulated
variable in the three-tank mixing process for a step disturbance in the
concentration of stream B, id) without control and ib) with P-only
feedback control.

8.7. id) Calculate the roots of the characteristic equations and relate them to the
dynamic behaviors of the closed-loop systems in Figure 8.4a through d.

ib) Select different tuning constant values that yield substantially different
dynamic behavior for the closed-loop system in Example 8.5. Describe
the different time-domain behavior.

8.8. Answer the following questions.
id) The transfer function of the PID controller in equation (8.27) has no

initialization constant. Why?
ib) Describe how to calculate the initialization constant / in equation

(8.23a and b) for a PID controller.
ic) The transfer functions Gcis) = MVis)/CVis) and

Gpis) = CV(s)/MV(s). Why isn't Gds) = G~l(s)l Why do they
have units that are the inverse of one another?

id) Verify the Laplace transform of the controller, equation (8.27), from
equation (8.23a).

ie) Determine the final value for the three-tank mixing process under PI
control for an impulse disturbance in the feed composition. Can you
determine a conclusion generally applicable to all processes?

(f) Repeat part (e) for a ramp disturbance.
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8.9. When designing the feedback control algorithm, why were the following
modes not included, or when would they be applicable?

E(t")dt"(a) MV(t) = Kc Eit) + Ti Jo |yo

ib) MV(0 = Kc(E(t))2 (Eit) + Y,f0 E{t>) dt)

(c) MV(r) = Ke ((E(t))2 + jr I'iEit'yfdt^

8.10. The controller display for the plant personnel does not present all possi
ble variables associated with the PID algorithm. For each variable, state
whether or not it is displayed and why: (a) controlled variable, (b) error,
(c) set point, (d) manipulated variable, (e) integral of the error, (f) derivative
of the error, and (g) initialization constant.

8.11. Describe how you would calculate the PID algorithm in a digital computer.
Prepare a flow chart of the calculations.

8.12. Consider the modified stirred-tank mixing system in Figure Q8.12. The
original concentration of the third tank remains 3 percent.
(a) Derive the equations describing the system.
(b) Draw a block diagram of the system.
(c) Derive the transfer functions for each element in the block diagram.
(d) Derive the closed-loop transfer function, CV(s)/SP(s).

6.9 m3/hr
1%A
B-

A
0.14m3/hr

100% A

OO h
CD

7m3/ht
3% A

00
<$>

Disturbance is change in the concentration
of stream C with the flow rate constant.

FIGURE Q8.12

8.13. The level control system with a proportional-only algorithm in Figure
Q8.13 is to be analyzed; the inlet flow is a function of only the valve open
ing. The process is not typical; usually, the flow out would be pumped,
but here it drains by gravity. However, this is a simple system to begin
analyzing control systems; more realistic processes will be considered in
subsequent chapters.
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(a) Derive a linearized model and transfer functions for the process and
for the proportional-only controller.

(b) Draw a block diagram, and derive the closed-loop transfer function.
(c) Calculate the steady-state offset.
(d) Select an appropriate sign for the gain and calculate the time to reach

63 percent of the final steady-state error after a step disturbance in the
outlet valve position.

(e) Discuss the differences between this and question 8.4.
8.14. Consider the PID algorithm in equation (8.23a). For each of the individual

modes—proportional, integral, and derivative—describe with a sketch the
result of its calculation when the error is each of the following idealized
functions: (a) a constant, (b) an impulse, and (c) a sine (consider one cycle).
(This question provides a thought exercise to help understand the three PID
modes; this type of analysis is not performed when monitoring a control
system.)

8.15. For the series reactors in Figure Q8.15, the outlet concentration is controlled
at 0.414 mole/m3 by adjusting the inlet concentration with a proportional-
only feedback controller. At the initial base case operation, the valve is
50 percent open, giving Cao = 0.925 mole/m3. One first-order reaction
A ->• B occurs; the data are V = 1.05 m3, F = 0.085 m3/min, and k =
0.040 min-1. The process transfer function is derived in Example 4.2 as
CA2(s)/CA0(s) = 0.447/(8.25^ + l)2; the additional model relates the
valve to inlet concentration, which for a linear valve and small flow of A
(F » FA) gives CA0(s)/v(s) = 0.925/50 = 0.0185 (mole/m3)/%open;
you may assume for this question that the sensor dynamics are negligible.
(a) Determine whether the reactors are stable without feedback control.
(b) Determine the closed-loop transfer function for a set point response.
(c) By analyzing the denominator of the transfer function (the character

istic polynomial), determine the stability of the feedback system for
controller gain, Kc, values of (i) 0.0, (ii) 121, (iii) 605, and (iv) 2420
(in % valve opening/mole/m3).

(d) By analyzing the total closed-loop transfer function, determine the
steady-state offset for a set point change with controller gain, Kc,
values of (i) 0.0, (ii) 121, (iii) 605, and (iv) 2420 (in %valve
opening/mole/m3).

(e) Without simulating, sketch the general shape of the dynamic response
for a set point step change for each of the cases in (c) and (d) above.



264 Pure A

CHAPTER 8
The PID Algorithm

Solvent

FIGURE Q8.15

8.16. Analyze the following systems for the feasibility of feedback control.
(a) Example 1.1 with temperature T3 as the controlled variable, FexCh as

the manipulated variable, and ASP = FC.
(b) Example 1.2 with Ca2 as the controlled variable, Fs as the manipulated

variable, and ASP = 0.01 mole/m3.
8.17. The continuous control system in Figure Q8.17 is to be tuned for an un

derdamped open-loop process, £ < 1.0. As a physical example, you may
think of the CSTR with underdamped temperature dynamics in response
to a change in the coolant flow described in Section 3.6. However, the
question should be answered for the general system in Figure Q8.17.
(a) Determine the range of a P-only feedback controller gain that results in

an overdamped closed-loop system. Discuss the implications of your
results for the quality of feedback control performance.

(b) Repeat the analysis for a proportional-derivative controller and discuss
the effect of the derivative mode on the closed-loop dynamic behavior,
especially the periodicity.

SPWjp. Kc
MV(j) 1.0

T V + 2&S + 1
CVis)^ y ^

FIGURE Q8.17

8.18. (a) Determine the PID controller modes that are required for zero steady-
state offset for an impulse disturbance for the following processes:
(1) The three-tank mixing process in Examples 7.2 and 7.3 with xAb

an impulse



(2) A non-self-regulating level system, like equation (5.15), with F0
an impulse and F\ adjusted by the controller

ib) Discuss the application of integral-only control to both processes.
8.19. The elements in several control systems are shown in Figure Q8.19. For

each system, determine the transfer functions for CV(.s)/SP(.s) and
CVis)/Dis), where a disturbance is given.
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FIGURE Q8.19
Block diagrams for several control systems. All quantities are Laplace-transformed; the

variable is) is omitted for simplicity.
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9.1 m INTRODUCTION
As demonstrated in the previous chapter, the proportional-integral-derivative (PID)
control algorithm has features that make it appropriate for use in feedback control.
Its three adjustable tuning constants enable the engineer, through judicious selec
tion of their values, to tailor the algorithm to a wide range of process applications.
Previous examples showed that good control performance can be achieved with a
proper choice of tuning constant values, but poor performance and even instability
can result from a poor choice of values. Many methods can be used to determine
the tuning constant values. In this chapter a method is presented that is based on
the time-domain performance of the control system. Controller tuning methods
based on dynamic performance have been used for many decades (e.g., Lopez et
al., 1969; Fertik, 1975; Zumwalt, 1981), and the method presented here builds on
these previous studies and has the following features:

1. It clearly defines and applies important performance issues that must be con
sidered in controller tuning.

2. It provides easy-to-use correlations that are applicable to many controller
tuning cases.

3. It provides a general calculation approach applicable to nearly any control
tuning problem, which is important when the general correlations are not
applicable.
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4. It provides insight into important relationships between process dynamic
model parameters and controller tuning constants.

9.2 a DEFINING THE TUNING PROBLEM
The entire control problem must be completely defined before the tuning constants
can be determined and control performance evaluated. Naturally, the physical pro
cess is a key element of the system that must be defined. To consider the most
typical class of processes, a first-order-with-dead-time plant model is selected here
because this model can adequately approximate the dynamics of processes with
monotonic responses to a step input, as shown in Chapter 6. Also, the controller
algorithm must be defined; the form of the PID controller used here is

MV(0 = Ke \E(t) + yj* E(t')dt' - Td^P~~\ + / (9.1)
Note that the derivative term is calculated using the measured controlled variable,
not the error.

The tuning constants must be derived using the same algorithm that is applied in the
control system. The reader is cautioned to check the form of the PID controller algo
rithm used in developing tuning correlations and in the control system computation;
these must be compatible.

Next, we carefully define control performance by specifying several goals to be
balanced concurrently. This definition provides a comprehensive specification of
control performance that is flexible enough to represent most situations. The three
goals are the following:

1. Controlled-variable performance. The well-tuned controller should provide
satisfactory performance for one or more measures of the behavior of the
controlled variable. As an example, we shall select to minimize the IAE of
the controlled variable. The meaning of the integral of the absolute value of
the error, IAE, is repeated here.

IAE = / '
Jo \SP(t)-CV(t)\dt (9.2)

Zero steady-state offset for a steplike system input is ensured by the integral
mode appearing in the controller.

2. Model error. Linear dynamic models always have errors, because the plant is
nonlinear and its operation changes. Since the tuning will be based on these
models, the tuning procedure should account for the errors, so that acceptable
control performance is provided as the process dynamics change. The changes
are defined as ± percentage changes from the base-case or nominal model
parameters. The ability of a control system to provide good performance
when the plant dynamics change is often termed robustness.

3. Manipulated-variable behavior. The most important variable, other than the
controlled variable, is the manipulated variable. We shall choose the com-
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Summary of factors that must be defined in tuning a controller
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Major loop
component Key factor

Values used in this chapter for
examples and correlations

Process

Controller

Control
performance

Model structure
Model error

Linear, first-order with dead time
± 25% in model parameters (structured so
that all parameters increase and decrease
the same %)
Step input disturbance with Gd(s) = Gp(s)
and step set point considered separately
Unbiased controlled variable with high-
frequency noise
PID and PI
Kc, 77, and Td
Minimize the total IAE for several cases
spanning a range of plant model
parameter errors
Manipulated variable must not have varia
tion outside defined limits; see Figure 9.4

Input forcing

Measured variable

Structure
Tuning constants
Controlled-variable behavior

Manipulated-variable behavior
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mon goal of preventing "excessive" variation in the manipulated variable by
defining limits on its allowed variation, as explained shortly.

To evaluate the control performance, the goals and the scenario(s) under which
the controller operates need to be defined. These definitions are summarized in
Table 9.1; the general factors are in the second column, and the specific values
used to develop correlations in this chapter are in the third column. This may seem
like a rather lengthy list of factors to establish before tuning a controller, but they
are essential to any proper tuning method. Fortunately, the rather standard set of
specifications in the third column is appropriate for a wide range of applications,
and therefore it is possible to develop correlations that can be used in many plants,
where this underlying specification of control performance is valid. The entries in
Table 9.1 will be further explained as they are encountered in the next section. All
subsequent chapters in this book require a good understanding of the factors that
affect control performance.

The reader is encouraged to understand the factors in Table 9.1 thoroughly and to
refer back to this section often when covering later chapters.

9.3 □ DETERMINING GOOD TUNING CONSTANT VALUES

Given a complete definition of the process, controller, and control objectives, eval
uating the tuning constants is a relatively straightforward task, at least conceptu
ally. The "best" tuning constants are those values that satisfy the control perfor
mance goals. With our definitions of Goals 1 to 3, the optimum tuning gives the
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minimum IAE, for the selected plant (with variations in model parameters), when
the manipulated variable observes specified bounds on its dynamic behavior.

The control objectives in Table 9.1 have been defined so that they can be quan
titatively evaluated from the dynamic response of a control system. The dynamic
response of the control system with a complex process model including dead time
cannot be determined analytically, but it can be evaluated using a numerical so
lution of the process and controller equations. The dynamic equations are solved
from the initial steady state to the time at which the system attains steady state
after the input change. The best values of the tuning constant can be determined by
evaluating many values and selecting the values that yield best measure of control
performance. Since the goal of this presentation is to concentrate on the effects
of the process dynamics on tuning, not the detailed mathematics, the reader may
visualize the best values being found by a grid search over a range of the tuning
constant values, although this procedure would involve excessive computations.
(Some further details on the solution approach are given in Appendix E.) The result
is a set of tuning (Kc, Tj, Td) that gives the best performance for a specific plant,
model uncertainty, and control performance definition.

As explained in Section 9.2, we will consider a first-order-with-dead-time
plant because this model can (approximately) represent the dynamics of many
overdamped processes. As a helpful image for the reader, a simple mixing process
example shown in Figure 9.1 will be used throughout this chapter, although the
results are not limited to this simple process, as will be demonstrated later in the
chapter. The process can be described by the following transfer function model:

Gds)G'p(s)Gs(s) GPis) =
Kne-9s

ZS + l (%A in outlet)/(%valve opening)
(9.3)

Gdis) = Kd
zs + \ (%A in outlet)/(%A in inlet) (9.4)

From a fundamental balance on component A, the dead time and time constant can
be determined as the following functions of the feed flow rate and equipment size.

Process used for calculating example tuning constants for good
control performance.



The base case values are given here, and the functional relationships will be used
in later examples to determine the modified dynamics for changes in production
rate (FB).

Parameter Dependence on process Base case value
Dead time, 0
Time constant, z
Steady-state gain, KP

(A)iL)/FB
V/FB

Kv[ixA)A - ixA)B]/FB

5.0 min
5.0 min
1.0 (%A in outlet)/(%open)
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In general, the three tuning constants iKc, 7>, and Td) should be evaluated si
multaneously to achieve the best performance. However, we will gain considerable
insight by considering the PID tuning constants and performance goals sequen
tially. This will enable us to learn how the goals influence the values of the tuning
constants and also the interaction among the values of the three tuning constants.
Therefore, we shall begin with the simplest case, determining the value of one tun
ing constant, Kc, which results in the minimum in the performance measure goal
1 (IAE). In this initial case, the other two tuning constant values (7) and Td) will
be held constant at reasonable values. Then, values of all three tuning constants
will be determined that give the best control performance, as represented by goal
1 (IAE). Finally, the values of the tuning constants are determined that give the
best performance, as measured by the complete definition of control performance,
goals 1 to 3.

Recall that the feedback control system is designed to respond to disturbances
and changes in set points (desired values). Initially, we will restrict attention to a
unit step disturbance in the inlet concentration, Dis) = \/s %A in the inlet. Later,
set point changes will be addressed.

Goal 1: Controlled-Variable Performance (IAE)

Let us begin with a PID controller applied to the example process. We will start by
optimizing only one controller constant. Recall that the integral mode is required
so that the controlled variable returns to its set point. Therefore, the study will find
the best value of the controller gain, Kc, with the integral time (7> = 10 min)
and derivative time (Td = 0 min) temporarily maintained at fixed values. The
value selected for the integral time (the sum of the dead time and time constant)
is reasonable (although not optimum), as demonstrated by further results, and the
derivative time of zero simply turns off the derivative mode. For this first case, the
goal in this analysis is temporarily limited to achieving the minimum value of the
IAE for the base case plant model.

The results of several transient responses are presented in Figure 9.2, with
each case having a different value of the controller gain. The results show that the
relationship between IAE and Kc is unimodal; that is, it has a single minimum.
The minimum IAE is at a controller gain value of about Kc = 1.14%/(mole/m3)
with an IAE of 9.1. For values of the controller gain smaller than the best value
(e.g., Kc = 0.62), the controller is too "slow," leading to higher IAE. For values
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Process dynamics: Kp= 1.0, 0 = 5.0, t= 5.0
Kc=0.62 IAE =16.1

1

0 . 5 1 1 . 5
Controller gain
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1coU
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£.= 1.14 IAE = 9.2
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FIGURE 9.2
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Time
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£=1.52 IAE =16.5

Dynamic responses used to determine the best controller gain, Kc% open/ %A,
with T, = 10 and Ta = 0.

of the controller gain larger than the best value (e.g., Kc = 1.52), the controller is
too "aggressive," leading to oscillations and higher IAE. Note that the optimum is
somewhat "flat"; that is, the control performance does not change very much for a
range (about ±15%) about the optimum controller gain. However, if the controller
gain is increased too much, the system will become unstable. (Determining the
stability limit is addressed in the next chapter.)

The graphical presentation used for one constant can be extended to two
constants by varying the controller gain and integral time simultaneously while
holding the derivative time constant (7^ = 0). Again, many dynamic responses can
be evaluated and the results plotted. In this case, the coordinates are the controller
gain and integral time, with the IAE plotted as contours. The results are presented in
Figure 9.3, where the optimum tuning is Kc = 0.89 and 7> = 7.0. Again, the same
qualitative behavior is obtained, with very large or small values of either constant
giving poor control performance. In addition, the contours show the interaction
between the variables; for example, nearly the same control performance can be
achieved by gain and integral time values of (Kc = 0.6 and T§ = 4.5) and (Kc —
1.2 and 77 = 10), respectively. Again, the control performance is not too sensitive
to the tuning values, as shown by the large region (valley) in which the performance
changes by only about 10 percent. Finally, the evaluations identified a region in
which the control system is not stable; that is, where the IAE becomes infinite. It
is interesting that the region of good control performance—the lower valley in the
contour plot—runs nearly parallel to the stability bound. This result will be used
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FIGURE 9.3

Contours of controller performance, IAE, for values of
controller gain and integral time.

TABLE 9.2

Summary of tuning study

Case Objective

I n t e g r a l D e r i v a t i v e
Ga in , Kc t ime , T, t ime , Td
( % / % A ) ( m i n ) ( m i n ) I A E +

Optimize Kc
Optimize Kc
and T,
Optimize Kc,
Than6Td
Optimize Kc,
T,, and Td

G o a l 1 ( I A E ) 1 . 1 4
G o a l 1 ( I A E ) 0 . 8 9

G o a l 1 ( I A E ) 1 . 0 4

G o a l 1 - 3 0 . 8 8
simultaneously

10.0 (fixed) 0.0 (fixed)
7 . 0 0 . 0 ( fi x e d )

5.3

6.4

2.1

0.82

9.2
8.5

5.8

7.4* -*■

+Evaluated for nominal model (without error) without noise. Process parameters were the
gain Kp = 1.0%A/%, the time constant r = 5 minutes, and the dead time 0 = 5 minutes.
•Greater than 5.8 because of additional goals 2 and 3.
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•recommended

in the next chapter, in which the stability of control systems is studied and tuning
constant values are determined based on a margin from the stability bound.

When three or more values are optimized, as is the case for a three-mode
controller, the results cannot be displayed graphically. One could take the same
optimization procedure described for one- and two-variable problems, which is
simply to evaluate the IAE over a grid of tuning constant values and estimate
the best values from the results or use a more sophisticated and efficient approach.
The application of an optimization to the example process yields values of all three
parameters that minimize IAE, and the values are reported in Table 9.2. This table
summarizes the results with one, two, and all three constants being optimized;
clearly, as more constants are free for adjustment, the IAE controller performance
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measure improves (i.e., decreases). Also, the optimum values for the controller
gain and integral time change when we include the derivative time as an adjustable
variable in the optimization. This result again demonstrates the interaction among
the tuning constants.

Minimizing the IAE is only the first of the three specified goals, which con
siders the behavior of only the controlled variable and assumes perfect knowledge
(model) of the process. This preliminary result does not provide the best control
performance according to our specified goals; therefore, we must continue to refine
the procedure to determine the best tuning constant values.

Goal 2: Good Control Performance with Model Errors
To this point we have determined tuning constant values that minimize the IAE
when the process dynamics are described exactly by the base case dynamic model.
However, the model is never perfect, because of errors in the model identification
procedure, as demonstrated in Chapter 6. Also, plant operating conditions, such as
production rate, feed composition, and purity level, change, and because processes
are nonlinear, these changes affect the dynamic behavior of the feedback process.
The effect of changing operating conditions can be estimated by evaluating the
linearized models at different conditions and determining the changes in gain, time
constant, and dead time from their base-case values. Since the true process dynamic
behavior changes, a useful tuning procedure should determine tuning constants
that give good performance for a range of process dynamics about the base case or
nominal model parameters, as required by the second control performance goal.
When the tuning results in satisfactory performance for a reasonable range of
process dynamics, the tuning is said to provide robustness.

In performing control and tuning analyses, the engineer must define the expected
model error. The error estimate, usually expressed as ranges of parameters, can be
based on the variation in plant operation and fundamental models from Chapters 3
through 5 or the results of several empirical model identifications using the methods
in Chapter 6.

The size and type of model error is process-specific. For the purposes of devel
oping correlations, the major source of variation in process dynamics is assumed to
result from changes in the flow rate of the feed stream Fb in Figure 9.1 that cause
±25% changes in the parameters. While the range of parameters depends on the
specific process, most processes experience parameter value changes of roughly
this magnitude, and some have much larger variations. The resulting model pa
rameters are given in Table 9.3; these values can be derived using the expressions
already given relating the linearized model parameters to the process design and
operation. Since in this example all parameters are proportional to the inverse of
the feed flow, the parameters do not vary independently but in a correlated man
ner as a result of changes in input variables. Such correlation among parameter
variation is typical, because the major cause of variation in process dynamics is
nonlinearity. Naturally, the functional relationship depends on the process and is
not always as shown in the table.



TABLE 9.3
Model parameters for the three-tank process

Low flow, Base case High flow,
Model parameters / = 1 flow, / = 2 / = 3

KP
e
z

1.25
6.25
6.25

1.0
5.0
5.0

0.75
3.75
3.75
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The goal is to provide good control performance for this range, and one way
to consider the variability in dynamics is to modify the objective function to be the
sum of the IAE for the three cases, which include the base case and the extremes
of low and high flow rates in Table 9.3. The objective is stated as follows:

Minimize

by adjusting

EIAE< (9.5)
i = i

Kc, Ti, Td

IAE,- = rJo |SP(0-CV,-(/)|o7

where CVt(t) is calculated using process parameters for i = 1 to 3 in Table 9.3.
This modification is very important, because tuning constants that yield good

performance for the nominal model may give poor performance or even result in
instability as the true process parameters vary. Next, the third goal is discussed;
afterward, the tuning constants satisfying all three goals are determined.

Goal 3: Manipulated-Variable Behavior

The third and final goal addresses the dynamic behavior of the manipulated vari
able by requiring it to observe a limitation. As previously discussed, its variation
should not be too great, because of wear to control and process equipment and
disturbances to integrated units. There are many ways to define the variation of the
manipulated variable. Here we will bound the allowed transient path of the manip
ulated variable to a specified region around the final steady-state value during the
dynamic response as shown in Figure 9.4. This rather general limitation enables
us to address two related issues in manipulated-variable variation:

1. The largest-magnitude variation in the manipulated variable in response to a
disturbance or set point change

2. The high-frequency variation resulting from the small, continuous changes in
the controlled variable often referred to as noise

The allowable manipulated-variable range is large during the initial part of the
transient, where, in general, the manipulated variable should be able to overshoot its
final value. The range is smaller after the effect of the step disturbance is corrected.
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FIGURE 9.4

Dynamic response of a feedback control system showing the bound on
allowable manipulated-variable adjustments.

Even after a long time, the manipulated variable cannot be required to be absolutely
constant, because feedback control responds to the small, continuous changes in the
controlled variable (i.e., the noise). The limitation on the manipulated variable is
determined by parameters that define the bound shown in Figure 9.4. Simulations
to evaluate a tuning for goals 1 through 3 include representative noise on the
measured, controlled variable and a bound on the manipulated variable. A model
for defining the bound on the path, along with parameters used in this book, is
presented in Appendix E.

The proper values of the parameters used to define the allowed manipulated
variable behavior should match the process application. The values in this study
are good initial estimates for many process control designs. However, the specific
parameter values are not the key concept in this goal statement; what is most
important is this:

A properly denned statement of control performance includes a specification of
acceptable manipulated-variable behavior.

Since both controlled- and manipulated-variable plots of behaviors are important,
most closed-loop transient responses in this book show both the controlled and
manipulated variables; in general, it is not possible to evaluate control performance
by observing only the controlled variable.

The controller constants in the example mixing process are optimized for the
complete definition, and the results are Kc = 0.88, 77 = 6.4, and Td — 0.82. The
dynamic response is given in Figure 9.4 for the nominal plant response. (Recall



that three dynamic responses, including model error, were considered concurrently
in determining the optimum.) These tuning parameters satisfy goals 1 through 3
in our control performance definition. Note that compared to the results reported
in Table 9.2, which satisfy only goal 1, the values satisfying all three goals have a
lower gain, longer integral time, and shorter derivative time. Thus:
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The controller is detuned, leading to less aggressive adjustments by the feedback
controller, to account for modelling errors and to reduce the variation in the manip
ulated variable.

These tuning constants will not perform best when the model error is zero and no
noise is present, but they will perform better over an expected range of conditions
and are the values recommended for initial application.
EXAMPLE 9.1.
A modified process in Figure 9.1, with a shorter pipe and larger tank described
by the nominal model in equation (9.6), is to be controlled by a PID controller.
Determine the best initial tuning constant values for a PID controller based on (a)
goal 1 alone and ib) goals 1 through 3.

Gvis)G'pis)Gsis) Gpis) =
\.0e- I s

8s+ 1

Gds) =
1

8.S + 1 with Dis) = -s (9.6)

Gds) = KC\Eis) + ^1-Tds CVis)Tis

The mathematical optimization must be performed for the two cases. The re
sults of the analysis are given in Table 9.4. The results are similar to the example
discussed previously in that the controller gain is decreased, the integral time
is increased, and the derivative time is decreased—in this example to zero—as
the additional goals are added. The net effect of adding goals 2 and 3 is that
total deviation of the controlled variable from its set point (IAE) is larger than that
achieved for the nominal process without modelling error. However, the perfor
mance indicated by the more comprehensive measure, considering all cases and
behavior of both the controlled and manipulated variables, is the best possible

-3
do ©

h»FA

TABLE 9.4
Results for Example 9.1

Case
Contro l ler In tegra l Der ivat ive
gain, Kc t ime, T, t ime, Td IAE

(a) Performance, goal 1 alone 3.0
ib) Performance, goals 1-3 1.8

3.7
5.2

1.1
0.0

1.46
2.95

Evaluated for nominal model (without error) without noise.

■recommended
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with a PID control algorithm. Thus, the tuning from case (b) is more robust, as will
be demonstrated in Example 9.5.

Again we see that there is interaction among the tuning constants. As demon
strated for a simple process in Example 8.5, each tuning constant affects many
control performance measures, such as decay ratio and overshoot. Therefore, all
tuning constants should be determined simultaneously to obtain the best possible
performance within the capability of the PID algorithm.

In conclusion, a very general method has been presented in this section for
evaluating controller tuning constants. The method can be applied to any process
model and controller algorithm and was applied to the linear, first-order-with-
dead-time process and PID controller in this section. The method addresses most
control performance issues in a flexible manner, so that the engineer can adapt
it to most circumstances by changing a few parameters in the control objective
definition, such as the magnitude of the model errors or the allowable variability
of the manipulated variable. However, an optimization must be performed for each
individual problem, which could be very time-consuming. Thus, the next section
describes how controller tuning can be performed quickly in many situations using
correlations developed with the optimization procedure.

9.4 n CORRELATIONS FOR TUNING CONSTANTS
The purpose of tuning correlations is to enable the engineer to calculate tuning
constants for many process applications that simultaneously achieve the three
goals defined in Section 9.2 without performing the optimization. Correlations
for tuning constants will reduce the engineering effort in controller tuning, and,
perhaps more importantly, the correlations will show how the controller constants
depend on feedback process dynamics. For the correlations developed in this sec
tion, the tuning goals will be those defined in Table 9.1 and used in the previous
example:

1. Minimize IAE
2. ±25% (correlated) change in the process model parameters
3. Limits on the variation of the manipulated variable

The correlation should provide values for Kc, 7>, and Td based on values in
a process dynamic model. The general approach is to select a model structure
and determine the dimensionless parameters that define the closed-loop dynamic
response. To provide simple, yet general correlations, the process model must
have a small number of parameters. Modelling examples in Chapter 6 demon
strated that many processes can be represented by a first-order-with-dead-time
transfer function; therefore, this model structure is used in developing the tuning
correlations:

Gds)G'p(s)Gs(s)
,-es

Gp(s) = \ + xs (9.7)



Since the control response is determined by the closed-loop transfer function,
the form of the correlation is determined from this transfer function:

C V i s ) G d i s ) G d i s )
Dis) 1 + Gc(s)Gp(s) 1 + ^(1 + t^ + ^)(^TT^)

(9.8)

Every process responds with a different "speed," which can be characterized
by the time for a step response to achieve 63 percent of its final value. For a first-
order-with-dead-time process, this time is (9 + z). Dividing the time by this value
"scales" all processes to the same speed, so that one set of general correlations can
be developed. The relationships are

t ' =
t

s —e + x e + z
Substituting the modified Laplace variable for the time-scaled equation gives

C V ( s ' ) G d ( s ' )

(9.9)

Dis*)
1 + KCKB 1 +.0 1 + Tds' \ ( e-es''(e+r)

T,s'/iO + x) 9 + z J \ \+XS'/(9 + x)
(9.10)
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The resulting equation has one parameter that characterizes the feedback process
dynamics, 6/(6 + z), which we shall term the fraction dead time.

This parameter indicates what fraction of the total time needed for the open-loop
process step response to reach 63 percent of its final value is due to the dead time;
it has values from 0.0 to 1.0. For example, the base case process data for Figure
9.1 had 9 = 5 and z = 5; thus, the fraction dead time was 0.5. Note that z/(9 + z)
is not independent, because z/(9 + z) = 1 — 9/(9 + z).

Analysis of equation (9.10) also demonstrates that the controller tuning con
stants and process dynamic model parameters appear in the following dimension
less forms:

Gain = KcKp
Integral time = Tj/(9 + x)

Derivative time = Td/(9 + x)
(9.11)

These relationships are consistent with a common-sense interpretation of the feed
back controller relationships. The dimensionless gain involves the magnitude of
the change in the manipulated variable to correct for an error and should be related
to the process gain. Also, proportional mode has no time dependence. The dimen
sionless integral time and derivative times involve the time-dependent behavior of
the controlled variable and should be related to the dynamics or "time scale" of
the process.

The disturbance model is assumed to be the same as the feedback process
model; that is, Gdis) = Gpis). Noise is assumed to be present in the controlled
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variable, as discussed in Section 9.3 and defined in Appendix E. The resulting
transfer function has only one parameter that is entirely a function of the process
[i.e., the fraction dead time 9/(9 + r)]; the tuning constants, expressed in the
dimensionless forms in equation (9.11), also influence the dynamic performance.
For the control objectives and process model (with error estimate) defined in Table
9.1, the tuning correlations are developed by (1) selecting various values of the
fraction dead time in its possible range of 0 to 1 and (2) optimizing the control
performance for each value by adjusting the dimensionless tuning constants.

The results for the disturbance response are plotted in Figure 9.5a through c.
The correlations indicate that a high controller gain is appropriate when the process
has a small fraction dead time and that the controller gain generally decreases as
the fraction dead time increases. This makes sense, because processes with longer
dead times are more difficult to control; thus, the controller must be detuned. The
dimensionless derivative time is zero for small fraction dead time and increases for
longer dead times to compensate for the lower controller gain. The dimensionless
integral time remains in a small range as the fraction dead time increases.

The same procedure can be performed for the other major input forcing: set
point changes. All of the assumptions and equation simplifications are the same,
and the set point is assumed to change in a step. The resulting correlations are pre
sented in Figure 9.5d through/ The tuning constants have the same general trends
as the fraction dead time increases. The selection of whether to use the disturbance
or set point correlations depends on the dominant input variation experienced by
the control system.

The range of model errors, ±25 percent, is reasonable when all parameters are
significantly different from zero. However, when this percentage error is used, a
very small dynamic parameter would also have a very small associated error, which
may not be realistic. Because an underestimation of the error would generally lead
to a controller that is too aggressive, and because the controller for 9/ (9+x) = 0.10
is already quite aggressive, the tuning correlations are not extended lower than 0.10,
and the recommended tuning constant values are shown by the lines maintaining
the constant values for 9/(9 + x) from 0.10 to 0. These values can be improved
through fine-tuning, if required, as described later in this chapter.

The tuning correlations presented in this section were developed by Ciancone
and Marlin (1992) and will be referred to subsequently as the Ciancone correla
tions. The controller tuning method using the Ciancone correlations consists of
the following steps:

1. Ensure that the performance goals and assumptions are appropriate.
2. Determine the dynamic model using an empirical method (e.g., the process

reaction curve), giving Kp, 6, and z.
3. Calculate the fraction dead time, 6/(6 + r).
4. Select the appropriate correlation, disturbance, or set point; use the disturbance

if not sure.
5. Determine the dimensionless tuning values from the graphs for KcKp,

Ti/(6+z),tov\Td/(6 + z).
6. Calculate the dimensional controller tuning, e.g., Kc = (KCKP)/KP.
7. Implement and fine-tune as required (see Section 9.5).
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FIGURE 9.5

Ciancone correlations for dimensionless tuning constants, PID algorithm. For disturbance
response: ia) control system gain, ib) integral time, ic) derivative time. For set point

response: id) gain, (e) integral time, if) derivative time.
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The reader should recall the likely accuracy in the dynamic model when tuning a
PID controller. The gain, time constant, and dead time from empirical identification
have significant errors (20 percent is not uncommon); therefore, precise values
from the correlations are not required, because small errors in reading the plot are
insignificant when compared with the modelling errors. The use of the correlations
is demonstrated in the following examples.

EXAMPLE 9.2.
Determine the tuning constants for a feedback PID controller applied to the three-
tank mixing process for a disturbance response (step in xAB) using the Ciancone
tuning correlations.

The first step is to fit a first-order-with-dead-time model to the process, which
was done using the process reaction curve method in Example 6.4. The results
were Kp = 0.039 %A/% valve opening; 6 = 5.5 min; and z = 10.5 min. Then, the
independent parameter is calculated as 6/i&+z) = 0.34. The dependent variables
are determined from Figure 9.5a through c, and subsequent tuning constants are
calculated as follows:

KcKp = 1.2
77/(0+ r)= 0.69
Td/(0 + z) = 0.05

Kc = 1.2/.039 = 30% open/%A
77= 0.69(16) = 11 min
Td= 0.05(16) =0.8 min

The dynamic response of the feedback system to a step feed composition
disturbance of magnitude 0.80%A occurring at time = 20 is given in Figure 9.6,
which results in an IAE of 7.4. The dynamic response is "well behaved"; that is, the

100 120
Time

180 200

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0
Time

FIGURE 9.6

Dynamic response of three-tank process and PID controller with tuning
from Example 9.2.



controlled variable returns to its set point reasonably quickly without excessive os
cillations, and the manipulated variable does not experience excessive variation.
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The result in Example 9.2 shows that the correlations, which were developed for
first-order-with-dead-time plants, provide reasonable tuning for plants with other
structures as long as the feedback process dynamics can be approximated well with a
first-order-with-dead-time model. Recall that overdamped processes with monotonic
S-shaped step responses are well represented by first-order-with-dead-time models.

EXAMPLE 9.3.
When developing the correlations, the assumption was made that the disturbance
transfer function was the same as the process feedback transfer function. Evaluate
the tuning correlations for the same three-tank system considered in Example 9.2
with a different disturbance time constant.

Original disturbance transfer function:

GAs) = (55 + l)3
Altered disturbance transfer function:

Gds) =
1

i5s + \)
The altered transfer function would occur if the disturbance entered in the last

tank of the three. The resulting transient of the system under closed-loop control
is plotted in Figure 9.7. As would be expected, the response is different, with the
faster disturbance resulting in poorer control with respect to the maximum devi
ation and IAE, which increased to 8.3. The slightly poorer control performance is
the result of a more difficult process, due to the faster disturbance, being con
trolled. Note that the correlation tuning constants give reasonably good, although
not "optimal," performance even when the disturbance transfer function differs
significantly from the feedback transfer function.

EXAMPLE 9.4.
The correlations have been developed assuming that the process is linear, and it
has accounted for changes in the process dynamics through the range of model
error considered. In this example a process is considered in which the nonlinear-
ities influence the dynamics during the transient response. The three-tank mixer
described in Example 7.2 is nonlinear if the flow of stream B changes, as seen by
the fact that the time constants and gain in the linearized model depend on FB.
Determine the tuning and dynamic response for the situation in which FB changes
from its base value of 6.9 m3/min to 5.2 m3/min and returns to its base value.

The tuning for the initial condition has been determined in Example 9.2. Before
evaluating the dynamic response, it is worthwhile determining the change in the
process dynamics resulting from the change in FB, which is summarized here for
the models linearized about the base and disturbed steady states:

lA0

&T
l A l

f a t*r *A2
1 lA3

0
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FIGURE 9.7

Dynamic response of three-tank mixing process with faster disturbance
dynamics from Example 9.3.

Parameter Dependence on process
B a s e c a s e D i s t u r b e d c a s e
value [FB = 6.9) value [FB = 5.2)

Time constant, z (min)
Steady-state gain, KP (%A/% open)

V/(FB + FA)
Kv[(xA)A - (xA)B]FB/(FB + FA)2

5.0
0.039

6.6
0.051

The process model changes during the transient, and it would be proper to
correct the tuning. However, it is not possible to change the tuning for all distur
bances, many of which are not measured; thus, the base case tuning is used during
the entire transient in this example. The results are plotted in Figure 9.8. Note that
the first transient in response to a decrease in flow experiences rather oscillatory
behavior; this is because the process dynamics are slower because of the change
in operations, and consequently the tuning is too aggressive. When returning to
the base case, the tuning is only slightly underdamped, because the conditions
are close to the dynamics for which the tuning constants were determined. Even
for this significant change in process dynamics, the PID algorithm with tuning from
the Ciancone correlations provides acceptable performance. Thus, the system is
robust to disturbances of the magnitude considered in this example. However,
larger changes in process operation would result in larger model variation and
could seriously degrade performance or even cause instability. One method for
maintaining good control performance when large changes in dynamics occur is



to continually recalculate the tuning constant values based on measured distur
bances. This method is explained in Section 16.3.

s i m M s s s i s s ^ s ^
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The results of the tuning studies lead to two important observations concerning
the effects of process dynamics on tuning. First, the controller should be detuned;
that is, the feedback adjustments should be reduced as the fraction dead time of
the feedback process increases. Thus, we conclude that dead time in the feedback
loop results in reduced or slower feedback adjustments and, presumably, poorer
control. Theoretical justification for this result is presented in Chapter 10, and the
effect on feedback performance is confirmed in Chapter 13.

The second observation is that two models, the feedback process Gp(s) and
the disturbance process Gd(s), both affect the tuning; this is determined by com
paring the results for a process disturbance, which enters through a first-order time
constant, with those for a set point change, which is a perfect step. However, the
major influence on tuning is normally from the feedback dynamics, and again,
theoretical justification for this result will be presented in the next chapter. Other
studies by Hill et al. (1987) showed that the tuning is insensitive to the disturbance
time constant when Zd > r; thus, the differences between Figure 9.5a through c
and 9.5d through/ typically represent the maximum change in tuning in response
to different disturbance types.

In many control applications the derivative mode is not employed. This is the
case if the measurement signal has considerable noise. Also, the tuning correlations
demonstrate that the derivative time is very small when the fraction dead time
is small. Thus, tuning correlations for a proportional-integral (PI) controller are
provided in Figure 9.9a and b for a disturbance and set point responses. Note that
it would not be correct to use the PID values and simply set the derivative time Td
to zero, because of the interaction between the tuning constant values, although
the correlations in Figure 9.9 are close to those in Figure 9.5 because of the small
values of the derivative time in Figure 9.5.

The tuning correlations presented in Figures 9.5 and 9.9 depend on the goals
specified for the control performance. It is interesting to compare the results to a
different set of goals. One of the earlier studies using an optimization procedure was
performed by Lopez etal. (1969). In their study the goal was simply to minimize the
IAE (our goal 1), without concern for potential variation in feedback dynamics or
limitations on manipulated-variable transient behavior. Their results are presented
in Figure 9.10a and b and are applied in the following example.

EXAMPLE 9.5.
The altered mixing process in Figure 9.1, with the transfer function given below, is
to be controlled with a PI controller. Calculate the tuning constants according to
correlations in Figure 9.9a and b and 9.10 using the nominal model given below.
Calculate the transient responses to a step disturbance of 2%A in feed composition
at time = 7 for (a) the nominal feedback process and ib) an altered plant as defined
below. Note that the nominal and actual plants have the same steady-state gain
and "speed of response," as measured by the time to reach 63 percent of their
steady-state value to a step change input; they differ only in their fraction dead
time.

Controlled variable
T

Manipulated variable
T

Disturbance

400

FIGURE 9.8

Dynamic response for Example 9.4 in
which the feedback dynamics change

due to the disturbance.
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FIGURE 9.10

Lopez et al. (1969) tuning correlations for minimizing the
IAE for a PI controller in response to a disturbance.
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The tuning constant values can be calculated for each correlation from the
charts using the nominal model as

Ciancone Lopez

Kc
T,

0.9
5.2

1.5
6.0

%open/%A
min

The closed-loop dynamic responses are given in Figure 9.11a through d, and
the control performance measure of IAE is summarized as
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Dynamic responses of deviation variables. With Ciancone tuning: (a) nominal plant,
ib) altered plant With Lopez tuning: (c) nominal plant, id) altered plant.

Ciancone Lopez

IAE for nominal plant 5.9
IAE for altered plant 7.6

4.0
14.5-4- ■Ciancone gives robustness

to model errors

These results should be anticipated from the control objectives used to derive
the correlations. The Lopez correlation minimized IAE without consideration for
model error. Thus, it performs best when the plant model is known perfectly, but it
is unacceptably oscillatory and tends toward instability for even the modest model
error considered in this example. The Ciancone correlations determined the tuning
to perform well over a range of process dynamics; thus, the performance does
not degrade as rapidly with model error.



The results of this section show that simple PID tuning correlations can be
developed for processes that can be approximated by a first-order-with-dead-time
model. Selection of the proper correlation depends on the control performance
goals. If the situation indicates that very accurate knowledge of the process is
available and there is no concern for the manipulated-variable variation, the best
performance (i.e., lowest IAE of the controlled variable with PI feedback) is ob
tained using the Lopez correlations; however, the control system with these tuning
constants will not perform well if the process model has significant error or if the
measurement has significant noise. As the control performance goals are defined
more realistically for typical plant situations, the resulting tuning allows for more
modelling error and for some limitation on the manipulated-variable variation, and
the resulting correlations have a broader range of good performance. This is an
important factor for control systems that function continuously for months or years
as plant conditions change. Thus, the Ciancone correlations are recommended here
as a starting point for most control systems.
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1\ming correlations have been developed as a function of fraction dead time for a
PID controller, a first-order-with-dead-time process, and typical control objectives.
These are recommended for obtaining initial tuning constant values when the plant
situation matches the factors in Table 9.1.

It is important to recognize that no claim is made for optimality in the real world,
although an optimization method was used to determine the solution to the math
ematical problem. The Ciancone correlations simply used a realistic definition of
control performance to determine tuning. Also, while examples have shown that
the correlations are valid for different disturbance model parameters and model
errors, extrapolation beyond the defined conditions of the correlation (Table 9.1)
must be done with care.

9.5 a FINE-TUNING THE CONTROLLER TUNING
CONSTANTS
The tuning constants calculated according to any method—optimization, correla
tions, or the stability analysis in the next chapter—should be considered to be initial
values. These values can be applied to the process to obtain empirical information
on closed-loop performance and modified until acceptable control performance
is obtained. Determining modifications based on initial dynamic responses, often
termed fine-tuning, is necessary because of errors in the base case process model
and simplifications in the tuning method. A fine-tuning method is described here
for a process being controlled by a PI control algorithm. This method is easy to
perform and gives additional insight into the way the controller modes combine
when controlling a process.

After the initial tuning constants have been calculated and entered into the
algorithm, the controller's status switch can be placed in the automatic position to
allow the controller to perform its calculation and adjust the final element. Then,
the response to a set point change is diagnosed to determine whether the tuning is
satisfactory. A set point change is considered here because



290

CHAPTER9
PID Controller Tuning
for Dynamic
Performance

1. It can be introduced when the diagnosis is performed.
2. A simple time-dependent input disturbance—a step—is easy to achieve.
3. The magnitude can be selected by the engineer.
4. The effects of the proportional and integral mode calculations can be separated,

which greatly simplifies the diagnosis of the controller behavior.

The step response of a control system with a well-tuned PI controller is given in
Figure 9.12. The first important feature is the immediate change in the manipulated
variable when the set point is changed. This is due to the proportional mode and
is equal to KcAEit), which is equal to Kc ASP(f). This initial change is typically
50 to 150 percent of the change at the final steady state. The second feature is the
delay, due to the dead time, between when the set point is changed and when the
controlled variable initially responds. No controller can reduce this delay to be less
than the dead time. During the delay the error is constant, so that the proportional
term does not change, and the magnitude of the integral term increases linearly
in proportion to KcEit)/Tj. When the controlled variable begins to respond, the
proportional term decreases, while the integral term continues to increase. At the
end of the transient response the proportional term, being proportional to error, is
zero, and the integral term has adjusted the manipulated variable to a value that
reduces offset to zero.

The value of this interpretation can be seen when an improperly tuned con
troller, giving the response in Figure 9.13, is considered. The control response
seems slow, resulting in a large IAE and a long time to return to the set point.
Analysis of the transient indicates that the initial change in the manipulated vari
able when the set point is changed, termed the proportional "kick," is only about
30 percent of the final value, which indicates too small a value for the controller
gain. The conclusion for the diagnosis is that the control system performance can
be improved by increasing the controller gain, most likely in several moderate
steps, with a plant test at each step to monitor the results of the changes. The

Time
FIGURE 9.12

Typical set point response of a well-tuned PI control
system.
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Time
FIGURE 9.13

Example of a dynamic response of a PI control system with
the controller gain too small.

Time
FIGURE 9.14

Dynamic response of the control system in Example 9.6.

substantially improved performance of the control system with the controller gain
increased by a factor of 2.5 is shown in Figure 9.12.

EXAMPLE 9.6.
A PI controller was not providing acceptable control performance. Preliminary
analysis indicated that the sensor and control valve were functioning properly, so
a step change was introduced to its set point. The response is given in Figure
9.14. Diagnose the performance, and suggest corrective action.

Solution. The transient response is highly oscillatory, indicating a controller that
is too aggressive. The cause could be too large a controller gain, too short an in
tegral time, or both. The immediate proportional change is only about 70 percent
of the final change in the manipulated variable; therefore, the controller gain is in a
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reasonable range, is certainly not too large, and should not cause oscillatory be
havior. The conclusion is that the integral time is too short. The transient response
with double the integral time is that shown in Figure 9.12, confirming that reason
ably good control performance can be achieved by changing only the integral
time.

VA0

15i*r lA2

i*r#

EXAMPLE 9.7.
The three-tank mixing control system has been tuned initially, and the system's
dynamic response to a set point change is given in Figure 9.15a. Note that the
measured concentration experiences many small disturbances because of chang
ing inlet concentrations and flows in the process as well as measurement error.
This noisy data more closely represents empirical data from process plants than
do the ideal simulations in Figures 9.12 through 9.14. The control objectives have
two unique aspects in this example, which are different from the general objectives
considered so far but are not unusual in the process industries.

1. The downstream process is sensitive to oscillations in the concentration.
Therefore, the controlled concentration should not experience overshoot.

2. The plant that supplies component A functions better with a smooth opera
tion. Therefore, high-frequency variation in the manipulated variable is to be
minimized.

The initial tuning constants are Kc = 45% opening/%A, Ti = 11.0 minutes, and
TD = 0.8 minute. Suggest changes to the tuning constant values that will improve
the performance.

Solution. The large, high-frequency variation in the manipulated variable is
caused to a large extent by the noisy measurement and the derivative mode.
Therefore, the first suggestion would be to reduce the derivative time to zero. Next,
the controlled variable overshoots its set point, which can be prevented by making
the controller feedback action less aggressive. Reducing the controller gain will
slow the response and also slightly reduce the high-frequency variation of the ma
nipulated variable, both desirable effects. The resulting tuning constants, which
could be arrived at after several trials, are Kc = 15, Tt = 11, and Td = 0.A much
more satisfactory dynamic response—that is, one that more closely satisfies the
stated objectives for this example—was obtained with these tuning constants, as
shown in Figure 9.15£>. Note that the much smoother performance was achieved
with only a small increase in IAE, which changed from 11.6 to 12.9.

These fine-tuning examples demonstrate that

Analysis of the responses of the controlled and manipulated variables to a step
change in the set point provides valuable diagnostic information on the causes of
good and poor control performance, allowing the performance to be tailored to
unique control objectives;
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Dynamic responses of feedback control system in Example 9.7:
ia) initial (IAE = 11.6); ib) after fine-tuning (IAE = 12.9).

Again, we see that both the controlled and manipulated variables must be observed
when analyzing the performance of feedback control systems; complete diagnosis
is not possible without information on both variables.

9.6 m CONCLUSIONS
The starting point for feedback control consists of the control objectives, here
specified as three goals. These goals encompass the major factors in process control
performance; the specific parameters used (e.g., percent model error and limits on
manipulated-variable variation) can be selected to match a specific problem.
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Control performance must be defined with respect to all important plant operating
goals. In particular, desired behavior of the controlled and manipulated variables
must be defined for expected disturbances, model errors, and noisy measurements.

A simple variable reduction of the closed-loop transfer function, based on dimen
sional analysis, can be employed in extending the optimization to general tuning
correlations. These correlations are applicable only to those systems for which
the underlying assumptions are valid: The process should be well represented by a
first-order-with-dead-time model, the model errors should be in the assumed range,
and the desired controlled and manipulated behavior should be similar to the ob
jectives stated in Table 9.1. Examples have demonstrated that the process does
not have to be perfectly first-order with dead time to achieve acceptable dynamic
responses using the tuning correlations.

A three-step tuning procedure would combine methods in previous chapters
with methods in this chapter. The first step would be to determine the feedback
process model G''Js)Gvis)Gsis) by fundamental modelling or empirical mod
elling, using either the process reaction curve or a statistical identification method.
Industrial controls are most often based on empirical models. In the second step,
the initial tuning constant values would be determined; typically the values would
be determined from the general correlations, but an optimization calculation could
be performed for processes that are not adequately modelled by a first-order-with-
dead-time model. The third step involves a test of the closed-loop control system
and fine-tuning, if necessary. The set point step change provides separate informa
tion on the proportional and integral modes to facilitate diagnosis and corrective
action.

The dynamic behavior of both the controlled and the manipulated variables is re
quired for evaluating the performance of a feedback control system.

The reader should clearly recognize the meaning of the term optimum. It is used
here to mean results (i.e., tuning constant values) that are determined so that certain
mathematical criteria are satisfied. The criteria are goals 1 to 3. Naturally, the
relationships in Table 9.1 were selected to represent the true control situation
closely for the majority of cases. However, control performance has many facets,
from safety through profit; therefore, it is sometimes difficult to condense all of the
critical factors into one measure of control performance. Even if the mathematical
objectives successfully represent the true desired performance, the results will be
satisfactory only when the parameters in the mathematical formulation specify the
desired behavior. These parameters, such as the controlled-variable measurement
noise, the expected plant model error, and the allowable manipulated-variable
variation, are never known exactly. Therefore, although the mathematical solution
is "optimum," the usefulness of the results depends on the accuracy of the input
data.



Practically, the values from the optimization or correlations are used as initial values
to be applied to the physical system and improved based on empirical performance
during fine tuning.

Remember, when tuning a feedback controller, where you
start is not as important as where you finish!
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Finally, the three tuning constants in the PID algorithm all influence the dynamic
behavior of the closed-loop system. They must be determined simultaneously,
because of this interaction.

It should be apparent that the tuning approach using optimization is not limited
to PID controllers; if another algorithm were suggested, its parameters could be op
timized by the same procedure. In fact, some results for other feedback controllers
are presented in Chapter 19.

The techniques in this chapter provide practical methods for controller tuning
that are applicable to many processes. However, they do not provide important
explanations to key questions such as

1. Why do the tuning correlations have the shapes in Figure 9.5?
2. Why can a control system become unstable, and how can we predict when

this will occur?
3. How does the controller change the dynamic behavior of an open-loop system

to that of a closed-loop system?

Methods for answering these more fundamental questions are addressed in the
next chapter.
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An alternative method of fine-tuning is based on shapes or patterns of response
to disturbances. Good and poor responses are identified, and tuning constants are
altered accordingly. This method has been applied in an automatic tuning system.
For an introduction, see

Kraus, T., and T. Myron, "Self-Tuning PID Controller Uses Pattern Recogni
tion Approach," Control Eng., 31, 106-111 (June 1984).

The derivative mode can substantially improve the performance of control
loops involving processes that are underdamped or unstable without control. For
underdamped systems, see question 8.17. For open-loop unstable processes, see

Cheung, T., and W. Luyben, "PD Control Improves Reactor Stability," Hydro.
Proc, 58, 215-218 (September 1979).

These questions reinforce the key aspects of dynamic behavior that are considered in
defining control performance and how the performance goals and process dynamics
influence the controller tuning.

QUESTIONS
9.1. Given the results of the process reaction curve in Figure Q9.1, calculate

the PI and PID tuning constants. The process was initially at steady state,
and the manipulated variable was changed in a step at time = 0 by +1%.
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FIGURE Q9.1

9.2. Suppose that control goals different from those in Table 9.1 are specified for
the tuning correlations. Predict the effect on the tuning constant values—
that is, whether each would increase or decrease from the correlation values
from Figure 9.5—for each set of goals.
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id) The only goal is to minimize the IAE for the base case model.
ib) The goals are to minimize IAE for ±25% change in model parameters,

without concern for the manipulated-variable variation,
(c) The goals are to minimize IAE for ±50% change in model parameters,

with concern for the manipulated-variable variation—unchanged from
Table 9.1.

9.3. Confirm the correlation between the linearized model parameters and the
process operating conditions in Table 9.3. Calculate the change in flow rate
for the specified range of model parameters.

9.4. The dynamic responses shown in Figure Q9.4 were obtained by introducing
a step set point change to a PID controller. The dead time of the process
is only a few minutes. For each case, determine whether the control is as
good as possible and if not, what corrective steps should be taken. Note
that the diagnosis of this data would require an exact specification of the
control objectives. Use the general objectives considered in Table 9.1 and
be as specific as possible regarding the change to the tuning constants.
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9.5. The tuning constants for the three-tank control system are given in Example
9.2. Predict how the optimum tuning constants will change as the following
changes are made to the control system. The analysis should be based on
principles of process dynamics, tuning factors, and tuning correlations. Be
as specific as possible without resolving the optimization problem for each
case.
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i b ) T h e v o l u m e o f e a c h t a n k i s r e d u c e d b y a f a c t o r o f 2 . Q u e s t i o n s
ic) The temperature of stream B is increased by 20°C.
id) The set point of the controller is increased to 3.5 percent of component

A in the third-tank effluent.
ie) Substantial high-frequency noise is present in the measurement of the

controlled variable.

9.6. Given the following process reaction curves, for which of the processes is
it appropriate to use the general tuning charts in Figure 9.4a through /?
Explain your answer for each case.
id) Figure 3.7 (tank 2 concentration)
ib) Figure 3.18
ic) Figure 5.5
id) Figure 1.5 (Appendix I)
ie) Figure 13a, 13b
if) Figure 8.4a
ig) Figure 5.17

9.7. Explain in your own words why the dimensionless parameters are
(a) KCKP.
(b) Tj/(9 + z).
(c) Td/(9 + z).

9.8. Derive the closed-loop transfer function for the three-tank mixing process
using the analytical (third-order) linearized model in response to a change in
the composition in the A stream from Example 7.2. Perform a dimensional
analysis using the method demonstrated in Section 9.4, determine the key
dimensionless parameters, and explain the form of tuning correlations for
this model structure and how you would develop them.

9.9. For one or more of the following processes, calculate the PI controller
tuning constants by two correlations: Ciancone and Lopez. Compare the
expected control performance for both correlations in response to a step
change in the controller set point. Under which circumstances would each
correlation give the best constants?
(a) Question 6.1
(b) Question 6.2
(c) CSTR in Section 3.6
(d) Example 5.1
(e) Example 1.2 (Appendix I)
if) Example 6.4

9.10. The two series CSTRs in Example 3.3 with the reaction A -> products
-rA = 6.923 x 10V5000/rCA

with T in K, has its outlet concentration of A, CA2, controlled by adjusting
the inlet concentration Cao- The temperature varies slowly between 290 and
315 K. Would this temperature variation require a significant adjustment
in controller tuning? Justify your answer with quantitative analysis.
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mmme&Mmmmm range of expected plant operation (i.e., the range of plant model parame-
chapter 9 ters) . Suppose that the control engineer knew what percentage of the t ime
PID Controller Tuning that the plant will operate at various operating conditions in the range. Sug-

Performance Sest a modificat ion to the opt imizat ion method, specifical ly the object ive
function, that would include the information on time at each operation in
determining the optimum tuning constants.

9.12. The tuning optimization method integrates the equations over a finite time
to evaluate the IAE.
(a) Write the equations that could be used to evaluate the IAE from the

simulation results.
(b) Write the equations for the ISE and ITAE that could be used with

simulation results. For the ITAE, carefully define when the integration
begins (i.e., where time equals zero).

(c) Examples in this chapter demonstrated that a poor choice of tuning
constant values could lead to an unstable system, with the controlled
variable diverging from the solution. What is the theoretical value of
the IAE for an unstable control system? How would the optimization
system described in this chapter respond if an intermediate set of tuning
constants led to an unstable response?

(d) Determine the theoretical minimum IAE for controlling an ideal first-
order process with dead time in response to a step disturbance.

(e) If an analytical expression were available for CV(f), it could be used in
tuning. Determine the closed-loop transfer function for a PI controller
and a first-order-with-dead-time process, Gp(s) = Kpe~6s/(xs + 1).
For a step set point change, SP(s) = ASP/s, solve for CV(^) and
invert the Laplace transform to obtain CV(t), if possible.

9.13. Control performance goals are defined in Table 9.1. Propose at least one
alternative measure for every entry in the column labeled "Used in This
Chapter." Each should involve a different performance measure and not be
simply a different numerical value. Discuss the advantages of each entry,
the original, and your proposed alternate.

9.14. Tuning constants for a PI controller for the following process are to be
determined.

7 5 e ~ 2 3 s 1 0 0
G'(s)Gds)Gs(s) = —— Gd(s) =8 . 5 ^ + 1 5 ^ + 1

The control objectives are essentially the same as used in this chapter.
A colleague has calculated several sets of values for the controller gain
and integral time. Determine which of these sets of constants, if any, is
acceptable and explain why or why not.

Tuning Case A Case B Case C Case D
Kc 12 12 0.3 0.3
T, 6 1 6 1
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(a) Discuss the advantages of using a set point change response rather than Questions

the disturbance response.
(b) Prove the relationships given in Figure 9.12.
(c) Demonstrate why the initial change in the manipulated variable is about

50 to 150 percent of its final value. Does this tuning guideline depend
on the tuning goals and correlations used?

9.16. Figure 9.2 gives the controlled variable behavior for various values of the
controller gain. Sketch the behavior of the manipulated variable you would
expect for each case and explain your answers. Also, sketch the variable
given here as a function of the controller gain Kc, and explain your answer.

f(¥)'*
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10.1 a INTRODUCTION
To this point, we have developed a control algorithm (the proportional-integral-
derivative controller) and a method for tuning its adjustable constants. One might
ask, "Isn't this sufficient for designing feedback control systems?" The answer is a
resounding "No!", because we do not have a general method for evaluating the ef
fects of elements in the closed-loop system on dynamic stability and performance.

Through various examples and exercises, we have seen how feedback control
can change the qualitative behavior of a process, introducing oscillations in an
originally overdamped system and potentially causing instability. In fact, we shall
see that the stability limit is what prevents the use of a very high controller gain to
improve the control performance of the controlled variable. Therefore, a thorough
understanding of the stability of dynamic systems is essential, because it provides
important relationships among process dynamics, controller tuning, and achievable
performance. These relationships are used in a variety of ways, such as selecting
controller modes, tuning controllers, and designing processes that are easier to
control.

10.2 B THE CONCEPT OF STABILITY
In vernacular English, the term "unstable" has a negative connotation. Certainly,
no one would want to be described as unstable! This undesirable meaning extends
to products of engineering design; we generally want our plants and control sys
tems to be stable. To ensure consistency, we will use a clear and precise definition of
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stability, termed bounded input-bounded output stability, which can be employed
in the design and analysis of process control systems.

A system is stable if all output variables are bounded when all input variables are
bounded. A system that is not stable is unstable.

A variable is bounded when it does not increase in magnitude to ±00 as time
increases. Typical bounded inputs are step changes and sine waves; an example
of an unbounded input is a ramp function. Naturally, process output variables
do not approach ±00 in a chemical plant, but serious consequences occur when
these variables tend toward ±00 and reach large deviations from their normal
values. For example, liquids overflow their vessels; closed vessels burst from high
pressures; products degrade; and equipment is damaged by excessive temperatures.
Thus, substantial incentives exist for maintaining plant variables, with and without
control, at stable operating conditions.

As a further clarification, a chemical reactor would be stable according to our
definition if a step increase of 1°C in its inlet temperature led to a new steady-state
outlet temperature that was 100°C higher. Thus, systems that are very sensitive can
be stable as long as they attain a steady state after a step change. The methods in
this chapter determine stability strictly as defined here, which is required for good
operation but clearly is not alone sufficient to ensure good control performance.
Other aspects of achieving acceptable control performance will be addressed in
Chapter 13.

Diameter = 3 m
Height = 3 m

FIGURE 10.1
Level process for Examples 10.1 and
10.3.

10.3 □ STABILITY OF LINEAR SYSTEMS—A SIMPLE
EXAMPLE
Since control system stability is the goal of this chapter, the definition will be
reinforced through a process example that shows how the addition of feedback
control changes the dynamic response of a linear process. In the next section, the
analysis is generalized to any linear system.
EXAMPLE 10.1.
The response of the non-self-regulating level process in Figure 10.1 to a step
change in the inlet flow is to be determined for a case with proportional-only control.

The linear models for the process and the controller are

dL
•A "j- = F\n — ^out

Fout = KciSP - L) + (F0M)S
(10.1)

Expressing variables in deviation form, equating the set point and initial steady
state (i.e., V = L-LS = L- SP), and combining into one equation gives

A^ = F!n + KcL' (10.2)

By taking the Laplace transform and rearranging, the transfer function for this



system can be derived as
Lis)
K(s)

\/Kc

& )

(10.3)
s + \

Solution. Since the system is simple, the following analytical solution to the equa
tions can be derived for a step change in the inlet flow, F{a(s) = AFm/s.

AFirL' = ■KP 0-*-'/r) (10.4)

with z = A/(-Kc). As can be seen, the controller gain affects the time constant of
the feedback system. As observed in earlier examples, increasing the magnitude
of the controller gain, which gives negative feedback control (which in this case is
Kc < 0), decreases the time constant as well as reducing the steady-state offset.

Note that for this first-order system the controller gain can be set to a very
large magnitude without causing instability. This conclusion can be demonstrated
by analyzing the expression for the time constant, which would have to change
sign to cause instability. Since the time constant is positive and the analytical
solution has a negative exponent for all gains (Kc < 0), this idealized system is
stable for any negative feedback controller gain. This result is not true for most
processes, as will be demonstrated in later examples.

Recall that this analysis is valid only for the ideal, linear level control system
described in equations (10.1), which has no sensor or final element dynamics and
is perfectly linear. Also, this analysis ensures only that variables do not increase
without bound; it does not ensure that the process variables in the real plant will
remain within acceptable limits. Applying the final value theorem, the ultimate value
of the level after a step change in the inlet flow is

AFin

l i m L = V i m s L i s ) = l i m j { ~ K c ) s = ^ ( 1 0 . 5 )
j - > 0

i-Kc)
s + 1 Kc

Substituting the process data into this expression for a 20 m3/h change in
flow and a controller gain of -10 m3/h/m gives a final level deviation of 2 m, which,
assuming that the level began in the middle of its range, is half a meter above
the top of the tank wall! For this input the plant demonstrates nonlinear behavior
by overflowing and is not modelled accurately by equations (10.1) when overflow
occurs. Clearly, good control performance requires more than stability; however,
stability is one essential component of a well-performing control system.

This example demonstrates that the stability of the level system depends on
the sign of the exponential term in the solution and that the feedback controller
affects the exponential term. In the next section, the relationship of the exponential
term to stability is generalized to address a set of ordinary differential equations
of arbitrary order.
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10.4 Q STABILITY ANALYSIS OF LINEAR AND LINEARIZED
SYSTEMS

Essentially all chemical processes are nonlinear. Since no general stability analysis
of nonlinear systems is available, the local stability of the linearized approxima
tion about a steady state is evaluated. The local linear analysis is valid only in
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a very small region (theoretically, a differential region) about the linearization
conditions. We will assume that a differential region exists about the steady-state
operating conditions within which stability can be investigated, and Perlmutter
(1972) gives a thorough justification of the linearized analysis, sometimes referred
to as Liapunov's first method.

Since the control system reduces variability in the controlled variables, the
linear stability analysis is often adequate for making the control design and tuning
decisions. However, we must recognize that the analysis is valid only at a point and
that no rigorous conclusions can be drawn for a finite distance from this point. The
successes of the vast majority of process control strategies designed using linear
methods attest to the validity of the approach, when applied judiciously.

To develop a general stability analysis for linearized systems, the following
nth-order linear dynamic model with a forcing function f(t) is considered.

dnY
+ ai

dn - l
+ ... + anY = f(t) (10.6)dt ' "l dtn~l

Note that we often formulate the model as a set of first-order differential equations,
which can be combined in the form of equation (10.6) by any of several proce
dures, such as taking the Laplace transform of the original models and combining
algebraically.

The solution to equation (10.6) is composed of two terms: the particular
solution, which depends on the forcing function, and the homogeneous solution,
which is independent of the forcing function (Boyce and Diprima, 1986). The
forcing functions for process control systems are set point changes and disturbances
in process variables such as feed composition, which, since they are bounded,
cannot cause instability in an otherwise stable system. Thus, we conclude that
the particular solution of a stable system with bounded inputs must be stable.
Therefore, the stability analysis concentrates on the homogeneous solution, which
determines whether the system is stable, with or without forcing, as long as the
inputs are bounded (Willems, 1970).

The Laplace transform of the homogeneous part of equation (10.6), with all
initial conditions equal to zero, is

,« - i(sn + an-is"-1 + • • • + a{s + a0)Y(s) = 0 (10.7)
As demonstrated in Chapter 4, the solution to equation (10.7) is of the form

Yit) = Axeait +... + (Bx + B2t + -. •)«"''
+ • • • + [Ci cos (a)t) + C2 sin (cot)̂ 0"1 H

(10.8)

where a,- = the ith real distinct root of the characteristic polynomial
cip = repeated real root of the characteristic polynomial
<xq = real part of complex root of the characteristic polynomial

A, B,C = constants depending on the initial conditions
The stability of the linearized system is entirely determined by the values of

the exponents (the a's). When all of the exponents have negative real parts, the
solution cannot increase in an unlimited fashion as time increases. However, if
one or more exponents have positive real parts, variables in the system will be
unbounded as time increases, and the system will be unstable by our definition.
The special case of a zero real part is considered in Example 10.3, where it is shown



that a system with one or more zero real parts is bounded input-bounded output
unstable. Thus, a test for stability involves determining all exponential terms and
can be summarized in the following principle.

• The local stability of a system about a steady-state condition can be determined
from a linearized model.

• The linear approximation of the system is bounded input-bounded output stable
if all exponents have negative real parts and is unstable if any exponential real
part is zero or positive.
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The linear approximation is valid only at the point of linearization. If the process
operation changes significantly, the stability can be determined for several points
with different operating conditions. However, the fact that a system may be stable
for many points does not ensure that it is stable for conditions between these stable
points. This is sometimes referred to as pointwise or local stability determination.
EXAMPLE 10.2.
Determine the stability of the variable T'(t) from the following model.

d 2 T ' d T '——— 1.23—— -1.387" = 0
d t 2 d t (10.9)

The exponential terms can be evaluated according to the following procedure.

is2-\.23s-\3S)T'is) = 0
s2- 1.23*-1.38 = 0

s = -0.71 s = 1.94-*—unstable!
T'it) = A]e-°lu +A2eU94'

(10.10)

It is clear that T'it) is locally unstable about the steady state, because one
of the exponential terms has a real part greater than zero. Insight into the cause
of instability in a process without feedback control is given in Appendix C, where
a chemical reactor is analyzed. (The numerical values for this example are from
Case II in Appendix C, Table C.1.)

' j f e f r a a t o M ^ ^

EXAMPLE 10.3.
The stability of the level process without control iKc = 0) shown in Figure 10.1 is to
be determined. The vessel size and steady-state flow are the same as in Example
10.1. A material balance on the vessel results in the following model:

at Foax(t) (10.11)

The model can be written in deviation variables and in transfer function form
for the case with the outlet flow constant:

. dL'it)
dt

Lis)
F-ds)

= KSf)

Ts

(10.12)

(10.13)

F

To"

'A0 i ^ A
do

T . T' a n ' o o u t
E.
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FIGURE 10.2

Response of the level in Example 103 to
a sine flow disturbance.
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FIGURE 10.3

Response of the level in Example 103 to
a step flow disturbance.

The solution to this equation has a real part of the exponential equal to zero. We
will assume that the process is initially at steady state and investigate the behavior
of the level for two different input flows. First, assume that the flow in varies around
its steady-state value according to a sine, M sin (cot), and the system is initially at
steady state. The analytical solution for the level is as follows, and the dynamic
behavior is shown in Figure 10.2 with A = 7.1 m2, M = 2 m3/mm, and co = 1
rad/min.

M
L'(t) = — [1 - cos (a)t)] = 0.282(1 - cos(O)Aco (10.14)

For this bounded input function, the output of the linearized system is bounded;
therefore, the system is stable in this case. The second case involves a step
function in the inlet flow, which increases by 2 m3/h at time = 0. The analytical
solution for the level subject to a step change of magnitude M from an initial
steady state is as follows, and the dynamic behavior is shown in Figure 10.3.

M
L'(t) = —t= 0.282/A (10.15)

For this bounded input, the output of the linearized model is unbounded (although
the true nonlinear level is bounded because the maximum level is reached and
the liquid overflows). Thus, the result of the stability analysis indicates a serious
deficiency in the level process behavior without control, which should be modified
through feedback.

The difference between the behavior of the levels in these two cases is due
to the nature of the forcing functions. The sine variation in deviation variables
has a zero integral over any multiple of its period; thus, the level increases and
decreases but does not accumulate. The step forcing function has a nonzero
integral that increases with time, and the level, which integrates the difference
between input and output, increases monotonically toward infinity. Since we are
interested in general statements on stability that are valid for all bounded inputs,
we shall consider a system with a zero real part in its exponential to be unstable,
because it is unstable for some bounded input functions.

Local stability analysis using linearized models determines stability at the steady
state; no rigorous information about behavior a finite deviation from the steady state
is obtained.

10.5 u STABILITY ANALYSIS OF CONTROL SYSTEMS:
PRINCIPLES

Again, the local stability of a system will be evaluated by analyzing the linearized
model. The analysis method for linear systems can be tailored to feedback control
systems by considering the models in transfer function form. The resulting methods
will be useful in (1) determining the stability of control designs, (2) selecting tuning
constant values, and (3) gaining insight into how process characteristics influence
tuning constants and control performance. We begin by considering a general



transfer function for a linear control system in Figure 10.4.
CV(s) Gp(s)Gds)Gc(s)
SPis) \+Gp(s)Gds)Gc(s)Gs(s)
C V i s ) G d i s ) (10.16)

Dis) l+Gpis)Gds)Gds)Gsis)
For the present, we will consider only the disturbance transfer function and

will assume that the transfer function can be expressed as a polynomial in s as
follows:

(1 + Gpis)Gds)Gcis)Gds)) CVis) = Gdis)Dis) (10.17)
(sn + alSn~l + a2s"-2 + • • •) CV(j) = (s - ^)(s - fa) • • • (s - pm)D(s)

The right-hand side (the numerator of the original transfer function) represents the
forcing function, which is always bounded because physical input variables cannot
take unbounded values, and we assume that the disturbance transfer function,
Gd(s), is stable.

The essential information on stability is in the left-hand side of equation (10.17),
called the characteristic polynomial, which is the denominator of the closed-loop
transfer function. In the system being considered, Figure 104, the characteristic
polynomial is 1 + Gp(s)Gds)Gc(s)Gs(s). Setting the characteristic polynomial to
zero produces the characteristic equation.

Before continuing, it is important to note that either transfer function in equa
tion (10.16) could be considered, because the characteristic equations of both are
identical. Thus, the stability analyses for set point changes and for disturbances
yield the same results. Examination of the characteristic equation demonstrates

Dis) Gdis)

SPis) ^*0 Eis)

n_
Gds)

MWis)
GJs)

CVmis)

Transfer Functions
Gcis) = Controller
Gvis) = Transmission, transducer, and valve
Gpis) = Process
Gsis) = Sensor, transducer, and transmission
Gdis) = Disturbance

G„is) <♦>
CVis)

Gsis)

Variables
CV(s) = Controlled variable
CVm(s) = Measured value of controlled variable
Dis) = Disturbance
MV(.s) = Manipulated variable
SPis) = Set point

FIGURE 10.4

Block diagram of a feedback control system.
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that the equation contains all elements in the feedback control loop: process, sen
sors, transmission, final elements, and controller. As we would expect, all of these
terms affect stability. The disturbances and set point changes are not in the char
acteristic equation, because they affect the input forcing; therefore, they do not
affect stability. Naturally, the numerator terms affect the dynamic responses and
control performance and must be considered in the control performance analysis,
although not in this part, which establishes stability.

Continuing the stability analysis, the solution to the homogeneous solution
is evaluated to determine stability. For the transfer function, the exponents can
be determined by the solution of the following equation resulting from equation
(10.17):

,«-iis" +axsn-'+a2sn-z + •••) = 0 (10.18)
As before, if any solution of equation (10.18) has a real part greater than or equal
to zero, the linearized system is unstable, because the controlled variable increases
without limit as time increases. The stability test is summarized as follows:

A linearized closed-loop control system is locally stable at the steady-state point if
all roots of the characteristic equation have negative real parts. If one or more roots
with positive or zero real parts exist, the system is locally unstable.

Recall that the roots of the characteristic equation are also referred to as the
poles of the closed-loop transfer function, e.g., Gdis)/[\+Gpis)Gds)Gcis)Gsis)].
This approach to determining stability is applied to two examples to demonstrate
typical results.
EXAMPLE 10.4.
The stability of the series chemical reactors shown in Figure 10.5 is to be deter
mined. The reactors are well mixed and isothermal, and the reaction is first-order in
component A. The outlet concentration of reactant from the second reactor is con
trolled with a PI feedback algorithm that manipulates the flow of the reactant, which
is very much smaller than the flow of the solvent. The sensor and final element are
assumed fast, and process data is as follows.

Process.

V = 5m3 Fs =5m3/min >> pA

Solvent -ao

do
db ©

Reactant
FIGURE 10.5

Series chemical reactors analyzed in Example 10.4.



PI Controller.

vs = 50% open
CAo = 20 mole/m3 k = 1 min-1

CAOis)/vis) = Kv = 0.40 (mole/m3)/(% open)

Kc = 15(% open)/(mole/m3)
7/ = 1.0 min

Formulation. The process model structure for this system is the same as for
Example 3.3, but the data is different and the valve gain is included. The transfer
functions for the process and controller are

GPis) =
Kr

izs + \)izs + \)

Gds)
- * ( ■ ♦ * )

(10.19)
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with

\F + VKJ

10 mole/m3
%

= 0.50 min

The individual transfer functions can be combined to give the closed-loop
transfer function for a set point change, which includes the characteristic equation.

CV(j) Gpis)Gds)Gcis) 15(1+fi)(o:
0.10
55 + l)2

SPis) 1 + Gpis)Gds)Gcis)Gsis)

Characteristic equation.
» ( ■ ♦ * ) « * ? )

(10.20)
1 +

- ♦ " ( ' ♦ a w i w )

0 = 0.25s3+ l.0s2 +2.5s+ \.5

(10.21)

The solution to this cubic equation gives the exponents in the time-domain solution.
These values are

a,,2 = -1.60 ± 2.21 j a3 = -0.81

Since all roots have negative real parts, this system is stable. Remember, we still do
not know how well the closed-loop control system performs, although the complex
poles indicate that the system is underdamped and the integral mode indicates
that the controlled variable will return to its set point for a steplike disturbance.

EXAMPLE 10.5.
The stability of the three-tank mixing process in Example 7.2 is to be evaluated
under feedback control with a proportional-only controller.

lA0

f e
VA1

f r "

1
hdb* VA2

cfe
VA3

0
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FIGURE 10.6

Root locus plot for Example 10.5 for controller gain values of (a) 0, ib) 50,
ic) 100, id) 150, ie) 200, and if) 250.

Assuming that the sensor is fast, Gsis) = 1, the closed-loop transfer function
is

1
C V j s ) = G d s )
Dis) 1 + GPis)Gds)Gcis)Gsis)

i5s + l)3
1 + Kc- 0.039

i5s + l)3
Characteristic equation.

125s3 + 15s2 + \5s + (1 + 0.039 Kc) = 0

(10.22)

(10.23)
The solutions to the characteristic equation determine whether the system is

stable or unstable. Solutions have been determined for several values of the con
troller gain (with the proper sign for negative feedback control), and the results
are plotted in Figure 10.6. Since the characteristic equation is cubic, three solu
tions exist. The system without control, Kc = 0, is stable, because all roots (i.e.,
exponential terms) have the same negative real value (-0.2).

As the controller gain is increased from 0 to 250 in increments of 50, the poles
approach, and then cross, the imaginary axis. This path can be interpreted as the
solution becoming more oscillatory, due to the increasing size of the imaginary
parts, and finally becoming unstable, since the exponents have zero and then
positive real parts. Based on this analysis, the three-tank mixing process is found
to be (barely) stable (and periodic) for Kc < 200 and unstable for Kc > 250; further
study shows that the stability limit is about Kc = 208. The control performance
would be clearly unacceptable when the system is unstable, but again, we do not
yet know for what range of controller gain the control performance is acceptable.

The results of Example 10.5 can be generalized to establish relationships be
tween locations of roots of the characteristic equation (poles of the closed-loop
transfer function). In addition, features of dynamic responses can be inferred from
the poles if a constant transfer function numerator is assumed. These generaliza
tions are sketched in Figure 10.7, which shows the nature of the dynamic responses
for various pole locations. Clearly, the numerical values of the poles (or equiva-
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FIGURE 10.7

Examples of the relationship between the locations of the exponential terms and the
dynamic behavior.

lently, their location in the complex plane) are very important for the dynamic
response of a closed-loop system.

The method of plotting the roots of the characteristic equation as a function of
the controller tuning constant(s) is termed root locus analysis and has been used
for decades. Note that a root-solving computer program is required to facilitate the
construction of the plots. We will use another stability analysis method in further
studies, but we directly calculated the poles of the closed-loop transfer function
here because of the excellent visual display of the effect of the tuning constants
on the exponential terms and therefore on stability. In summary, for a linearized
model (which determines local properties):

Application of the general stability analysis method to feedback control systems
demonstrates that the roots of the characteristic equation determine the stability
of the system.
When the characteristic equation is a polynomial, a straightforward manner of
determining the stability is to calculate the roots of the characteristic equation.
If all roots have negative real parts, the system is bounded input-bounded output
stable; if any root has a positive or zero real part, the system is unstable.

10.6 a STABILITY ANALYSIS OF CONTROL SYSTEMS:
THE BODE METHOD
The method presented in the previous section presents the principles of stability
analysis of transfer functions and provides a vivid picture of the effects of controller
tuning on the stability of control systems. However, we would like to have a method
for analyzing control systems that
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1. Involves simple calculations
2. Addresses most processes of interest
3. Gives information on the relative stability of the system (i.e., how much a

parameter must change to change the stability of the system)
4. Yields insight into how various process and controller characteristics affect

tuning and control performance

The most commonly used stability analysis methods are summarized in Table 10.1.
Since many plants in the process industries have dead time, the methods that require
polynomial transfer functions (root locus and Routh) will not be considered further.
Of the two remaining, the Nyquist method is the most general. However, in spite
of a few limitations, the Bode method of stability analysis is selected for emphasis
in this book, because it involves simple calculations and, more importantly in the
age of computers, gives more easily understood insights into the effect of process
and controller elements on the stability of closed-loop systems.

The basis of the Bode method is first explained with reference to the system in
Figure 10.8a and b; then, a simple calculation procedure is presented with several
worked examples. Suppose that a sine wave is introduced into the set point with
the loop maintained open as in Figure 10.8a. Because the system is linear, all
variables oscillate in a sinusoidal manner. After some time, the system attains a
"steady state," a standing wave in which the amplitudes do not change. The sine
frequency can be selected so that the output signal, CV(f), lags the input signal,
SP(0, by 180°. Note that the relative amplitudes of the various signals in Figure
10.8a would normally be different but are shown to be equal here because the
process and controller transfer functions have not yet been specified.

After steady state has been attained, the set point is changed to a constant
value and the loop is closed, as shown in Figure 10.8&. Since this is a closed-loop
system, the sine affects the process output, which is fed back via the error signal to
the process input. For the frequency selected with a phase difference of 180°, the
returning signal reinforces the previous error signal because of the negative sign
of the comparator.

TABLE 10.1

Summary of stability analysis methods
Method Plant model Stability results Results display

Root locus (Franklin Polynomial in s Relative Graphical
et al., 1991)
Routh (Willems, Polynomial in s Yes or no Tabular
1970)
Bode (1)Open loop-stable Relative Graphical

(2) Monotonic decreasing
amplitude ratio (AR) and
phase angle (0) as frequency
increases

Nyquist (Dorf, 1986) Linear Relative
f e « « I d « A ^

Graphical

CC
Stamp
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Bode stability analysis: (a) behavior of open-loop system with sine forcing;
ib) behavior of system after the forcing is stopped and the loop is closed.

A key factor that determines the behavior of this closed-loop system is the
amplification as the sine wave travels around the control loop once. If the signal
decreases in magnitude every pass, it will ultimately reduce to zero, and the system
is stable. If the signal increases in amplitude every pass, the wave will grow without
limit and the system is unstable. This analysis leads to the Bode stability criterion.
Two important factors need to be emphasized. First, the analysis is performed at the
frequency at which the feedback signal lags the input signal by 180°; this is termed
the critical or crossover frequency. Naturally, the critical frequency depends on all
of the dynamic elements in the closed-loop system. Second, for the amplitude of the
wave to increase, the gain of the elements in the loop must be greater than 1. This
gain depends on the amplitude ratios of the process, instrument, and controller
elements in the loop at the critical frequency. The result is the Bode stability
criterion for linear systems, which gives local results for a nonlinear system.

Stability Analysis of
Control Systems: The

Bode Method

The Bode stability criterion states that a closed-loop linear system is stable when its
amplitude ratio is less than 1 at its critical frequency. The system is unstable if its
amplitude ratio is greater than 1 at its critical frequency.

From this analysis, it is clear that a system with an amplitude ratio of exactly
1.0 would be at the stability limit, with a slight increase or decrease resulting in
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instability or stability, respectively. Because of small inaccuracies in modelling
and nonlinearities in processes, no real process can be maintained at its stability
limit.

Note that the Bode method considers all elements in the feedback loop: pro
cess, sensors, transmission, controller, and final element. Naturally, some of these
may contribute negligible dynamics and can be lumped into a smaller number of
transfer functions. By convention, the transfer function used in the Bode analy
sis is termed the open-loop transfer function and is represented by the symbol
Gods)-

G0L(s) = Gp(s)Gds)Gc(s)Gds) (10.24)

Before the Bode method is discussed further, limitations are pointed out. The
Bode method cannot be applied to a few systems in which Gods) has particular
features:

1. Unstable without control
2. Nonmonotonic phase angles or amplitude ratios at frequencies higher than the

first crossing of —180°

The Bode method is not appropriate for these systems because

1. The experiment in Figure 10.8 cannot be performed for an unstable process.
2. Nonmonotonic behavior in the Bode diagram of Gods) could lead to a higher

harmonic of the critical frequency for which the magnitude is greater than 1.0.

For processes with these features, the Nyquist stability analysis is recommended
(Dorf, 1986).

The amplitude ratio can be determined through analytical relationships intro
duced in Chapter 4. The important relationships are summarized below for a general
transfer function; these were applied to process transfer functions in Chapter 4 and
will be extended here to Gods)- As a brief summary of results in Chapter 4,

1. The frequency response relates the long-time output response to input sine
forcing of the system.

2. The frequency response of a linear system can be easily calculated from any
stable transfer function, G(s), as G(jco).

3. The amplitude ratio is the ratio of the output over the input sine magnitudes
and can be calculated as

AR = \G(jco)\ = V(Re [G(jco)])2 + (Im [Gijco)])2 (10.25)

4. The phase angle gives the amount that the output sine lags the input sine and
can be calculated as

, / r ( . . t - i / I m [ G ( » ] \
(10.26)

Another important simplification provides a way for the frequency response
of a series of transfer functions to be calculated from the individual frequency



responses. First, each individual transfer function can be represented in polar form
by

G i i j a > ) = \ G l i j o > ) \ e - * ' J ( 1 0 . 2 7 )
The series transfer function can then be expressed as
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Gij(o) = Y[ Giijco) = ( Y\ \Giijco)\ ) exp ( -£>/./ ) = ARe'** (10.28)
1=1 1=1

w i t h A R = Y \ \ G d j < o ) \ * = X >

These are especially useful relationships, because the individual transfer functions
used in the Bode method, Gods), are often in series as shown in Figure 10.4 and
equation (10.24).

In addition to the simplifications in the calculation, the frequency response of
a transfer function can be presented in a clear graphical manner using Bode plots.
These plots, introduced in Chapter 4, present the amplitude ratio and the phase
angle as a function of the frequency. The log scales are used to cover larger ranges
of variable values with reasonable accuracy. The reason for the inclusion of the
phase angle plot was not obvious in Chapter 4 but becomes apparent when stability
of feedback systems is evaluated, as the next few examples demonstrate.

The frequency response calculations used in the remainder of this chapter
involve algebraic manipulations to solve for the amplitude ratio, \GodJ<*>)\> and
phase angle, LGodJo)* fr°m me transfer function by setting s = jco. Alterna
tively, these terms can be evaluated directly using basic computer functions; for
example, the following pseudo-code can be used in MATLAB™ to evaluate the
amplitude ratio and phase angle of a first-order-with-dead-time transfer function
at a specified frequency:

Kp = 2.0;
theta = 5.0;
taup = 5.0;
j = s q r t ( - l ) ;
omega = 0.20?
Gp = Kp*exp(-theta*omega*j)/(taup*omega*j + 1)
AR = abs(Gp);
Phase = angle(Gp);
Phase = phase * 180/pi

% define the complex variable
% define the value of f requency in rad/ t ime
% evaluate Gp(jw), a complex variable
% absolute value gives the magnitude
% angle gives phase angle in rad
% to obta in degrees, mul t ip ly by 180/pi

Expressions are provided in Table 10.2 for the amplitude ratio and phase angle of
some simple, commonly used transfer functions. Computer calculations demon
strated above can be used for any transfer functions, including those too complex
to reduce algebraically.

Therefore, the reader is advised to concentrate on the principles introduced and
applications demonstrated in this chapter, with the assurance that no practical limit
exists to easily calculating the information needed for stability analysis.
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TABLE 10.2

Summary of amplitude ratios and phase angles for
common transfer functions [co is in rad/time, n is a positive
integer)
Transfer function Amplitude ratio* Phase angle (°)*

K
K

zs + \

K
ZSS2 + 2zi;S + 1

K
izs + 1)"
„-0s

As

Kc
( ' ♦ £ )

Kd\ + zds)

K
K

y/z20)2 + 1

0

tan-1 (-coz)

K - l / -2zcol- \
\ \ -z2co2)y/i\ - z2co2)2 + (2zco$)2

K \ , ) n t a n " 1 i - c o z )
VVrW + l/

„ /360\1

J_
Aco

-90

Kc.\ + co2T2 tan- l

[coT,)

Kcy/\ + iTdCti)2 tan-' iTdco)

Kc(l + ± + TdS) K.Jl + fa-^)1 --(^-Jj;)
•For the gain > 0.

U
do

f
FIGURE 10.9

Mixing process analyzed in Example
10.6.

EXAMPLE 10.6.
The single-tank mixing process with proportional control shown in Figure 10.9 is
considered. This process is the same as the three-tank mixer in Example 7.2 with
the last two tanks removed. The process transfer function, which includes an ideal
sensor and fast final element dynamics, is given as

Gds) = Kc Gp(s)Gvis)Gsis) =
0.039
5s + 1 (10.29)

with time in minutes. Note that the process is stable without control, since it has
one pole at (-0.2,0) in the real-imaginary plane, so that it satisfies the criteria in
Table 10.1 for the Bode method. The stability is to be determined by the Bode
method.

First, Gods) must be determined. This is the product of the valve, process,
sensor, and controller transfer functions; G0ds) with proportional-only control can
be written as

Gods) = 0.039ffc
5* + l (10.30)



1 0 - 1 1 0 ° 1 0 1
Frequency, <o (rad/min)

ia)

102 103

3
a.

0 i—
-10 -
-20 -
-30 -
-40 -
-50 -
-60 -
-70 -
-80 -
-90 I—

10~3
i i n i n n i i i 11 m i i i i i i n n

10" 1 0 " ' 1 0 ° 1 0 1
Frequency, <o (rad/min)

ib)

102 103

FIGURE 10.10
Bode plot for the Godj<*>) in Example 10.6, with Kc = 1.0.
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The magnitude and phase angle of Gods) can be calculated from G0dj<o)-

AR = |Gol(»I

« ( i r y ( ^ £ )
(0.039/i:c)
J\+25co2

* = LGodio) = L (0.059Kc) + L

. - i

(10.31)

1
55 + 1

= tan"' i-5co)

These expressions are presented in Bode plots in Figure 10.10 for Kc = 1.
Since the phase angle for this first-order system does not decrease below -90°
for any controller gain, the phase angle never reaches -180°, and the feedback
signal cannot reinforce oscillations in the control loop. As a result, this idealized
control system is stable for all negative feedback proportional-only controller gains
(Kc > 0 in this case). As the next example illustrates, nearly every realistic system
can be made unstable with improper feedback control.
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EXAMPLE 10.7.
The mixing process and proportional controller in Figure 10.9 and Example 10.6
are considered here, with the modification that the valve and sensor dynamics are
more realistically modelled according to the following first-order transfer functions
with short time constants:

Gds) = Kc GPis) =
0.039
5s+ 1 Gds) =

1
0.033s + 1 Gds) =

1
0.25s + 1

(10.32)

Equations (10.28) can be used to determine the amplitude ratio and phase
angle for this series system, and the results are

Gods) = (0.039tfc)

\G0djco)\ =

1 1 1
1 + 5s 1 + 0.25s 1 + 0.033s

0 . 0 3 9 / T , 1 1
VI + 25co2 VI + 0.0625w2 VI + 0.001 lo>2 0

t-GodJu) = tan-1 i-5co) + tan-1 (-0.25a;) + tan-1 (-0.033a>) + L (0.059 tfc)

(10.33)
The amplitude ratio and phase angle are plotted in Figure 10.11 for a controller

gain of 1.0. Because of the added dynamic elements in Gods), the phase angle

10"6
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FIGURE 10.11
Bode plot of Godjco) for the system in Example 10.7 with Kc = 1.0.
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exceeds -180°. At the critical frequency (11.6 rad/min), the following values for
the amplitude ratio are determined:

Kc = \.0 |G0L(M)I = 0.0002 < 1.0 Stable
Kc = 500 \GodJ<oc)\ =0.10 < 1.0 Stable
Kc = 6000 \G0dJ(oc)\ = 1.2 > 1.0 Unstable

As can be seen by applying the Bode stability criterion, the system is stable
for controller gain values of 1.0 and 500 because the amplitude ratios at the critical
frequencies are less than 1.0, and the system is unstable for a controller gain of
6000, which has an amplitude ratio greater than 1.0 at the critical frequency.
s©«js;fSHiwaŝ ^

Two important lessons have been learned from the last examples. The first
lesson is that in theory, a stable transfer function Gods) that is first- or second-
order cannot be made unstable with proportional-only feedback control, because
its phase angle is never less than -180°. The second lesson demonstrates that all
real systems have additional dynamic elements in the control loop (e.g., valve,
sensor, transmission) that contribute additional phase lag and result in a phase
angle less than -180°, albeit at a very high frequency.
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Thus, essentially all real process control systems can be made unstable simply by
increasing the magnitude of the feedback controller gain.

EXAMPLE 10.8.
The chemical reactor process and control system in Example 10.4 are changed
slightly. In this case, a transportation delay of 1 min exists between the mixing point
and the first stirred-tank reactor, with no reaction in the transport delay. Therefore,
the process transfer function is modified to include the dead time. A proportional-
integral controller is proposed to control this process with the same tuning as
Example 10.4; ATC = 15 and 7) = 1. Determine whether this system is stable.

The Bode method can be applied to this example with the new aspect that
dead time exists in the process. The first task is to determine Gods)- As explained
above, this transfer function contains all elements in the feedback loop; therefore,
Gods) is

Gods)
. , . ( , ♦ ; )

0.1 Oer
(0.50s + l)2 (10.34)

Solvent ■ 'A0

TL ~Uh

h do
do 1$

Reactant

The amplitude ratio and phase angle for each element can be combined to
give the amplitude ratio and phase angle of G0Lija>).

0.10
i0.50jco+\)2I V W l

- m
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FIGURE 10.12
Bode plot of God]®) for Example 10.8.

101

* = z^+z(1 + i.) + /(_±12_) + Le- J O )

360= tan_1(-l/fy) + 2tan-1 i-0.5co) - l.Oco—
2tt

These terms are plotted in Figure 10.12. Since the amplitude ratio is greater than 1
(1.32) at the critical frequency of 1.31 rad/min, the system is unstable. Note that the
dead time introduced additional phase lag in the feedback system and caused the
system to become unstable. This result agrees with our qualitative understanding
that processes with dead time are more difficult to control via feedback. Stable
control could be obtained by adjusting the tuning constant values.

The preceding examples have demonstrated interesting results. To expand on
these experiences, it would be valuable to understand the contributions of com
monly occurring process models and controller modes to the stability of a feedback
control system. Also, it would be useful, when performing calculations, to have
analytical and sample graphical frequency responses for these common elements.
Both of these goals are satisfied by the analytical expressions and Bode plots pre
sented to complete this section. The plots for the key process components—gain,
first-order, second-order, pure integrator, and dead time—are presented in Figure
10.13a through e; these were developed from the transfer functions and expressions
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FIGURE 10.13
Generalized Bode plots: (a) gain; ib) first-order system.
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Generalized Bode plots: (c) second-order system (the parameter is the
damping coefficient §); (d) dead time.
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Generalized Bode plots: ig) proportional-derivative controller;
ih) proportional-integral-derivative controller for which the derivatve time is
one-tenth of the integral time.



for amplitude ratio and phase angle in Table 10.2. The plots for the PI, PD, and
PID controllers are presented in Figure 10.13/ through h and were also developed
from the analytical expressions in Table 10.2. Note that these plots are presented
in dimensionless parameters, so that they can be used to determine the frequency
responses quickly for a system conforming to one of the general models. The tables
and generalized figures are valid for the frequency responses of transfer functions
with positive gains. When the gain is negative, (1) the amplitude ratio should be
determined using the absolute value of the gain, |AT|, and (2) the phase angle is
smaller by 180° iorn radians), i.e., (LG(jco))K<o = (LG(jco))k>q - 180.

As an example of the preparation of the dimensionless plots, the expressions
for the amplitude ratio and phase angle for a first-order system are given in Table
10.2 and repeated here:

A R - - * '
y/c02X2 + 1

0 = tan-1 (—cox)

AR
~K~n

1
y/c02X2 + 1 (10.36)

Noting that the two variables co and x always appear as a product, they can
be combined into one variable, cox, and the Bode plots expressed as a function of
this single variable. Also, the amplitude ratio can be normalized by dividing by
the process gain Kp. Similar manipulations are possible for the transfer functions
of the other building blocks.

EXAMPLE 10.9.
Determine the amplitude ratio and phase angle of the following transfer function
at a frequency of 0.40 rad/min:

0.039
G(s) = (l+5s)2 (10.37)

The first step is to calculate the parameters in the generalized Figure 10.13c.
The results can be calculated as follows:

, 1 0T2 = 25 t = 5.0 £ = — = 1.02r (10.38)

From the generalized charts, AR/KP = 0.2; AR = 0.2(0.039) = 0.0078; and <p =
-125. The same answers can be determined by using the equations in Table 10.2.
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The Bode plot of any God jco) for a system consisting of a series of common
elements can be easily prepared by using the expressions for these individual ele
ments and equation (10.28). The usefulness of the general plots is not primarily in
simplifying the calculations, because the calculations are not difficult by hand and
computer programs are available to automate the calculations and plot the results.
The real importance is in highlighting the contributions of various components
to the stability of a feedback system. For example, note that an element in the
feedback path that has a large phase angle contributes to lowering the critical fre
quency. Since most process models have amplitudes that decrease with increasing
frequency, a lower critical frequency yields a higher amplitude ratio for Godj^)-
Since a lower amplitude ratio is desired to maintain the amplitude ratio below 1.0
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for stability, elements with the larger phase angle tend to destabilize a feedback
control system. Some of the key features of the most important transfer functions
are summarized in Table 10.3. The readers are encouraged to compare the entries
in the table with the Bode figures so that they understand the major contributions
of each transfer function.

Before we move on to controller tuning, a word of caution regarding terminol
ogy is provided. The common term for the expression in equation (10.24), Gods),
is the open-loop transfer function; hence, the subscript OL. The term refers to Fig
ure 10.8, where the feedback loop was temporarily opened. Unfortunately, the term
open-loop is also used for the response of a process to an input change without con
trol. In this second case, the transfer function being considered is either the process
transfer function Gp(s) or the disturbance transfer function Gd(s), depending on
which input-output relationship is being considered. To avoid misinterpretation,
it is best to relate the subscript OL to Figure 10.8 and to recognize that Gods)
contains all elements in the feedback loop, including the controller. The conven
tional terminology, although not as clear as desired, is used in this book to prevent
confusion when consulting other references.

TABLE 10.3

Summary of key features of process transfer function frequency responses
Transfer funct ion Amplitude ratio, AR Phase angle, <f> Key feature

Gain, K Constant 0
First-order, Monotonically 0 to -90° At corner frequency
l/(w + l) decreases with (co = 1/r), AR = 0.707,

increasing frequency, and cf> = -45°
limiting slope = -1

Second-order, (1) Shape depends on 0 to-180° (1) ARisnot
l/(z2s2 + 2$zs + \) the damping ratio, can monotonic for small

be nonmonotonic damping coefficients
(2) Limiting slope = -2 (2) Key frequency is

co = 1/r
nth order from n Monotonically 0 to (-90)n°
first order in series, decreases with
\/(zs + \)n increasing frequency,

limiting slope = -n
Dead time, 1.0 Oto -oo Ata>= 1/0, <b = -57.3
g-0s and decreases rapidly

as co increases
Integrator, Straight line with a -90° At co = 1/A, AR = 1
\/As slope of -1 from -co

to +oo through (co = 1,
AR = 1)

Notes:
1. All slopes refer to the Bode diagram (A log(AR)/A log(eo)).
2. The phase angles for all transfer functions in this table decrease monotonically as frequency increases.
3. Phase angle values for the case with positive gain.



In summary, Bode stability analysis provides a method for determining the
stability of most feedback control systems that include dead time. The calcula
tions are relatively simple by hand when Gods) involves a series of individual
transfer functions, and a computer can be programmed to perform the calculations
automatically. In addition to providing a quantitative test, the Bode analysis yields
insight into the effects on stability of various elements in the feedback loop.
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10.7 □ CONTROLLER TUNING BASED ON STABILITY:
ZIEGLER-NICHOLS CLOSED-LOOP
The Bode stability analysis provides a way to determine whether a process and
feedback controller, with all elements completely specified, is stable. It is possible
to alter the procedure slightly to determine, for a given process, the value of the
gain for a proportional-only controller that results in a desired amplitude ratio for
Godj(*>) at its critical frequency. In particular, it is straightforward to determine
the controller gain that would result in the system being on the margin just between
stable and unstable behavior. Note that the proportional-only controller affects the
amplitude ratio but not the phase angle, thus making the calculation easier.

The importance of this approach is that the results of the calculation (the con
troller ultimate gain and critical frequency) can be used with tuning rules presented
in this section to determine initial tuning for P, PI, and PID controllers. This tuning
method is an alternative to the method presented in the previous chapter. While
the tuning rules do not generally give as good performance as the Ciancone corre
lations for simple first-order-with-dead-time processes, the method in this section
has two advantages:

1. It can be applied to processes that are not well modelled by first-order-with-
dead-time models.

2. It provides considerable insight into the effects of all loop elements (process,
instrumentation, and control algorithm) on stability and proper tuning constant
values.

As with most tuning methods, the starting point is a process model that can be
determined by fundamental modelling or by empirical model identification. The
method then follows four steps.

1. Plot the amplitude ratio and the phase angle in the form of a Bode plot for
Gods)- At this step, the controller is a proportional-only algorithm with the
gain Kc set to 1.0.

2. Determine the critical frequency coc and the amplitude ratio at the critical
frequency, \G0dJo)c)\.

3. Calculate the value of the controller gain for a proportional-only controller
that would result in the feedback system being at the stability margin. Since the
stability margin is characterized by an amplitude ratio of 1.0 for GodJ<*>c)>
and Kc does not influence the critical frequency, the controller gain at the
stability limit can be determined by first calculating the critical frequency and
then calculating the controller gain.

ZGol(M) = LGpijcoc)GdJ(Oc)GsiJcoc) = -180°

\GodJo>c)\ = Ku \GpijcOc)GdJo)c)Gsijcoc)\ = 1.0
(10.39)
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TABLE 10.4
Ziegler-Nichols closed-loop tuning
correlations
Controller Ke T,

P-only Ku/2 —
PI KJ2.2 /y i .2
PID K J l . l P„/2.0

Td

PM/8

Ultimate gain: Ku =

Ultimate period: Pu = —
coc

Gpijcoc)GdJ(oc)Gsijcoc)\
2n (10.40)

Ku, termed the ultimate gain, is the controller gain that brings the system to
the margin of stability at the critical frequency. Pu, termed the ultimate period,
is the period of oscillation of the system at the margin of stability. Note that
Ku has the units of the inverse of the process gain iKpKvKs)~x and that Pu
has the units of time.

4. Calculate the controller tuning constant values according to the Ziegler-
Nichols closed-loop tuning correlations given in Table 10.4 (Ziegler and
Nichols, 1942). The description "closed-loop" indicates that the analysis is
based on the stability of the closed-loop feedback system, GolCO- These
correlations have been developed to provide acceptable control performance
(they selected a 1:4 decay ratio) with reasonably aggressive feedback action;
they believed that this also maintains the system a safe margin from instability.

VA0

f e
VA1

& " r̂ *A2

i*rt

EXAMPLE 10.10.
Calculate controller tuning constants for the three-tank mixing process in Example
7.2 by using the Ziegler-Nichols closed-loop method.

The transfer function for this process has already been developed, Gp(s) =
0.039/(5s+1)3 and the Bode plot of the transfer function with (Kc = 1) is presented
in Figure 10.14 based on

« - f ' ( ^ ),(5s + l)3

£GOLijco) = 3 tan-1 (—5co)

\G0dJco)\= 0.039 W1+5VJ
If the plot were not available, the calculations would have to be performed by

hand. They involve a trial-and-error procedure to determine the critical frequency
and are often arranged in a table similar to the results in the following figure.
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FIGURE 10.14

Bode plote of Godjco) for Example 10.10 with Kc = 1.
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Frequency
a) (rad/min)

Phase angle
0(°)

Amplitude ratio
AR

0.10 -79.7 0.0279
0.20 -135 0.0138
0.35 -180.8 (critical frequency) 0.0048
0 . 4 0 - 1 9 0 . 3 0 . 0 0 3 5

From the results in the table, the ultimate gain and period can be determined
to be Pu = 2jt/coc = 17.9 min and Ku = 1/ARC = 208. The tuning constants for P,
PI, and PID controllers according to the Ziegler-Nichols correlations are

Control ler Kc (% open/%A) T, (min) Td (min)

P-only
PI
PID

104
94.5

122.4
14.9
8.95 2.2
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200

FIGURE 10.15

Dynamic response of three-tank mixing control system in Example 10.10
with Ziegler-Nichols tuning.

A sample of the transient response for a step change of +0.8%A in the feed
concentration under PI control is given in Figure 10.15. As can be seen, the control
performance is quite oscillatory, resulting in large variation in the manipulated vari
able and in a long settling time. For most plant situations, this is too oscillatory, and
control performance for this system similar to Figure 9.6 would be preferred. The
engineer could fine-tune the controller constants using the concepts presented in
Section 9.6.

Solvent- 'AO

fi
do

do 0
Reactant

EXAMPLE 10.11.
Calculate tuning for a PI controller applied to the series chemical reactors in
Example 10.8. Recall that this is a second-order-with-dead-time process with
Gpis) = 0.10e~s/i0.50s + \)2.

The Bode plot for G0dj<o) with Kc = 1 is given in Figure 10.16. Note that
the contribution of the individual elements in Gods) can be determined using the
following relationships for transfer functions in series, equation (10.28):

£G0dj(o) = L
1

+ L-1 + 0.5 jco 1 + 0.5 jco + Le~xiw + HO.XO) + lKc\=x

. - i 360= tan-1 (-0.5a;) + tan-1 (-0.5a;) - co— +0 + 0
2tc
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FIGURE 10.16

Bode plot of Example 10.11 with Kc = 1; for (a) the dead time, ib) one
first-order system, and ic) the entire transfer function Godj<o)/Kp.

\GodJa>)\ =
1

1 + 0.5 jco

1

1
1 + 0.5 jco

7~JW\ |0.10| |^c Li

1
1+0.25a;2 V 1 + 0.25a;2 (1.0)(0.10)(1.0)

The results in Figure 10.16 are presented so that the effects of the individual
process elements are clearly displayed. The dead time and one first-order system
are designated as a and b, respectively. The overall amplitude ratio and phase
angle for G0dj<o) can be determined from the foregoing equations. When the
frequency responses of the individual elements are presented in the Bode plot,
the overall amplitude ratio is the sum of the distances on the plot of the individual
deviations from 1.0, since the amplitude ratio is plotted on a log scale. Also, the
total phase angle is the sum of the distances on the plot of the individual deviations
from zero degrees, since the phase angle is plotted on a linear scale. These rules



334

CHAPTER 10
Stability Analysis and
Controller Tuning

are not particularly important as far as simplifying the calculations, which are eas
ily programmed; however, they help the engineer visualize the effects on stability
of individual elements in the feedback loop. For example, any element that con
tributes a large phase lag itself will cause a large phase lag for Godjco). From this
figure, the critical frequency is 1.73 rad/min and the magnitude at this frequency is
0.057; thus, the controller tuning would be, according to the Ziegler-Nichols tuning
correlations in Table 10.4, Kc = 8.0% open/(mole/m3) and T, = 3.0 min.

Before this section is concluded, two common questions are addressed. First,
the novice often has difficulty in selecting an initial frequency for the trial-and-
error calculation for the critical frequency. Since an exact guess is not required, a
good initial estimate can usually be determined from the relationships in Tables
10.2 and 10.3, along with the plots in Figure 10.13. Basically, the initial frequency
should be taken in the region where the Bode diagrams of the individual elements
change greatly with frequency. Rough initial estimates for the frequency are given
by the following expressions:

coz = 1 (first-order system)
cox = 1 (second-order system)
coO — 1 (dead time)

When these calculations give very different results, use the lowest of the esti
mated frequencies to begin the trial-and-error calculations, which usually converge
quickly.

The second common question regards the required accuracy of the converged
answer. The engineer must always consider the accuracy of the information used
in a calculation when interpreting the results. In Chapter 6, the results of empirical
model fitting were found to have significant errors, usually 10 to 20 percent in all
parameters. Therefore, it is not necessary to determine the critical frequency so
that the phase angle deviation from —180° is less than 0.001°! A few degrees error
is usually acceptable. In addition, our application of the results in determining
tuning constants must consider the likely error in the model, as discussed in the
next section.

10.8 o CONTROLLER TUNING AND STABILITY—SOME
IMPORTANT INTERPRETATIONS

Analysis using the Bode plots provides a quantitative method for evaluating how
elements in the control loop influence stability and tuning. The principles and ex
amples presented so far have demonstrated important results, which are reinforced
in the following six interpretations, discussed with further examples. The reader
is advised that these interpretations are very important, not only in tuning single-
loop controllers but also in designing more complex control strategies and process
modifications to achieve desired control performance.

Interpretation I: Effect off Process Dynamics on Tuning
Clearly, the types of process and instrument equipment in the control loop affect
the system stability and feedback tuning constants. It is worthwhile determining



how process dynamics affect feedback control, specifically the gain and integral
time of a PI controller. Since the ultimate gain of the proportional-only controller
is the inverse of the amplitude ratio at the critical frequency, a higher controller
gain for a stable system is achieved by decreasing the amplitude ratio at the critical
frequency. Also, the amplitude ratio generally decreases for process elements as
the frequency increases. Therefore, smaller time constants and dead times lead to
a larger allowable controller gain. By the same logic, smaller values of the time
constants and dead times lead to a smaller integral time, which, since integral
time appears in the denominator, has the effect of giving stronger control action.
The general conclusion is that more and longer time constants and dead times
lead to detuning of the PID controller and that fewer and shorter time constants
and dead times lead to larger controller gain, smaller integral time, and stronger
feedback action. We expect that stronger feedback action will give better control
performance, as is discussed in depth in Chapter 13.
EXAMPLE 10.12.
Consider a set of processes with one to seven first-order systems in series, each
with a gain of 1.0 and a time constant of 5.0. Determine the PI tuning for each of
these systems.

The expressions for the amplitude ratio and phase angle for a series of n
first-order systems can be developed using equations (5.40) and (10.36) and are
given as

AR (, K> yVVl+a>W
. - Icp = n tan (-o;t) with Kp = 1.0 and z = 5.0

The Ziegler-Nichols closed-loop tuning for these systems is as follows:

n coc AR|Wc Kc T,

1 00 — oo —
3 0.35 0.122 3.72 15.0
5 0.145 0.348 1.31 36.1
7 0.096 0.484 0.94 54.5
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Clearly, the controller must be detuned as the feedback dynamics become slower.

The previous example clearly demonstrates that time constants affect feed
back tuning and stability. Next, we would like to learn the relative importance
of dead times and time constants. Since many processes can be represented by a
first-order-with-dead-time model, the key relationships between tuning and frac
tion dead time 6/(0 + z) is investigated for Ziegler-Nichols PID tuning. In fact,
correlations similar to those developed in Chapter 9 can be calculated using the
Bode stability and Ziegler-Nichols methods. The PID controller gain correlations
for Ciancone and Ziegler-Nichols are compared in Figure 10.17. The correlations
have the same general shape, which points to the importance of the stability limit
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FIGURE 10.17

The effect of fraction dead time on PID controller gain with 6 + z
constant.

in determining the most aggressive control action. Recall that stability was not
explicitly considered in the Ciancone method, although tuning that gave unstable
or oscillatory systems would have a large IAE and thus would not have been se
lected as optimum. Note that the Ciancone gain values are lower, partly because
of the objectives of robust performance with model errors and partly because of
the limitation on manipulated-variable variation with a noisy measured controlled
variable. We would expect the Ciancone correlations to yield controllers that are
more robust than those developed with Ziegler-Nichols tuning and thus perform
better when realistic model errors occur.

The Bode analysis demonstrates the fundamental relationship between frac
tion dead time and tuning; the controller gain must be decreased to maintain sta
bility as the fraction dead time increases (at constant 6 + x). Finally, it is important
to reiterate that only the terms in the characteristic equation influence stability.
Therefore, the disturbance transfer function Gd(s) and the manner in which the
set point is changed do not influence the stability of the feedback control system.

F B v — L .t O
CD 1$

? A F b » F a

Increasing Ume constants and dead times requires detuning of the PID controller.
The dead time has a greater effect on the phase lag and tuning. Therefore, increasing
the fraction dead time, 6/(6 + z), at constant 6 + z requires detuning of the PID
controller.

EXAMPLE 10.13.
The two following different first-order-with-dead-time processes are to be con
trolled by PI controllers. Calculate the tuning constants for each and compare the
results.



Plant A Plant B

K p 1 . 0 1.0
t 8 . 0 2.0
0 2 . 0 8.0
\^msiiM^MsmsMs^^M^^^mm\
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For each plant the Bode stability and Ziegler-Nichols tuning calculations are sum
marized as

Plant A Plant B

coc 0.86 0.32
ARC 0.144 0.84 (P-only with Kc = 1)
Ktl 6.94 1.19
Pu 7.3 19.60
Kc 4.1 0.70
Ti 3.65 9.8
Td 0.91 2.45
lB8$KSfiNSjfS$SfiW^M«l!R$ll&i^^

Note that the two plants have the same time to reach 63% of their open-loop
response after a step change: 9 + z. Even though they have the same "speed"
of response, Plant B, with the higher fraction dead time, 9/(9 + z), has a much
smaller controller gain and larger integral time. The difference in controller tuning
constants, resulting from the different stability bound, certainly will result in poorer
control performance for Plant B. (Naturally, the longer dead time for plant B also
degrades the control performance.)

Interpretation II: Effect of Controller Modes on Stability
Each mode of the PID controller affects the stability of the feedback system. As
shown in Figure 10.13a, a gain in Gods) does not affect the phase angle, although
it affects the amplitude ratio. Therefore, increasing the magnitude of the controller
gain tends to destabilize the system; that is, move it toward an amplitude ratio
greater than 1. The proportional-integral controller shown in Figure 10.13/ affects
both the amplitude ratio and the phase angle; it increases the amplitude ratio beyond
the proportional-only controller and increases the phase lag. Thus, increasing the
gain and decreasing the integral time tend to destabilize the feedback system. The
proportional-derivative controller shown in Figure 10.13g increases the amplitude
ratio but contributes negative phase lag, referred to as phase lead. Therefore, the
derivative mode tends to stabilize the feedback system. These qualitative results
are reflected in the Ziegler-Nichols tuning rules, which show the controller gain
decreasing from P-only to PI control and increasing from PI to PID control.
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EXAMPLE 10.14.
The stability of the three-tank mixing process is to be determined for two cases: (a)
under proportional-only feedback control (Kc = 122) and (b) under proportional-
integral feedback control (Kc = 122 and 7> = 8). Note that the controller gain is the
Ziegler-Nichols value for the PID controller from Example 10.10, but the integral
time is slightly different and the derivative time is 0.

The Bode plots are presented in Figure 10.18a and b. From Figure 10.18a, it is
determined that case (a) is stable, since the amplitude ratio (0.60) is less than 1.0
at the critical frequency (0.35 rad/min). From Figure 10.18b, it is determined that
case (b) is unstable, because it has an amplitude ratio greater than 1.0 (1.3) at its
critical frequency (0.25 rad/min). This result clearly demonstrates the effect of the
integral mode, which tends to destabilize the control system, since it contributes
phase lag. Remember that the integral mode is nearly always retained, in spite
of its tendency to destabilize the control system, because it ensures zero steady-
state offset.

Interpretation III: Effect of Modelling Errors on Stability
The preceding examples in this chapter have assumed that the models of the pro
cess were known exactly. Since the true dynamic response is never known exactly,
it is important to determine how model errors affect stability. The best estimate of
the dynamics will be called the nominal model. The general trends are relatively
easy to ascertain based on the Bode stability analysis; plants with amplitude ratios
and phase lags greater than their nominal models will be closer to the stability mar
gin than the nominal model. As a example, consider a first-order-with-dead-time
process. Assuming that a nominal model is used to calculate the tuning constants,
the system will tend to be closer to the stability margin than predicted if (1) the
actual process dead time is greater than the nominal model, (2) the process gain
is greater than the nominal model, or (3) the process time constant is greater than
the nominal model.

A consideration of modelling errors should be an integral part of any con
troller tuning method. The time-domain Ciancone method in Chapter 9 specified
modelling errors and optimized the dynamic responses for several cases simul
taneously, and the Ziegler-Nichols correlations included a factor for model error
by reducing the amplitude ratio at the critical frequency to about 0.5. As a result,
a combination of model errors would have to cause the actual amplitude ratio at
the critical frequency to be about twice the nominal model value for the system
to be unstable. An alternative to the Ziegler-Nichols guideline for tuning based on
the stability limit explicitly considers a measure of potential error. This method
adjusts the controller tuning constant values so that the system is on the stable side
of the limit by a specified amount. Either of the following specifications is used.

GAIN MARGIN. The amplitude ratio of Godjo)) at the critical frequency is
equal to 1/GM, where GM is called the gain margin and should be greater than 1.
This ensures that the system is stable for any process modelling error that increases



WOl aidurexg joj (mf)™!) J» sjoid apog
8 rot aunoid

8 = lI pus ZZ\ = JX MUM [OJiuoo id iq)
(aiun/puj) co 'Xouanbay

, 0 1 o O I i - 0 l j - O I -01

.01

.01

oOI
(auip/psj) m 'Xouanbay

i - O l j - 0 1 -01

>
3•o
cD.O

III = °yi W^ Iojiuod Xjuo-d (»)
(uiui/pbj) ro 'Xauanbay

0 0 I , - 0 1 j 4 ) I e-01
053-

3era

SU0pB)%ldj3JUI
)UB)J0dUII
3UIOS—iCjinqeiS
pue Su;mvx JanojJuo3

6€e

.01 oOI
(uiui/puj) ro 'Xouanbay

, - 0 1 z - 0 l -01
i i i i i i — r i 1 1 1 i i i i i i ■ ■ n r r n - i — i 1 i i i i i t i - i r

sjqBJS >
i > (°«) av ~

=
=

c-01

z-OI

,-01

00l

>3■o

a , 0 l



340

CHAPTER 10
Stability Analysis and
Controller Tuning

CD (6>

Fb»Fa

the actual amplitude ratio of the process by less than a factor of GM. A typical
value for GM is 2.0, but a larger value would be appropriate if large modelling
errors that primarily influenced the amplitude ratio were anticipated.

PHASE MARGIN. The phase angle of G0dj">) where the amplitude ratio is
1.0 is equal to (-180° + PM), with PM a positive number referred to as the phase
margin. A positive phase margin ensures that the system is stable for model errors
that decrease the phase angle. A typical value for the phase margin is 30°, but a
larger value would be appropriate if larger modelling errors were anticipated.

Even if the models were perfect, the values of the gain margin and phase
margin should not be reduced much below 2.0 and 30°, respectively. If they were
reduced further, the performance of the feedback control system would be poor
(i.e., highly oscillatory), because the roots of the characteristic equation would be
too near the imaginary axis. Thus, these margins can be used as a way to include
additional conservatism in the Ziegler-Nichols tuning methods if large model errors
are expected.

EXAMPLE 10.15.
A nominal model for a process is given along with parameters defining processes
I and II, which represent the range of the true process dynamics experienced
as operating conditions vary. Naturally, we never know the true process, but we
can usually estimate the potential deviations between the nominal model and true
process from an analysis of repeated model identification experiments and from
fundamental models, which indicate how the process dynamics change with, for
example, the flow rate.

(a) Determine values for the PI tuning constants based on the Ziegler-Nichols
method for the nominal model and determine the resulting gain and phase mar
gins.

(b) Determine the stability of the true process at the extremes of its parameter
ranges using the tuning based on the nominal model.

Nominal model I
True process

II

KP 1.0 1.0 1.0
z 9.0 9.5 8.0
9 1.0 0.5 2.0
n»™^™i®ij«aww!S»i^^

Tuning can be determined for the nominal model using the Bode and Ziegler-
Nichols closed-loop methods, giving the following results:

Gods)

coc = 1.65 |G0L(M)I= 0.067 tf„ = 14.9

Kc = 6.8 T, = 3.2 Gain margin = 2.0 Phase margin = 30°
The tuning constants appropriate for the nominal model using the Ziegler-Nichols
method, that satisfy the general guidelines for gain and phase margins, are now



applied to the extremes of the dynamics of the true process.

J \ 1 (\^-&s/ 1 \ 1 0e~6s
GoL(5) = 6.8(l + -i-)i^T

\ 3.2.S/ zs + 1

True process with PI control
I I I

c o c 3 . 1
ARC 0.23 < 1

0.66
1.39 > 1

M«f»MSM:j%SMSl&^^

Note that Process I is stable with the nominal tuning, whereas Process II is unstable.
The general trend should be expected, since Process II has a longer dead time,
which contributes substantial phase lag and is more difficult to control. Process I
has a shorter dead time, which contributes less phase lag and is easier to control.
The key point is that the control system would become unstable for the moderate
amount of variation of Process II from the nominal model.

Thus:
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The control engineer should not rely exclusively on general tuning guidelines but
should include information on the expected variation in process dynamics when
tuning controllers.

The goal is normally for the worst-case model error to be stable and to give an
acceptable (usually stable and not too oscillatory) closed-loop dynamic response.
Further calculations for Example 10.15 indicate that gain and phase margins for
the nominal model of 4 and 60°, respectively, were required to give satisfactory
performance for Process II. (This tuning gave gain and phase margins of 2 and
40°, respectively, for Process II.)

The need for a larger stability margin can be understood when the Bode plot is
prepared using the entire range of models possible, not just the nominal model. The
range of possible models depends on the reasons for model errors; here the simplest
approach is taken, with the process models I and II defining the extremes of the
amplitude and phase angles possible. The Bode plot of Gods) = Gc(s)Gp(s),
with the PI controller tuning for the nominal plant from Example 10.15, gives the
range of values in Figure 10.19. Any amplitude ratio and phase angle within the
two lines are possible for the assumed uncertainty. This plot clearly shows the
effects of model errors, the possibility for instability in this case, and the need for
a (larger) safety margin to account for the error. (Other ways to characterize the
model error link the variation in process operation to the change in dynamics; for
example, see Chapter 16.)
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Uncertainty in Example 10.15 defined by models I and II with tuning for the
nominal model.

Interpretation IV: Experimental Timing Approach
The Bode tuning method enables the engineer to calculate the proportional con
troller gain that brings the system to the stability limit. The same principle could be
used to determine the ultimate gain experimentally through a simple trial-and-error
procedure called continuous cycling. The real physical system would be controlled
by a proportional-only controller, the set point perturbed slightly, and the transient
response of the controlled variable observed. If the system is stable, either over-
damped or oscillatory, the gain is increased; if unstable, the gain is decreased. The
iterative procedure is continued, changing Kc until after a set point perturbation, the
system oscillates with a constant amplitude. This behavior occurs when the system
has exponential terms with (very nearly) zero values for their real parts, indicating
that the system is at the stability margin. The gain at this condition is the ultimate
gain, and the frequency of the oscillation is the critical frequency. These values,
which in the continuous cycling procedure have been determined empirically, can
be used with the Ziegler-Nichols closed-loop tuning correlations in Table 10.4 for
calculating the PID constants. From this explanation, it should be clear why the
correlations used in this section are called the "closed-loop" continuous cycling
correlations. Also, we should recognize that this method combines an experimental
identification method with tuning recommendations. This experimental method is
not recommended, because of the significant, prolonged disturbances introduced
to the process. It is presented here to give a physical, time-domain meaning to the
Bode stability calculations.
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Dynamic response of three-tank mixing process with
proportional-only controller and Kc = 206, the ultimate gain.
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EXAMPLE 10.16.
Perform the empirical continuous cycling tuning method on the three-tank mixing
process.

The resulting dynamic response at the stability limit is given in Figure 10.20.
The controller gain was found by trial and error to be 206 and the period to be
about 18 minutes. These are essentially the same answers as found in Example
10.10, where the three-tank mixing process was analyzed using the Bode method.

lA0

& - - :

1 \ . XMTOt~l
lA2

Hb •*A3

"(ST

Interpretation V: Relationship between Stabil i ty and
Per fo rmance

The analysis of roots of the characteristic equation 1 + Gods) = 0 and, equiv
alent̂ , Bode plots of Gods) provide methods for determining the stability of
linear systems. Naturally, any feedback control system must be stable if it is to
provide good control performance. However, stability is not sufficient to guarantee
good performance. To see why, consider the closed-loop transfer function for a
disturbance response:

C V i s ) G d s ) _ x G d s )or CVis) = Dis)D i s ) 1 + G d s ) G p i s ) 1 + G d s ) G p i s )
(10.41)

The stability analysis considers the denominator in the characteristic equation,
1 + Gc(s)Gp(s). Naturally, control performance also depends on the disturbance
size and dynamics that appear in the numerator of the transfer function. For ex
ample, the three-tank mixing process would certainly remain closer to the set point
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for an inlet concentration disturbance of 0.01% in stream B compared to a 1%
disturbance. Also, the system is stable when the feedback controller gain has a
value of 0.1, which would give very poor control performance compared with the
tuning determined in Example 10.10 for this process (Kc = 94.5). Clearly, the
methods in this chapter, while providing essential stability information, do not
provide all the information required for process control design. Control system
performance is covered in more detail in Chapter 13.

Stability is required for good control system performance. However, a control system
can be stable and perform poorly.

EXAMPLE 10.17.
Determine how the control performance changes for the following process with
different disturbance dynamics.

GPis) =
0.039

(l+5s)3
Gds) =

1
(1 + Tds)" (10.42)

with zd = 5 and n equal to (a) 3 and ib) 1.
The system was simulated with a PI controller using the tuning from Example

10.10. The two different disturbance transfer functions given here were consid
ered. The first case (a) is the standard three-tank mixing system, and the dynamic
response is given in Figure 10.15. The results for the faster disturbance, case ib),
are given in Figure 10.21. As expected, the faster the disturbance enters the pro
cess, the poorer the feedback control system performs. Remember, the two cases
considered in this example have the same relative stability because the feedback
dynamics Gpis) and the controller Gc are identical; only the disturbances are dif
ferent. (Also, note that the valve goes below 0% open in the simulation of the

Time
FIGURE 10.21

Dynamic response for the system in Example 10.17, case
ib) (faster disturbance).



linearized model, which is not physically possible; a nonlinear simulation should
be performed.)

Interpretation VI: Modell ing Requirement for Stabil i ty
Ana lys is
We use approximate models for control system analysis and design, and we should
select the model that provides an adequate representation of the dynamic behavior
required by the analysis method. The Bode stability analysis has pointed out the
extreme importance of model accuracy near the critical frequency. Thus, we do not
require a model that represents the process accurately at high frequencies—that
is, those frequencies much higher than the critical frequency.
EXAMPLE 10.18.
Compare the frequency responses for the three-tank mixing process derived from
(a) fundamentals and ib) empirical model fitting.

The linearized fundamental model derived in Example 7.2 and repeated in
equation (10.42) is third-order, and the empirical model is a first-order-with-dead-
time (approximate) model in Example 6.4. Their frequency responses, which equal
Gods) with Gds) = Kc = 1, are given in Figure 10.22. Note that the two frequency
responses are quite close at low frequencies, since they have the same steady-
state gains. At very high frequencies, they differ greatly, but we are not interested
in that frequency range. Near the critical frequency icoc « 0.35), the models do not
differ greatly, which indicates that the two models give similar, but not exactly the
same, tuning constants. Since essentially no model is perfect, we conclude that
the error introduced by using a first-order-with-dead-time model approximation
is often acceptably small for the purposes of calculating initial tuning constant
values. Recall that further tuning improvements are made through fine tuning.
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In summary, tuning methods were presented in this section that are based on
margins from the stability limit. The method can be applied to any stable process
with a monotonic relationship between the phase angle and frequency. The methods
in this section are especially helpful in determining the effects of various process
and controller elements on the tuning constants.

10.9 Q ADDITIONAL TUNING METHODS IN COMMON USE,
WITH A RECOMMENDATION

To this point, two controller tuning methods have been presented. The Ciancone
correlations were based on a comprehensive definition of control performance in
the time domain, whereas the Ziegler-Nichols closed-loop method was based on
stability margin. Many other tuning methods have been developed and reported
in the literature and textbooks. A few of the better known are summarized in this
section, along with a recommendation on the methods to use.

One well-known method, known as the Ziegler-Nichols open-loop method
(Ziegler and Nichols, 1942), provides correlations that can be used with simplified
process models developed from such sources as an open-loop process reaction
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Comparison of Bode plots for exact and approximate process models.

101

curve. The objective of these correlations is a 1:4 decay ratio for the controlled
variable. The tuning constants are calculated from the experimental model param
eters according to the expressions in Table 10.5. Notice that the dead time is in
the denominator of the calculation for the controller gain. This indicates that the
controller gain should decrease as the dead time increases, a result consistent with
other tuning methods already considered. However, the open-loop Ziegler-Nichols
correlation predicts a very large controller gain for processes with small dead times
and an infinite gain for processes with no dead time. These results will lead to ex
cessive variation in the manipulated variable and to a controller with too small
a stability margin. Therefore, these correlations should not be used for processes
with small fraction dead times.

Many other tuning methods have been developed, generally based on either
stability margins or time-domain performance. A summary of the methods is pre
sented in Table 10.6, which gives the main objectives of each method, along with
a reference, either in this book or in the literature. Note that the IMC method is
covered in Chapter 19.



TABLE 10.5

Ziegler-Nichols open-loop tuning
based on process reaction curve

Kr

P-only
PI
PID

i\/Kp)/iz/9)
i0.9/Kp)iz/9)
i\.2/Kp)iz/9)

Td

3 . 3 9 —
2 . 0 9 0 . 5 9
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TABLE 10.6

Summary of PID tuning methods

Tuning
method

Stabil i ty
objective

Objective
for CV(0

Objective
for MV(0

Model
error

Noise
on CV(0

Input
SP = set point
D = disturbance

Ciancone None explicit Min IAE Overshoot ±25% Yes SP and D
(Chapter 9) and variation

with noise
individually

Fertik(1974) None explicit Min ITAE
with limit
on overshoot

None None
explicit

No SP and D
individually

Gain/phase Gain margin None None Depends on No n/a
margin (Section 10.8) or phase margin margins
IMC tuning For specified ISE (robust None Tune A, see No SP and D
(Section 19.7) model error performance) Morari and

Zafiriou(1989)
(step and ramp)
individually

Lopez et al. None explicit IAE, ISE, or None None No SP and D
(1969) ITAE individually

Ziegler-Nichols Implicit margin 4: 1 decay None None No n/a
closed-loop for stability ratio explicit
(Section 10.7) (GM % 2)

Ziegler-Nichols
open-loop
(Section 10.9)

Implicit margin
for stability
(GM « 2)

4 : 1 decay None
ratio

None
explicit

No n/a

With such a large selection available, some recommendations are needed to as
sist in the proper choice of tuning method. Before presenting recommendations, a
few key factors should be reiterated. First, most tuning methods rely on a simplified
dynamic model of the open-loop process. As a result, good control performance
from the tuning depends on reasonably accurate model identification. Tuning cal
culations cannot correct for modelling errors; they can only reduce the detrimen
tal effects of such errors. Second, the tuning constants should be determined so
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Fundamental
model

Empirical
identification

Calculate
initial tuning

Implement and
fine-tune

Monitor
performance

FIGURE 10.23

Major steps in the tuning
procedure.

that the control system achieves desired performance objectives relevant to the
process. Because each method has different objectives, each provides somewhat
different dynamic performance, which should be matched to the process require
ments. Third, all methods provide initial values, which should be fine-tuned based
on plant experience; the tuning procedure shown in Figure 10.23 should be used.
The tuning methods being discussed appear as the "initial tuning" that relies on the
identification and is modified by fine tuning, which corrects for modelling errors
and adapts the performance to that desired for the process.

The proper selection for a particular application should follow from the infor
mation in the table. In other words:

The best choice for the initial tuning correlation is the method that was developed
for objectives conforming most closely to those of the actual situation for which the
controller is being tuned.

The following ranking, with the first entry being the preferred method, represents
the author's personal preference for calculating initial tuning.

1. Ciancone tuning correlations from Chapter 9
2. Bode/(closed-loop) Ziegler-Nichols when process cannot be satisfactorily fit

ted by a first-order-with-dead-time model
3. Nyquist/gain margin when the process does not satisfy the Bode criteria
4. Any of the other correlations as appropriate for the application scenario
5. Detailed analysis of the robustness of the system, through either the opti

mization method in Chapter 9 or the robust performance analysis described
in Morari and Zafiriou (1989)

Approach 5 would always be the best, but it requires more effort than is usually
justified for initial tuning. However, it may be required for systems involving
complex dynamics and large model errors.

1 0 . 1 0 □ C O N C L U S I O N S

Several important topics have been covered in this chapter that are essential for a
complete understanding of dynamic systems. We have learned

1. A useful definition of stability related to poles of the transfer function, i.e.,
the exponents in the solution of a set of linear differential equations

2. The effects of process and control elements in the feedback path that affect
stability, such as dead times and time constants

3. Tuning methods based on a margin from the stability limit
4. That model errors must always be considered in tuning and that this results in

detuned (i.e., less aggressive) feedback control action

All of these results are consistent with the experience gathered in Chapter 9,
which was restricted to first-order-with-dead-time processes and PID control. The
methods in this chapter provide a valuable theoretical basis that helps us understand



time-domain behavior and that can be applied for quantitatively analyzing stability
and determining tuning for a wide range of systems. Numerical examples in this
chapter, as well as Chapter 9, have demonstrated that simple linear models are often
adequate for calculating initial tuning constants. These results confirm that the first-
order-with-dead-time models from empirical model fitting provide satisfactory
accuracy for this control analysis.

The stability analysis methods presented in this chapter are summarized in
Figure 10.24, which gives a simple flowchart for the selection of the appropriate
method for a particular problem. Note that the direct analysis of the roots of the
characteristic equation is applicable to either open- or closed-loop systems that
have polynomial characteristic equations. The Bode method can be applied to
most closed-loop systems, and the Nyquist method is the most general.
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Is the system open- or closed-loop?

Open-loop Closed-loop

Determine the linear transfer
function model
T O r i x

Determine the linear transfer
function model
C V ( 5 ) G d j s )
Dis) l+Gpis)Gvis)Gcis)Gsis)

Assuming that input is
bounded and numerator is
stable, denominator of Gpis)
determines stability

Assuming that input is
bounded and the numerator is
stable, denominator determines
stability

Is the denominator a
polynomial in si

Is the denominator a
polynomial in si

N Yo r N

* Cannot solve
for roots directly

* Bode stability is for
closed-loop systems

* Therefore, root locus
and Bode not applicable

Solve for the roots of the
denominator directly
Dis) = 0
s = alta2,...

* Nyquist method
applicable for this case

System is stable if
Re(a),<0
for all i

Is the process without
control stable?

N Is |GolO*°)I monotonic
after first crossing
of-180°?

Calculate toc from
^GOl0'C0c)=180o
System is stable if
IGol(M,)I<I.O

FIGURE 10.24

Flowchart for selecting the stability analysis method for local analysis using linearized
models.



350

CHAPTER 10
Stability Analysis and
Controller Tuning

Many controller tuning methods have been presented in these two chapters.
The correct method for a particular application depends on the objectives of the
control system. The information in Table 10.6 will enable you to match the tuning
with the control objectives. If no specific information is available, the Ciancone
tuning correlations in Chapter 9 are recommended for initial tuning constant values.
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The stability of a nonlinear system in a defined region can be determined
for some systems and regions using the (second) method of Liapunov, which is
presented in Perlmutter (1972) and

LaSalle, J., and S. Lefschetz, Stability of Liapunov s Direct Method with Ap
plications, Academic Press, New York, 1961.

The methods introduced in this chapter provide a theoretical basis for determining
the effects of all elements in the feedback loop, process, instrumentation, and control
algorithm on stability and tuning. These questions ask you to apply these methods.

QUESTIONS
10.1. Consider the three-tank mixing process with a proportional-only controller

in Example 10.5. Recalculate the root locus for the case with the three tank
volumes reduced from 35 to 17.5 m3. Determine the controller gain for a
proportional-only algorithm at which the system is at the stability limit.
Compare your result with Example 10.5 and discuss.

10.2. Example 10.4 established the stability of a system when operated at a
temperature T = 320 K. Given the expression for the reaction rate constant
of k = 6.63 x 108e~6500/7'min"1, determine if the system is stable at 300 K
and 340 K. Explain the trend in your results and determine which of the
three cases is the worst case from a stability point of view.

10.3. Answer the following questions, which revisit the interpretations (I-VI) in
Section 10.8.
ia) (I) For the process in Example 5.2, determine the PI controller tuning

constants using the Ziegler-Nichols closed-loop method. The manipu
lated variable is the inlet feed concentration, and the controlled variable
is (i) Y\, (ii) Y2, (iii) *3, and (iv) Ya. Answer for both cases 1 and 2 in
Example 5.2.

ib) (II) Discuss the effect of the derivative mode on the stability of a
closed-loop control system. Explain the results with respect to a Bode
stability analysis.

(c) (III) A linearized model is derived for the process in Figure 9.1. The
model is to be used for controller tuning. Model errors are estimated
to be 30 percent in L, V, and FB, and they can vary independently.
Estimate the worst-case dynamic model that is possible within the
estimated errors.

id) (IV) Assume that experimental data indicates that a closed-loop PI
system experienced sustained oscillations with constant amplitude at
specified values of their tuning constants K'c and Tj. Estimate proper,
new values for the tuning constants.

ie) (V) Determine the range of tuning constant values that result in stability
for the following systems and plot the region with Kc and 7} as axes.
Locate good tuning constant values within this region: (1) the level
system in Example 10.1 for P-only and PI controllers; (2) the three-
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tank mixing system with a PI controller; (3) Figure 9.1 with 9 = 5 and
T = 5 .

if) (VI) Using arguments relating to stability and Bode plots, determine
model simplifications in the system in Figure 7.1 and Table 7.2, to
give the lowest-order system needed to analyze stability and tuning
with acceptable accuracy.

10.4. Given the process reaction curve in Figure Q10.4, calculate initial PID
controller tuning constants using the Ziegler-Nichols tuning rules. Compare
the results to values from the Ciancone correlations and predict which set
of values would provide more aggressive control.

T
5% valve position

l l l l l l l l L
0

Time
FIGURE Q10.4

200

10.5. Given a feedback control system such as the three-tank mixing process,
determine the effect of the following equipment changes on the tuning
constants.
(a) Installing a faster-responding control valve.
(b) Installing a control valve with a larger maximum flow.
(c) Installing a faster-responding sensor.

10.6. Without calculating the exact values, sketch the Bode plots for the following
transfer functions using approximations:

5 . 3 1 2 0 e ~ 2 s
(a) Gods) = 3-=—j ib) Gods) = - ic) Gods) = ' „24 . 5 s + 1 5 s ( 3 s + l ) 2

10.7. Determine the root locus plot in the complex plane for controller gain
of zero to instability for the following processes: (a) example heater in
Section 8.7; (b) Example 10.1; (c) Example 10.8. For the systems with PI
controllers, assume that the integral time is fixed at the value in the original
solution.

10.8. (a) Is the Bode stability criterion necessary, sufficient, or necessary and
sufficient?



(b) Is it possible to determine the stability of a feedback control system
with non-self-regulating process using the Bode stability criterion?

(c) Explain the limitations on the process transfer function imposed for
the use of the Bode method.

(d) Determine the stability of the system in Example 10.4 using the Bode
method.

10.9. Confirm the expressions for the amplitude ratios and phase angles given in
Table 10.2.

10.10. Prove the following statements and give an explanation for each in your
own words by referring to a sample physical system.
(a) The phase lag for a gain is zero.
(b) The amplitude ratio for a first-order system goes to zero as the fre

quency goes to infinity.
(c) The amplitude ratio for a second-order system with a damping coeffi

cient of 0.50 is not monotonic with frequency.
(d) The phase angle decreases without limit as the frequency increases for

a dead time.
(e) For an integrator, the amplitude ratio becomes very large for low fre

quencies and becomes very small for large frequencies.
if) The amplitude ratio for a PI controller becomes very large at low

frequencies.
10.11. For each of the physical systems in Table Q10.11, explain whether it can

experience the dynamic responses shown in Figure Q10.11 for a step input
(not necessarily at / = 0). The systems are to be considered idealized;
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TABLE Ql 0.11

Con t ro l
Input var iable Output variable ( sepa ra te
(separate answer (separate answer a n s w e r

System for each) for each) for each)

Figure 7.1 and Signal to value Measured temperature None
Example 7.1
Example 8.5 Set point Tank temperature (i) P-only

(ii) PI
Reactor in Fc Reactor temperature None
Section C.2
Example 1.2 0)FS

(ii) FA
(i)CAi,(ii)CA2 None

Example 3.3 (i) CA0
(ii) ̂ F*

(i)CAll(ii)CA2 None

Example 9.1 Set point cA PID
Example 7.2 (i) Signal to valve (i)CAi,(ii)CA2, and (i) None

(ii) Set point of controller in (iii) CA3 (ii) P-only
Example 9.2 (iii) PI

l&a^t&lWMteBi^^
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in other words, the mixing is perfect, final element and sensor dynamics
are negligible unless otherwise stated, and so forth. Provide quantitative
support for each answer based on the model structure of the system.

10.12. The Bode stability technique is applied in this chapter to develop the
Ziegler-Nichols closed-loop tuning method. For each of the following
changes describe an appropriate modification to the closed-loop Ziegler-
Nichols tuning method. Answer each part of this question separately.
id) The controller used in the plant calculates the error with the sign in

verted; E = CV - SP.
ib) The linear plant model identified using a process reaction curve also

has an estimate of the uncertainty in its feedback model parameters,
Kp, 6, and z.

ic) The process model, in addition to parameters for the feedback process,
has estimates of the disturbance dead time and time constant.

10.13. The stability analysis methods introduced in this chapter are for linear
systems, which give local results for nonlinear systems. What conclusions
can be drawn from the linear analysis at the extremes of the ranges given
about the stability of the following systems? (a) Example 9.4 with FB
varying from 6.9 to 5.2 m3/min and ib) Example 9.1 with the volume of
the tank and pipe varying by ±30%.

10.14. Given the systems with roots of the characteristic equation shown in Figure
Q10.14, sketch the transient responses to a step input for each, assuming
the numerator of the transfer function is 1.0.

10.15. Prove all of the statements in Table 10.3.
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10.16. Answer the following questions regarding the derivative mode.
ia) Based on the Bode plot of a PID controller, what is the effect of high-

frequency measurement noise on the manipulated variable?
ib) Redraw Figure 10.13/* for Td = 77/4.
ic) We have considered a PID controller that uses error in the derivative

for the stability analysis. However, the controller algorithm used com
monly in practice uses the controlled variable in the derivative mode.
How should the stability analysis be altered to account for the use of
the controlled variable in the derivative?

10.17. Consider the three-tank mixing process in Example 7.2 with the same three
5-minute time constants and with a transportation delay of 4.3 min between
the mixing point and the entrance to the first tank.
(a) Calculate initial tuning parameters using the Bode stability method

and the Ziegler-Nichols correlations.
(b) Explain the changes in the tuning constant values from those in Ex

ample 10.10.
(c) Would you expect the control performance for the system with trans

portation delay to be better or worse than the system without trans
portation delay?

10.18. (a) The dynamic performance of the system in Example 10.10 was deemed
too oscillatory with the initial tuning calculated via Ziegler-Nichols
correlations. How would you change the tuning constants, which con
stants, and by how much to achieve reasonably good performance with
little oscillation?

(b) Given the results in Example 10.13 which showed that the Ziegler-
Nichols tuning correlations do not seem to yield robust control perfor
mance for low fraction dead time, how would you modify the Ziegler-
Nichols correlations for 6/(9 + z) < 0.2?

Questions
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11.1 J INTRODUCTION
As we have seen in the previous chapters, PID feedback control can be successfully
implemented using continuous (analog) calculating equipment. This conclusion
should not be surprising, given the 60 years of good industrial experience with
process control and given the fact that digital computers were not available for much
of this time. However, digital computers have been applied to process control since
the 1960s, as soon as they provided sufficient computing power and reliability.
Most, but not all, new control-calculating equipment uses digital computation;
however, the days of analog controllers are not over, for at least two reasons. First,
control equipment has a long lifetime, so that equipment installed 10 or 20 years
ago can still be in use; second, analog equipment has cost and reliability advantages
in selected applications. Therefore, most plants have a mixture of analog and digital
equipment, and the engineer should have an understanding of both approaches for
control implementation. The basic concepts of digital control implementation are
presented in this chapter.

The major motivation for using digital equipment is the greater computing
power and flexibility it can provide for controlling and monitoring process plants.
To perform feedback control calculations via analog computation, an electrical
circuit must be fabricated that obeys the PID algebraic and differential equations.
Since each circuit is constructed separately, the calculations are performed rapidly
in parallel, with no interaction between what are essentially independent analog
computers. Analog equipment can be designed and built for a simple, standard cal
culation such as a PID controller, but it would be costly to develop analog systems
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for a wide range of controller equations, and each system would be inflexible: the
algorithm could not be changed; only the parameters could be adjusted.

In comparison, digital computation uses an entirely different concept. By rep
resenting numbers in digital (binary) format and solving equations numerically to
represent behavior of the control calculation of interest, the digital computer can
easily execute a wide range of calculations on the same equipment, hardware, and
basic software. Two differences between analog and digital systems are immedi
ately apparent. First, the digital system performs its function periodically, which,
as we shall see, affects the stability and performance of the closed-loop system.
Often, we refer to this type of control as discrete control, because control ad
justments occur periodically of discretely. Second, the digital computer performs
calculations in series; thus, if time-consuming steps are involved in the control
calculations, digital control might be too slow. Fortunately, modern digital com
puters and associated equipment are fast enough that they do not normally impose
limitations related to execution speed.

Digital computers also provide very important advantages in areas not em
phasized in this book but crucial to the successful operation of process plants. One
area is minute-to-minute monitoring of plant conditions, which requires plant op
erators to have rapid access to plant data, displayed in an easily analyzed manner.
Digital systems provide excellent graphical displays, which can be tailored to the
needs of each process and person. Another area is the longer-term monitoring of
process performance. This often involves calculations based on process data to
report key variables such as reactor yields, boiler efficiencies, and exchanger heat
transfer coefficients. These calculations are easily programmed and are performed
routinely by the digital computer.

The purpose of this chapter is to provide an overview of the unique aspects of
digital control. The approach taken here is to present the most important differences
between analog and digital control that could affect the application of the control
methods and designs covered in this book. This coverage will enable the reader to
implement digital PID controllers as well as enhancements, such as feedforward
and decoupling, and new algorithms, such as Internal Model Control, covered later
in the book.

11.2 a STRUCTURE OF THE DIGITAL CONTROL SYSTEM
Before investigating the key unique aspects of digital control, we shall quickly
review the structure of the control equipment when digital computing is used for
control and display. The components of a typical control loop, without the control
calculation, were presented in Figure 7.2. Note that the sensor and transmission
components are analog devices and can remain unchanged with digital control
calculations. The loop with digital control is shown in Figure 11.1, where the unique
features are highlighted. First, the signal of the controlled variable is converted from
analog (e.g., 4-20 mA) to a digital representation. Then the control calculation
is performed, and finally, the digital result is converted to an analog signal for
transmission to the final control element.

Process plants usually involve many variables, which are controlled and mon
itored from a centralized location. A digital control system to achieve these re
quirements is shown in Figure 11.2. Each measurement signal for control and
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Schematic of single feedback control loop using digital calculation.
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FIGURE 11.2

Schematic of a distributed digital control system.

monitoring is sent through an analog-to-digital (A/D) converter to a digital com
puter (or microprocessor, ^tPr). The results of the digital control calculations are
converted for transmission in a digital-to-analog (D/A) converter. The system may
have one processor per control loop; however, most industrial systems have sev
eral measurements and controller calculations per processor. Systems with 32 input
measurements and 16 controller outputs per processor are not uncommon. This
design is less costly, although it is somewhat less reliable, because several control
loops would be affected should a processor fail.
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Some data from each individual processor is shared with other processors to
enable proper display and human interaction. The information exchange is per
formed via a digital communication network (local area network, LAN), which
enables data sharing among processors and between each processor and the unit
that provides operator interface, usually called the operator console. An operator
console is required so that a person can monitor the process and intervene to make
changes in variables such as a valve opening, controller set point, or controller
status (automatic or manual). Thus, the controller set point and tuning constants
must be communicated from the console, where they are entered by a person, to the
processor, where the control calculation is being performed. Also, the values of the
controlled and manipulated variables should be communicated from the controller
to the console for display to the person. Some data that is not typically communi
cated from the individual control processors would be intermediate values, such
as the integral error used in the controller calculation. The operator console has
its own processor and data storage and has visual displays (video display units,
VDUs), audio annunciators, and a means, such as a keyboard, for the operator to
interact with the control variables. Graphical display of variables, which is easier to
interpret, is used along with digital display, which is more precise. Also, variables
can be superimposed on a schematic of the process to aid operators in placing data
in context.

To add flexibility, more powerful processors can be connected to the local
area network so that they can have access to the process data. These processors
can perform tasks that are not time-critical. Examples are process-monitoring cal
culations and process optimization, which may adjust variables infrequently (e.g.,
once every few hours or shift).

Since each digital processor performs its functions serially, it must have a
means for deciding which task from among many to perform first. Thus, each
processor has a real-time operating system, which organizes tasks according to a
defined priority and schedule. For example, the control processor would consider
its control calculations to be of high priority, and the operators' console would
consider a set point change to be of high priority. Lower-priority items, such as
monitoring calculations, are performed when free time is available. An important
aspect of real-time calculating is the ability to stop a lower-priority task when a
high-priority task appears. This is known as a priority interrupt and is an integral
software feature of each processor in a digital control system.

The goal, which is nearly completely achieved, is that the integrated digital
system responds so fast that it is indistinguishable from an instantaneous system.
Since each function is performed in series, each step in the control loop must
be fast. For most modern equipment, the analog-to-digital (A/D) and digital-to-
analog (D/A) conversions are very fast with respect to other dynamics in the digital
equipment or the process. Each processor is designed to guarantee the execution
of high-priority control tasks within a specified period, typically within 0.1 to
1 second.

When estimating the integrated system response time, it is important to con
sider all equipment in the loop. For example, response to a set point change, after
it is entered by a person, includes the execution periods of the console processor,
digital communication, control processor, and D/A converter with hold circuit and
the dynamic responses of the transmission to the valve and of the valve. This total
system might involve several seconds, which is not significant for most process



control loops but may be significant for very fast processes, such as machinery
control.

Another important factor in the control equipment is the accuracy of many
signal conversions and calculations, which should not introduce errors that signif
icantly influence the accuracy of the control loop. The values in the digital system
are communicated with sufficient resolution (16 or more bits) that errors are very
small. Typically, the A/D converter has an error on the order of ±0.05% of the
sensor range, and the D/A converter has an error on the order of ±0.1 % of the final
element range. In older digital control computers, calculations were performed in
fixed-point arithmetic; however, current equipment uses floating-point arithmetic,
so that roundoff errors are no longer a significant problem. As a result, the errors oc
curring in the digital system are not significant when compared to the inaccuracies
associated with the sensors, valves, and process models in common use.

The system in Figure 11.2 and described in this section is a network of com
puters with its various functions distributed to individual processors. The type of
control system is commonly called a distributed control system (DCS). Today's
digital computers are powerful enough that one central computer could perform
all of these functions. However, the distributed control structure has many advan
tages, some of the most important of which are presented in Table 11.1. These
advantages militate for the continued use of the distributed structure for control
equipment design, regardless of future increases in computer processing speed.

The major disadvantage of modern digital systems, which is not generally
true for analog systems, is that few standards for design or interfacing are being
observed. As a result, it is difficult to mix the equipment of two or more digital
equipment suppliers in one control system.
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TABLE 11.1

Features of a distributed control system (DCS)

Feature Effect on process control
Calculations performed in parallel
by numerous processors

Control calculations are performed faster
than if by one processor.

Limited number of controller
calculations performed by a single
processor

Control system is more reliable, because
a processor failure affects only few
control loops.

Control calculations and interfacing
to process independent of other
devices connected to the LAN

Control is more reliable, because failures
of other devices do not immediately
affect a control processor.

Small amount of equipment
required for the minimum system

Only the equipment required must be
purchased, and the system is easily
expanded at low cost.

Each type of processor can have
different hardware and software

Hardware and software can be tailored to
specific applications like control,
monitoring, operator console, and
general data processing.

m
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In conclusion, the control system in Figure 11.2 is designed to provide fast
and reliable performance of process control calculations and interactions with plant
personnel. Clearly, the computer network is complex and requires careful design.
However, the plant operations personnel interact with the control equipment as
though it were one entity and do not have to know in which computer a particular
task is performed. Also, considerable effort is made to reduce the computer pro
gramming required by process control engineers. For the most part, the preparation
of control strategies in digital equipment involves the selection and integration of
preprogrammed algorithms. This approach not only reduces engineering time; it
also improves the reliability of the strategies. While distributed digital systems are
the predominant structure for digital control equipment, the principles presented
in the remainder of the chapter are applicable to any digital control equipment.

11.3 El EFFECTS OF SAMPLING A CONTINUOUS SIGNAL
The digital computer operates on discrete numerical values of the measured con
trolled variables, which are obtained by sampling from the continuous signal and
converting this signal to digital form via A/D conversion. In this section, the way
that the sampling is performed and the effects of sampling on process control are
reviewed. As one might expect, some information is lost when a continuous signal
is represented by periodic samples, as shown in Figure 11.3a through c. These
figures show the results of sampling a continuous sine function in Figure 11,3a at
a constant period, which is the common practice in process control and the only
situation considered in this book. The sampled values for a small period (high
frequency) in Figure 11.3b appear to represent the true, continuous signal closely,
and the continuous signal could be reconstructed rather accurately from the sam
pled values. However, the sampled values for a long period in Figure 11.3c appear
to lose important characteristics of the continuous measurement, so that a recon
struction from the sampled values would not accurately represent the continuous
signal. The effects of sampling shown in Figure 11.3 are termed aliasing, which
refers to the loss of high-frequency information due to sampling.

An indication of the information lost by the sampling process can be deter
mined through Shannon's sampling theorem, which is stated as follows and is
proved in many textbooks (e.g., Astrom and Wittenmark, 1990).

A continuous function with all frequency components at or below co' can be repre
sented uniquely by values sampled at a frequency equal to or greater than 2a/.

The importance of this statement is that it gives a quantitative relationship for
how the sampling period affects the signal reconstruction. The relationship stated
is not exactly applicable to process control, because the reconstruction of the signal
for any time t' requires data after t', which would introduce an undesirable delay in
the reconstructed signal being available for feedback control. However, the value
given by the statement provides a useful bound that enables us to estimate the
frequency range of the measurement signal that is lost when sampling at a specific
frequency.



EXAMPLE 11.1.
The composition of a distillation tower product is measured by a continuous sensor,
and the variable fluctuates due to many disturbances. The dominant variations are
of frequencies up to 0.1 cycle/min (0.628 rad/min). At what frequency should the
signal be sampled for complete reconstruction using the sampled values?

If the signal has no frequency components above 0.1 cycles/min, the sampling
frequency should be 1.256 rad/min for complete reconstruction. However, most
signals have a broad range of frequency components, including some at very
high frequencies. Thus, a very high sampling frequency would be required for
complete reconstruction of essentially all process measurement signals.
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Digital sampling: (a) example of continuous measurement signal; ib) results of sampling of the signal with a period of 2;
ic) results of alternative sampling of the signal with a period of 12.8.
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Fortunately, our goal is not to reconstruct the signal perfectly but to provide
sufficient information to the controller to achieve good dynamic performance.
Thus, it is often possible to sample much less frequently than specified by Shannon's
theorem and still achieve good control performance (Gardenhire, 1964). If the
signal has substantial high-frequency components with significant amplitudes, the
continuous signal may have to be filtered, as discussed in Chapter 12.

There are many options for using the sampled values to reconstruct the signal
approximately. Two of the most common, zero- and first-order holds, are consid
ered here. The simplest is the zero-order hold, which assumes that the variable is
constant between samples. The first-order hold assumes that the variable changes in
a linear fashion as predicted from the most recent two samples. These two methods
are compared in Figures 11.4 and 11.5, where the main difference is the amplifica-
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FIGURE 11.6
Reconstruction of signal after zero-order hold.

tion in the magnitude caused by the first-order hold. Also, the first-order hold has
a larger phase lag, which is undesirable for closed-loop control. For both of these
reasons, the simpler zero-order hold is used almost exclusively for process control.

The effect of the zero-order hold on the dynamics can be seen clearly if we re
construct the original signal as shown in Figure 11.6. In the figure, the reconstructed
signal is a smooth curve through the midpoint of the zero-order hold. It is apparent
that the reconstructed signal after the zero-order hold is identical to the original
signal after being passed through a dead time of Ar/2, where the sample period
is At (Franklin et al., 1990). This explains the rule of thumb that the major effect
on the stability and control performance of sampling can be estimated by adding
At/2 to the dead time of the system. Since any additional delay due to sampling
is undesirable for feedback control and process monitoring, feedback control per
formance degrades as the process dynamics, including sampling, become slower.
Therefore, the controller execution period should generally be made short.

In some cases, monitoring process operations requires high data resolution,
because short-term changes in key variables can significantly influence process
safety and profit. However, process monitoring also involves variables that change
slowly with time, such as a heat transfer coefficient, and the data collected for this
purpose does not have to be sampled rapidly.

In conclusion, sampling is the main difference between continuous and digital
control. Since process measurements have components at a wide range of frequen
cies, some high-frequency information is lost by sampling. The effect of sampling
on control performance, with a zero-order hold used for sampling, is addressed
after the digital controller algorithm is introduced in the next section.
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11.4 n THE DISCRETE PID CONTROL ALGORITHM
The proportional-integral-derivative control algorithm presented in Chapter 8 is
continuous and cannot be used directly in digital computations. The algorithm
appropriate for digital computation is a modified form of the continuous algorithm
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that can be executed periodically using sampled values of the controlled variable to
determine the value for the controller output. The controller output passes through
a digital-to-analog converter and a zero-order hold; therefore, the signal to the final
control element is changed to the result of the last calculation and held at this value
until the next controller execution.

The digital calculation should approximate the continuous PID algorithm:

The method for approximating each mode is presented in equations (11.2) to (11.4).
In these equations the value at the current sample is designated by the subscript
N and the ith previous sample by N — i. Thus the current values of the controlled
variable, set point, and controller output are CVn, SP#, and MV#, respectively.
The error is defined consistently with continuous systems as En = SP# — CVN.

MV(0 = Kc\Eit) + yJo E(t')dt'-Td- + / (11.1)

Proportional mode:

Integral mode:

Derivative mode:

(MVjv)prop = KcEn

(MV„)int = ^f>Tl 7=T

(MVN)der = -KC^-(CVN - CV*.,)At

(11.2)

(11.3)

(11.4)

The proportional term is self-explanatory. The integral term is derived by approxi
mating the continuous integration with a simple rectangular approximation. Those
familiar with numerical methods recognize that this is not as accurate an approx
imation as possible with other integration methods used in numerical analysis
(Gerald and Wheatley, 1989). However, small numerical errors in this calculation
are not too important, because the integral mode continues to make changes in the
output until the error is zero. Thus, zero steady-state offset for steplike inputs is
not compromised by small numerical errors. Note that all past values of the error
do not have to be stored, because the summation can be calculated recursively
according to the equation

N

Sn = 2^ Ei = En + Sn-i (11.5)
/ = i

where Sn- i = J^i' Ei ^^ls stored from the previous controller execution.

The derivative is approximated by a backward difference. This approximation
provides some smoothing; for example, the derivative of a perfect step is not infinite
using equation (11.4), since At is never zero.

The three modes are combined into the full-position PID control algorithm:
n

MVN = Kc
A t
Ti / = i

Td_
A t

^ + fE£'- t;(cv" - cv*-i) + / (11.6)



Note that the constant of initialization is retained so that the manipulated variable
does not change when the controller initiates its calculations.

Equation (11.6) is referred to as the full-position algorithm because it cal
culates the value to be output to the manipulated variable at each execution. An
alternative approach would be to calculate only the change in the controller output
at each execution, which is achieved with the velocity form of the digital PID:

AMVa, = Kc \en - EN-i + ye"- ^-(CVa/ -2CVAT-! +CVa,_2)1 (11.7)
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MVa, =MV,v_, +AMV,v (11.8)

This equation is derived by subtracting the full-position equation (11.6) at sample
N — 1 from the equation at sample N. Either the full-position or the velocity
form can be used, and many commercial systems are in operation with each basic
algorithm.

The digital PID controller, either equation (11.6) or (11.7), can be rapidly
executed in a process control computer. Only a few multiplications of current or
recent past values times parameters and a summation are required. Also, little data
storage is required for the parameters and few past values.

In conclusion, simple numerical methods are adequate for approximating the
integral and derivative terms in the PID controller. As a result, the controller modes,
set point, and tuning constants are the same in the digital PID algorithm as they
are in the continuous algorithm. This is very helpful, because we can apply what
we have learned in previous chapters about how the modes affect stability and
performance to the digital algorithm. For example, it can be shown for the digital
controller that the integral mode is required for zero steady-state offset and that
the derivative mode amplifies high-frequency noise.

Effects of Digital
Control on Stability,

Tuning, and
Performance

Velocity
Digital PID

11.5 □ EFFECTS OF DIGITAL CONTROL ON STABILITY,
TUNING, AND PERFORMANCE
The tuning of continuous control systems is presented in Chapter 9, and stability
analysis is presented in Chapter 10. A similar, mathematically rigorous analysis
of the stability of digital control systems can be performed and is presented in Ap
pendix L. This section provides the essential results without detailed mathematical
proofs. The major differences in digital systems are highlighted, modifications to
existing tuning guidelines are provided, and examples are presented to demonstrate
the results. The measures of control performance and the definition of stability are
the same as introduced in previous chapters.

As described in Section 11.3, sampling introduces an additional delay in the
feedback system, and this delay is similar to, but not the same as, a dead time.
Thus, we expect that longer sampling will tend to destabilize a feedback system
and degrade its performance.

EXAMPLE 11.2.
As an example, we consider a feedback control system for which the transfer
functions for the process and disturbance are as follows and the disturbance is a
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3.6

Dis) = —s

(11.9)

The performance of the system under continuous PI feedback control is given in
Figure 11.7a using the Ciancone tuning from Figure 9.9. The performance is given
in Figure 11 lb under discrete PI control with an execution period of 9, using
the same tuning as in Figure 11.7a. We notice that the discrete response is more
oscillatory and gives generally poorer performance. Several other responses were
simulated, and their results are summarized in Table 11.2. When the execution
period was made long, in this case 10 or greater, the control system became
unstable!
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FIGURE 11.7

Example process: (a) under continuous control; ib) under digital PI control with At = 9 using continuous tuning; (c) under
digital control with At = 9 using altered tuning from Table 113.



TABLE 11.2

Example of the performance
of PI controllers for various
execution periods with
Kc = -1.7 and T, = 5.5
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Execution period IAE
Continuous 18.9

0.5 18.9
1.0 19.1
3.0 19.9
7.0 25.8
9.0 32.0

10.0 Unstable

Effects of Digital
Control on Stability,

Tuning, and
Performance

This example shows that the control performance generally degrades for increasing
sample periods and that the system can become unstable at long periods.

Since sampling introduces a delay in the feedback loop, we would expect that
the tuning should be altered for digital systems to account for the sampling. The re
sult in Section 11.3 indicated that the sample introduced an additional delay, which
can be approximated as a dead time of At/2. Thus, one common approach for tun
ing PID feedback controllers and estimating their performance is to add At/2 to
the feedback process dead time and use methods and guidelines for continuous
systems (Franklin, Powell, and Workman, 1990). The tuning rules developed in
Chapters 9 and 10 can be applied to digital systems with the dead time used in
the calculations equal to the process dead time plus one-half of the sample period
(i.e., 6' = 6 + At/2).

As demonstrated in Example 11.2, slow digital PID controller execution can
degrade feedback performance. Also, as the execution becomes faster, i.e., as the
execution period becomes smaller, the performance is expected to approach that
achieved using a continuous controller. Thus, a key question is "Below what value
of the PID controller execution period do the digital and continuous controllers
provide nearly the same performance?" The following guideline, based on expe
rience, is recommended for selecting controller execution period:

To achieve digital control performance close to continuous performance, select the
PID controller execution period At < 0.05(̂  + r), with 9 and r the feedback dead
time and dominant time constant, respectively.

The execution period is proportional to the feedback dynamics, which seems
logical because faster processes would benefit from faster controller execution.
Many of the modern digital control systems have execution periods less than 1 sec;
therefore, this guideline is easily achieved for most chemical processes. However,
it may not be easily achieved for (1) fast processes, such as pressure control of
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liquid-filled systems, or (2) control systems using analyzers that provide a new
measurement infrequently.

The preceding discussion is summarized in the following tuning procedure:

1. Obtain an empirical model.
2. Determine the sample period [e.g., At < 0.05(0 + t)].
3. Determine the tuning constants using appropriate methods (e.g., Ciancone cor

relation or Ziegler-Nichols method) with 9' =6 + At/2.
4. Implement the initial tuning constants and fine-tune.

As stated previously, the values obtained from these guidelines should be con
sidered initial estimates of the tuning constants, which are to be evaluated and
improved based on empirical performance through fine-tuning.

EXAMPLE 11.3.
Apply the recommended method to tune a digital controller for the process defined
in equation (11.9). Results for several execution periods are given in Table 11.3,
with the tuning again from the Ciancone correlations in Figure 9.9, and the control
performance is shown in Figure 11 Jc for an execution period of 9. Note that in all
cases, including that with an execution period of 10, the dynamic performance is
stable and well behaved (not too oscillatory). Recall that the performance could be
improved (IAE reduced) with some fine-tuning, but at the expense of robustness.

It is apparent that the dynamic response is well behaved, with a reasonable
damping ratio and moderate adjustments in the manipulated variable, when the
digital controller is properly tuned. Also, it is clear that the performance of the
digital controller is not as good as that of the continuous controller. In fact,

The performance of a continuous process under digital PID control is nearly
always worse than under continuous control. The difference depends on the
length of the execution period relative to the feedback dynamics.

TABLE 11.3

Example of the performance of PI controllers for various
execution periods with tuning adjusted accordingly

Execution
period At

Dead time
0' = 9 + At/2

Fraction
dead time
e'/iO' + x) K , IAE

Continuous
1
3
5
7
9

10

2.2
2.7
3.7
4.7
5.2
6.7
7.2

0.18
0.21
0.27
0.32
0.34
0.40
0.42

1.7 5.5 18.9
1.76 6.1 19.2
1.50 8.9 26.8
1.23 10.3 36.0
1.2 10.6 37.2
1.05 11.0 42.7
1.0 11.1 44.8



Note that the execution period is related to the dynamics of the feedback
process, since "fast" and "slow" must be relative to the process. A guideline drawn
from Table 11.3 is that the effect of sampling and digital control is not usually
significant when the sample period is less than about 0.05(0 + r). For a summary
of many other guidelines, see Seborg, Edgar, and Mellichamp (1989).
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Occasionally, controllers give poor performance that is a direct result of the
digital implementation. This type of performance is shown in Figure 11.8a, in
which a digital PI controller with a relatively slow execution period is controlling
a process with very fast dynamics. The models for the process and controller are
as follows:

Process:

Controller:

-1.0
0.55 + 1

mvn = kc(en + ^JTeA

(11.10)

with At = 0.5 (11.11)

The oscillations in the manipulated variable are known as ringing. Diagnosing
the causes of ringing requires mathematics (z-transforms) (Appendix L). However,
the cause of this poor performance can be understood by considering the digital
controller equation (11.11). The controller adjusts the manipulated variable to cor
rect an error (e.g., a large positive adjustment). If a large percentage of the effect
of the correction appears in the measured control variable at the next execution,
the current error En can be small while the past error, En-i, will be large with
a negative sign, causing a large negative adjustment in the manipulated variable.
The result is an oscillation in the manipulated variable every execution period,

CV'it) -

MV\t) -

CV'it) -

MV (/)

r
5
L

i 1 1 1 1 1 1 1 r

i i i i i L J L
15

Time
ib)

FIGURE 11.8

Digital control of a fast process (a) with Kc = -1.4 and T, = 7.0; ib) with Kc = -0.14 and T, = 0.64.
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which is very undesirable. In this case, the oscillations can be reduced by decreasing
the controller gain and decreasing the integral time, so that the controller behaves
more like an integral controller. The improved performance for the altered tuning
is given in Figure 11.8Z?. This type of correction is usually sufficient to reduce
ringing for PID control.

We have seen that the digital controller generally gives poorer performance
than the equivalent continuous controller, although the difference is not significant
if the controller execution is fast with respect to the feedback process.

11.6 El EXAMPLE OF DIGITAL CONTROL STRATEGY
To demonstrate the analysis of a control system for digital control, the execution
periods for the flash system in Figure 11.9 are estimated. The process associated
with the flow controller is very fast; thus, the execution period should be fast, and
perhaps, the controller gain may have to be decreased due to ringing. The level
inventory would normally have a holdup time (volume/flow) of about 5 min, so
that very frequent level controller execution is not necessary.

Let us assume that the analyzer periodically takes a sample from the liquid
product and determines the composition by chromatography. In this case, the an
alyzer provides new information to the controller at the completion of each batch
analysis, which can be automated at a period depending on the difficulty of sep
aration. For example, a simple chromatograph might be able to send an updated
measured value of the controlled variable every 2 min. Since the analyzer controller
should be executed only when a new measured value is available, the controller
execution period should be 2 min.

The execution periods can be approximated using the guideline of At =
0.05(0 + x) for PID controllers, with the process parameters determined by one
of the empirical model identification methods described in Chapter 6. Modern
digital controllers typically execute most loops very frequently, usually with a
period under 1 sec, unless the engineer specifies a longer period. The results for
the example are summarized in Table 11.4.

Notice that the conventional digital systems might not satisfy the guideline
for very fast processes, but the resulting small degradation of the control perfor-

Steam

FIGURE 11.9

Example process for selecting controller execution periods.

Liquid
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mance is not usually significant for most flows and pressures. When the variable
is extremely important, as is the case in compressor surge control, which prevents
damage to expensive mechanical equipment, digital equipment with faster execu
tion (and sensors and valves with faster responses) should be used (e.g., Staroselsky
andLadin, 1979).

The analyzer has a very long execution period; therefore, it would be best to
select the execution immediately when the new measured value becomes available,
rather than initiate execution every 2 min whether the updated measurement is
available or not. Thus, it is common practice for the controller execution to be
synchronized with the update of a sensor with a long sample period; this is achieved
through a special signal that indicates that the new measured value has just arrived.

11.7 J TRENDS IN DIGITAL CONTROL
The basic principles presented in this chapter should not change as digital control
equipment evolves. However, many of the descriptions of the equipment will un
doubtedly change; in fact, the simple descriptions here do not attempt to cover all
of the newer features being used. A few of the more important trends in digital
control are presented in this section.

Signal Transmission
The equipment described in this chapter involves analog signal transmission be
tween the central control room and the sensor and valve. It is possible to collect a
large number of signals at the process equipment and transmit the information via a
digital communication line. This digital communication would eliminate many—
up to thousands—of the cables and terminations and result in great cost savings.
The reliability of this digital system might not be as good, because the failure of
the single transmission line would cause a large number of control loops to fail
simultaneously. However, the potential economic benefit provides a driving force
for improved, high-reliability designs. This is a rapidly changing area for which
important standards are being developed that should facilitate the integration of
equipment from various suppliers (Lidner, 1990; Thomas, 1999).

It is possible to communicate without physical connections, via telemetry. This
method is now used to collect data from remote process equipment such as crude
petroleum production equipment over hundreds of kilometers. When telemetry is
sufficiently reliable, some control could be implemented using this communication
method.
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Smart Sensors

Microprocessor technology can be applied directly at the sensor and transmitter to
provide better performance. An important feature of these sensors is the ability for
self-calibration—that is, automatic corrections for environmental changes, such
as temperature, electrical noise, and process conditions.

Operator Displays
Excellent displays are essential so that operating personnel can quickly analyze
and respond to ever-changing plant conditions. Current displays consist of multiple
cathode ray tubes (CRTs). Future display technology is expected to provide flat
screens of much larger area. These larger screens will allow more information to
be displayed concurrently, thus improving process monitoring.

Controller Algorithms
The flexibility of digital calculations eliminates a restriction previously imposed by
analog computation that prevented engineers from employing complex algorithms
for special-purpose applications. Some of the most successful new algorithms
use explicit dynamic models in the controller. These algorithms are presented in
this book in Chapter 19 on predictive control and in Chapter 23 on centralized
multivariable control.

Monitoring and Optimization
The large amount of data collected and stored by digital control systems provides
an excellent resource for engineering analysis of process performance. The results
of this analysis can be used to adjust the operating conditions to improve product
quality and profit. This topic is addressed in Chapter 26.

11.8 a CONCLUSIONS

Digital computers have become the standard equipment for implementing process
control calculations. However, the trend toward digital control is not based on better
performance of PID control loops. In fact, the material in this chapter demonstrates
that most PID control loops with digital controllers do not perform as well as those
with continuous controllers, although the difference is usually very small.

The sampling of a continuous measured signal for use in feedback control
introduces a limit to control performance, because some high-frequency informa
tion is lost through sampling. Shannon's theorem provides a quantitative estimate
of the frequency range over which information is lost.

Sampling and discrete execution introduce an additional dynamic effect in
the feedback loop, which influences stability and performance. Guidelines are
provided that indicate how the PID controller tuning should be modified to re
tain the proper margin from the stability limit while providing reasonable control
performance. As we recall, the stability margin is desired so that the control sys
tem performs well when the process dynamic response changes from its estimated
value—in other words, so that the system performance is robust.



A major conclusion from this chapter is that

The characteristics of the modes and tuning constants for the continuous PID con
troller can be interpreted in the same manner for the digital PID controller. The digital
PID controller must use modified tuning guidelines to achieve good performance
and robustness.

This valuable result enables us to apply the same basic concepts to both continuous
analog and digital controllers.

The power of digital computers is in their flexibility to execute other control
algorithms easily, even if the computations are complex.

All control methods described in subsequent chapters can be implemented in either
analog or digital calculating equipment, unless otherwise stated. Where the digital
implementation is not obvious, the digital form of the controller algorithm is given.

This power will be capitalized on when applying advanced methods such as non
linear control (Chapters 16 and 18), inferential control (Chapter 17), predictive
control (Chapters 19 and 23), and optimization and statistical monitoring (Chap
ter 26).

Many of the guidelines and recommendations in this chapter have been verified
through simulation examples. For continuous control systems, rigorous proofs and
methods of analysis have been provided using Laplace transforms, for example,
in Chapter 10 (and the forthcoming Chapter 13). Similar analysis methods are
available for digital control systems using z-transforms. An introduction to z-
transforms and their application to digital control systems analysis are provided in
Appendix L.
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ADDITIONAL RESOURCES
Each commercial digital control system has an enormous array of features, making
comparisons difficult. A summary of the equipment for some major suppliers is
provided in the manual

Wade, H. (ed.), Distributed Control Systems Manual, Instrument Society of
America, Research Triangle Park, NC, 1992 (with periodic updates).

In addition to the references by Astrom and Wittenmark (1990) and by Franklin
et al. (1990), the following book gives detailed information on z-transforms and
digital control theory.

Ogata, K., Discrete-Time Control Systems, Prentice-Hall, Englewood Cliffs,
NJ, 1987.

For an analysis of digital controller execution periods that considers the dis
turbance dynamics for statistical, rather than deterministic, disturbances, see

MacGregor, J., "Optimal Choice of the Sampling Interval for Discrete Process
Control," Technometrics, 18, 2,151-160 (May 1976).

QUESTIONS
11.1. Answer these questions about the digital PID algorithm.

(a) Give the equations for the full-position and velocity PID controllers if
a trapezoidal numerical integration were used for the integral mode.

(b) The digital controller can be simplified to the following form to reduce
real-time computations. Determine the values for the constants (the
A,s) in terms of the tuning constants and execution period for (i) PID,
(ii) PI, and (iii) PD controllers.

AMV* = AXEN + A2EN-\ + A3CVN + A4CV,v_i + A5CVN-2

11.2. Many tuning rules were designed for continuous control systems, such as
Ziegler-Nichols, Ciancone, and Lopez.
(a) Describe the conditions, including quantitative measures, for which

these tuning rules could be applied to digital controllers without mod
ification.

(b) How could you adjust the rules to systems that had longer execution
periods than determined by the approximate guidelines given in part
(a) of this question?

11.3. Develop a simulation of a simple process under digital PID control. Equa
tions for the process are given below. The calculations can be performed
using a spreadsheet or a programming language. The input change is a step
set point change from 1 to 2.0 at time = 1.0. The process parameters can
be taken from the system in Section 9.3; Kp = 1.0, x = 5.0, and 9 = 5.0,
and the controller and simulation time steps can be taken to be equal; that



(Gp(s))A =

v d s ) \ + 2 s
Ads) \.3e~°-5s / w t% \

\% open/v2(s) 1 + 14s
(a) For each controller, determine the maximum execution period so that

digital execution does not significantly affect the control performance.
(b) Determine the PID controller tuning for each controller for two values

of the execution period:

(1) The result in (a) and (2) a value of 3 minutes

Questions

i s , 8 t = A t = 1 . 0 . 3 7 7
Process: CV* = (e-St^)CVN-i + Kp(\ - e-St^)MVN-r-\ T = £

Controller: MVN = MVN-\ + Kc (en - EN-i + jrEN)

with St = step size for the numerical solution of the process equation
At = execution period of the digital controller

(a) Verify the equations for the process and controller and determine the
initial conditions for MV and CV.

(b) Repeat the study summarized in Figure 9.2 for a set point change.
(c) Use the tuning in Table 9.2 to obtain the IAE for set point changes.
(d) Select tuning from several points on the response surface in Figure 9.3.

Obtain the dynamic responses and explain the behavior: oscillatory,
overdamped, and so forth.

11.4. Repeat question 11.3 for the system in Example 8.5 and obtain the dynamic
response given in Figure 8.9. You must determine all parameters in the
equations, including appropriate values for the process simulation step size
and the execution period of the digital controller. Solve this problem by
simulating (1) the linearized process model and (2) the nonlinear process
model.

11.5. State for each of the controller variables in the following list
(a) its source (e.g., from an operator, from process, or from a calculation)
(b) whether the variable would be transferred to the operator console for

display
(1) SPyv, the controller set point
(2) CV#, the current value of the controlled variable
(3) Kc, the controller gain
(4) Sn, the sum of all past errors used in approximating the integral

error
(5) MVjv, the current controller output
(6) M/A, the status of the controller (M=manual or off, A=automatic

or on)
(7) AMV/v, the current change to the manipulated variable
(8) En, the current value of the error

11.6. A process control design is given in Figure Ql 1.6. The process transfer
functions Gp(s) follow, with time in minutes:

(Gp(s))T = ——- =. . . / „ \ 1 . o ~ \ % o p e n /
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FIGURE Ql 1.6

11.7. In the chapter it was stated that the digital controller should not be executed
faster than the measured controlled variable is updated. In your own words,
explain the effect of executing the controller faster than the measurement
update and why this effect is undesirable.

11.8. An example of ringing occurs when a digital proportional-only controller
is applied to a process that is so fast that it reaches steady state within one
execution period, At. The following calculations, which are simple enough
to be carried out by hand, will help explain ringing.
(a) Calculate several steps of the response of a control system with a

steady-state process with Kp = 1.0(6 = x = 0) and a proportional-
only controller, Kc = 0.8. Assume that the system is initially at steady
state and a set point change of 5 units is made.

(b) Repeat the calculation for an integral-only controller, equation (8.16).
Find a value of the parameter (KcAt/ Ti) by trial and error that gives
good dynamic performance for the controlled and manipulated vari
ables.

(c) Generalize the results in (a) and (b) and give a tuning rule for integral-
only, digital control of a fast process.

11.9. Some example process dynamics and associated digital feedback execution
periods are given in the following table. For each, calculate the PI controller
tuning constants, assuming standard control performance objectives.

Process transfer function
Gp(s)

Execution period
At

(a)
(b)
(c)

(d)

(e)

(f)

Three-tank mixer, Example 7.2
Recycle system in equation (5.51)

1.2g-°-"
1 + 0.5s
1.2<r0h
1+0.5^
2.\e~2Qs
1 + 100s
2.\e~m$
1+20*

Selected by reader
Selected by reader

0.25

5.0

30

30
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termine which processors, signal converters, and transmission equipment %Mmmmmmmmmm\
must act and in what order for (a) the result of an operator-entered set point Questions
change to reach the valve; (b) a process change to be detected and acted
upon by the controller so that the valve is adjusted.

11.11. Consider a signal that is a perfect sine with period T^nai, and is sampled
at period TsampiQ, with rsampie < rsigna|. Determine the primary aliasing
frequency (the sample frequency at which the sampled values are periodic
with a period a multiple of the true signal sine frequency) as a function of
the two periods.

11.12. (a) Determine bounds on the error between the continuous signal and the
output of the sample/hold for a zero-order and a first-order hold. (Hint:
Consider the rate of change of the continuous signal.)

(b) Apply the results in (a) to a continuous sine signal and determine the
errors for various values of the sample period to sine period.

(c) Which hold gives a smaller error in (b)l
11.13. Answer the following questions regarding the computer implementation of

the digital PID controller.
(a) Can the controller tuning constants be changed while the controller

is functioning without disturbing the manipulated variable? (Consider
the velocity and full-positional forms separately.)

(b) For the velocity form of the PID, what is the value for MWN-\ for the
first execution of the controller?

(c) For the full-position form of the PID, the sum of the error term might
become very large and overflow the word length. Is this a problem
likely to occur?

(d) Discuss how the calculations could be programmed to introduce limits
on the change of the manipulated variable (AMV^), the set point
(SPw), and the manipulated variable (MV#).

(e) Can you anticipate any performance difficulties when the limitations
in (d) are implemented? If yes, suggest modifications to the algorithm.
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12.1 n INTRODUCTION
The major components of the feedback control calculations have been presented
in previous chapters in this part. However, much more needs to be done to ensure
the successful application of the principles already covered. Practical application
of feedback control requires that equipment and calculations provide accuracy
and reliability and also overcome a few shortcomings of the basic PID control
algorithm. Some of these requirements are satisfied through careful specification
and maintenance of equipment used in the control loop. Other requirements are
satisfied through modifications to the control calculations.

The application issues will be discussed with reference to the control loop
diagram in Figure 12.1, which shows that many of the calculations can be grouped
into three categories: input processing, control algorithm, and output processing.
As shown in Table 12.1, most of the calculation modifications are available in both
analog and digital equipment; however, a few are not available on standard analog
equipment, because of excessive cost. The application requirements are discussed
in the order of the four major topics given in Table 12.1. A few key equipment spec
ifications are presented first, followed by input processing calculations, performed
before the control calculation. Then, modifications to the PID control calculation
are explained. Finally, a few issues related to output processing are presented.
The topics in this chapter are by no means a complete presentation of practical
issues for successful application of control; they are limited to the most important
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Output
processing

* Initialization
* Limits
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Proportional
*Sign
* Units

Integral
* Windup

Derivative
* Filter

Process

O^-sp

Input
processing

* Validity
* Linearization
* Filtering

Sensor

FIGURE 12.1

Simplified control loop drawing, showing
application topics.

TABLE 12.1

Summary of application issues

Available in ei ther Typically available
analog or digital only in digital

Application topic equipment equipment

Equipment specification
Measurement range t
Final element capacity t
Failure mode t

Input processing
Input validity X
Engineering units X
Linearization X
Filtering X

Control algorithm
Sign X
Dimensionless gain X
Anti-reset windup X
Derivative filter X

Output processing
Initialization X
Bounds on output variable X

t Involves field control equipment that is independent of analog or digital controllers.

issues for single-loop control. Further topics, addressing design, reliability, and
safety, are covered in Part VI after multiple-loop processes and controls have been
introduced.



12.2 n EQUIPMENT SPECIFICATION

Proper specification of process and control equipment is essential for good control
performance. In this section, the specification of sensors and final control elements
is discussed. Sensors are selected to provide an indication of the true controlled
variable and are selected based on accuracy, reproducibility, and cost. The first two
terms are defined here as paraphrased from ISA (1979).

Accuracy is the degree of conformity to a standard (or true) value when the
device is operated under specified conditions. This is usually expressed as a bound
that errors will not exceed when a measuring device is used under these specified
conditions, and it is often reported as inaccuracy as a percent on the instrument
range.

Reproducibility is the closeness of agreement among repeated sensor outputs
for the same process variable value. Thus, a sensor that has very good reproducibil
ity can have a large deviation from the true process variable; however, the sensor
is consistent in providing (nearly) the same indication for the same true process
variable.

Often, deviations between the true variable and the sensor indication occur
as a "drift" or slow change over a period of time, and this drift contributes a
bias error. In these situations, the accuracy of the sensor may be poor, although
it may provide a good indication of the change in the process variable, since the
sensitivity relationship (A sensor signal)/( A true variable) may be nearly constant.
Although a sensor with high accuracy is always preferred because it gives a close
indication of the true process variable, cases will be encountered in later chapters
in which reproducibility is acceptable as long as the sensitivity is unaffected by
the drift. For example, reproducibility is often acceptable when the measurement
is applied in enhancing the performance of a control design in which the key
output controlled variable is measured with an accurate sensor. The importance of
accuracy and reproducibility will become clearer after advanced control designs
such as cascade and feedforward control are covered; therefore, the selection of
sensors is discussed again in Chapter 24.

Often, inaccuracies can be corrected by periodic calibration of the sensor.
If the period of time between calibrations is relatively long, a drift from high
accuracy over days or weeks could result in poor control performance. Thus,
critical instruments deserve more frequent maintenance. If the period between
calibrations is long, some other means for compensating the sensor value for a
drift from the accurate signal may be used; often, laboratory analyses can be used
to determine the bias between the sensor and true (laboratory) value. If this bias is
expected to change very slowly, compared with laboratory updates, the corrected
sensor value, equalling measurement plus bias, can be used for real-time control.
Further discussion on using measurements that are not exact, but give approximate
indications of the process variable over limited conditions, is given in Chapter 17
on inferential control.

383
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Specification

Sensor Range
An important factor that must be decided for every sensor is its range. For essen
tially all sensors, accuracy and reproducibility improve as the range is reduced,
which means that a small range would be preferred. However, the range must be
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large enough to span the expected variation of the process variable during typi
cal conditions, including disturbances and set point changes. Also, the measure
ment ranges are selected for easy interpretation of graphical displays; thus, ranges
are selected that are evenly divisible, such as 10, 20, 50, 100, or 200. Naturally,
each measurement must be analyzed separately to determine the most appropriate
ranges, but some typical examples are given in the following table.

Variable Typical set point Sensor range

Furnace outlet temperature 600°C
P r e s s u r e 5 0 b a r
C o m p o s i t i o n 0 . 5 0 m o l e %

550-650°C
40-60 bar
0-2.0 mole %

Levels of liquids (or solids) in vessels are typically expressed as a percent of the
span of the sensor rather than in length (meters). Flows are often measured by
pressure drop across an orifice meter. Since orifice plates are supplied in a limited
number of sizes, the equipment is selected to be the smallest size that is (just) large
enough to measure the largest expected flow. The expected flow is always greater
than the design flow; as a result of the limited equipment and expected flow range,
the flow sensor can usually measure at least 120 percent of the design value, and
its range is essentially never an even number such as 0 to 100 m3/day.

These simple guidelines do not satisfy all situations, and two important excep
tions are mentioned here. The first special situation involves nonnormal operations,
such as startup and major disturbances, when the variable covers a much greater
range. Clearly, the suppressed ranges about normal operation will not be satis
factory in these cases. The usual practice is to provide an additional sensor with
a much larger range to provide a measurement, with lower accuracy and repro
ducibility, for these special cases. For example, the furnace outlet temperature
shown in Figure 12.2, which is normally about 600°C, will vary from about 20 to
600°C during startup and must be monitored to ensure that the proper warm-up
rate is attained. An additional sensor with a range of 0 to 800°C could be used
for this purpose. The additional sensor could be used for control by providing a
switch, which selects either of the sensors for control. Naturally, the controller
tuning constants would have to be adapted for the two types of operation.

A second special situation occurs when the accuracy of a sensor varies over
its range. For example, a flow might be normally about 30 m3/h in one operating
situation and about 100 m3/h in the other. Since a pressure drop across an orifice
meter does not measure the flow accurately for the lower one-third of its range, two
pressure drop measurements are required with different ranges. For this example,
the meter ranges might be 0 to 40 and 0 to 120 m3/h, with the smaller range
providing good accuracy for smaller flows.

Control Valve

The other critical control equipment item is the final element, which is normally a
control valve. The valve should be sized just large enough to handle the maximum
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expected flow at the expected pressure drop and fluid properties. Oversized control
valves (i.e., valves with maximum possible flows many times larger than needed)
would be costly and might not provide precise maintenance of low flows. The
acceptable range for many valves is about 25:1; in other words, the valve can
regulate the flow smoothly from 4 to nearly 100 percent of its range, with flows
below 4 percent having unacceptable variation. (Note that the range of stable flow
depends on many factors in valve design and installation; the engineer should
consult specific technical literature for the equipment and process design.) Valves
are manufactured in specific sizes, and the engineer selects the smallest valve size
that satisfies the maximum flow demand. If very tight regulation of small changes
is required for a large total flow, a typical approach is to provide two valves, as
shown in Figure 12.3. This example shows a pH control system in which acid is
adjusted to achieve the desired pH. In this design, the position of the large valve is
changed infrequently by the operator, and the position of the small valve is changed
automatically by the controller. Strategies for the controller to adjust both valves
are presented in Chapter 22 on variable-structure control.

Sensors and final elements are sized to (just) accommodate the typical operating
range of the variable. Extreme oversizing of a single element is to be avoided; a
separate element with larger range should be provided if necessary.

Another important issue is the behavior of control equipment when power
is interrupted. Naturally, a power interruption is an infrequent occurrence, but
proper equipment specification is critical so that the system responds safely in
this situation. Power is supplied to most final control elements (i.e., valves) as air
pressure, and loss of power results from the stoppage of air compressors or from the
failure of pneumatic lines. The response of the valve when the air pressure, which

Large valve Small valve

Acid
Feed 1"s

i-C*3- Acid

- @ .do PH^ r
FIGURE 12.3

Stirred-tank pH control system with two
manipulated valves, of which only one is

adjusted automatically.
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A flash separation unit with the valve
failure modes.

is normally 3 to 15 psig, decreases below 3 psig is called its failure mode. Most
valves fail open or fail closed, with the selection determined by the engineer to
give the safest process conditions after the failure. Normally, the safest conditions
involve the lowest pressures and temperatures. As an example, the flash drum in
Figure 12.4 would have the valve failure modes shown in the figure, with "fo"
used to designate a fail-open valve and "fc" a fail-closed valve. (An alternative
designation is an arrow on the valve stem pointing in the direction that the valve
takes upon air loss.) The valve failure modes in the example set the feed to zero,
the output liquid flow to maximum, the heating medium flow to zero, and the vapor
flow to its maximum. All of these actions tend to minimize the possibility of an
unsafe condition by reducing the pressure. However, the proper failure actions must
consider the integrated plant; for example, if a gas flow to the process normally
receiving the liquid could result in a hazardous situation, the valve being adjusted
by the level controller would be changed to fail-closed.

The proper failure mode can be ensured through simple mechanical changes to
the valve, which can be made after installation in the process. Basically, the failure
mode is determined by the spring that directs the valve position when no external
air pressure provides a counteracting force. This spring can be arranged to ensure
either a fully opened or fully closed position. As the air pressure is increased, the
force on the restraining diaphragm increases, and the valve stem (position) moves
against the spring.

The failure mode of the final control element is selected to reduce the possibility of
injury to personnel and of damage to plant equipment.

The selection of a failure mode also affects the normal control system, because
the failure mode is the position of the valve at 0 percent controller output. As
the controller output increases, a fail-open valve closes and a fail-closed valve
opens. As a result, the failure mode affects the sign of the process transfer function
expressed as CV(j)/MV(j), which is the response "seen" by the controller. As a
consequence, the controller gain used for negative feedback control is influenced
by the failure mode. If the gain for the process CVis)/Fis), with Fis) representing
the flow through the manipulated valve, is K*, the correct sign for the controller
gain is given by

Failure mode
Sign off the controller gain
considering the failure mode

Fail closed
Fail open

Signup
-Sign(*;)

This brief introduction to determining sensor ranges, valve sizes, and failure
modes has covered only a few of the many important issues. These topics and
many more are covered in depth in many references and instrumentation hand-



books, which should be used when designing control systems (see references in
Chapter 1).

12.3 b INPUT PROCESSING
The general control system, involving the sensor, signal transmission, control cal
culation, and transmission to the final element, was introduced in Chapter 7. In this
section, we will look more closely at the processing of the signal from the com
pletion of transmission to just before the control algorithm. The general objectives
of this signal processing are to (1) improve reliability by checking signal validity,
(2) perform calculations that improve the relationship between the signal and the
actual process variable, and (3) reduce the effects of high-frequency noise.

Validity Check
The first step is to make a check of the validity of the signal received from the
field instrument via transmission. As we recall, the electrical signal is typically 4
to 20 mA, and if the measured signal is substantially outside the expected range,
the logical conclusion is that the signal is faulty and should not be used for con
trol. A faulty signal could be caused by a sensor malfunction, power failure, or
transmission cable failure. A component in the control system must identify when
the signal is outside of its allowable range and place the controller in the manual
mode before the value is used for control. An example is the furnace outlet temper
ature controller in Figure 12.2. A typical cause of a sensor malfunction is for the
thermocouple measuring the temperature to break physically, opening the circuit
and resulting in a signal, after conversion from voltage to current, below 4 mA.
If this situation were not recognized, the temperature controller would receive a
measurement equal to the lowest value in the sensor range and, as a result, increase
the fuel flow to its maximum. This action could result in serious damage to the
process equipment and possible injury to people. The input check could quickly
identify the failure and interrupt feedback control. An indication should be given
to the operators, because the controller mode would be changed without their in
tervention. Because of the logic required for this function, it is easily provided as
a preprogrammed feature in many digital control systems, but it is not a standard
feature in analog control because of its increased cost.
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Conversion for Nonlinearity
The next step in input processing is to convert the signal to a better measure of the
actual process variable. Naturally, the physical principles for sensors are chosen
so that the signal gives a "good" measure of the process variable; however, factors
such as reliability and cost often lead to sensors that need some compensation.
An example is a flow meter that measures the pressure drop across an orifice, as
shown in Figure 12.5. The flow and pressure drop are ideally related according to
the equation

F = K. AP
(12.1)

Fluid

Flow
^

Orifice

FIGURE 12.5

Flow measurement by sensing the
pressure difference about an orifice

in a pipe.
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with F = volumetric flow rate
p = density

AP = pressure difference across the orifice

Typically, the sensor measures the pressure drop, so that
K

F = —JiSi-Sl0)iRl) + Zl (12.2)

with S\ = signal from the sensor
S\o = lowest value of the sensor signal
R\ = range of the true process variable measured by the sensor
Z\ = value of the true process variable when the sensor records its

lowest signal (Sio)
p = constant

Thus, using the sensor signal directly (i.e., without taking the square root) intro
duces an error in the control loop. The accuracy would be improved by using the
square root of the signal, as shown in equation (12.2), for control and also for
process monitoring. In addition, the accuracy could be improved further for im
portant flow measurements by automatically correcting for fluid density variations
as follows:

F = K. (S{-S{0)(RX) + ZX
(Si - S2o)iR2) + Z2 (12.3)

with the subscript 1 for the pressure difference sensor signal and 2 for the density
sensor signal. By far the most common flow measurement approach used commer
cially is equation (12.2), with equation (12.3) used only when the accurate flow
measurement is important enough to justify the added cost of the density analyzer.

Another common example of sensor nonlinearity is the thermocouple tem
perature sensor. A thermocouple generates a millivolt signal that depends on the
temperature difference between the two junctions of the bimetallic circuit. The
signal transmitted for control is either in millivolts or linearly converted to mil-
liamps. However, the relationship between millivolts and temperature is not linear.
Usually, the relationship can be represented by a polynomial or a piecewise linear
approximation to achieve a more accurate temperature value; the additional cal
culations are easily programmed as a function in the input processing to achieve a
more accurate temperature value.

These orifice flow and thermocouple temperature examples are only a few of
the important relationships that must be considered in a plantwide control sys
tem. Naturally, each relationship should be evaluated based on the physics of the
sensor and the needs of the control system. Standard handbooks and equipment
supplier manuals provide invaluable information for this analysis. The importance
of the analysis extends beyond control to monitoring plant performance, which
depends on accurate measurements to determine material balances, reactor yields,
energy consumption, and so forth. Thus, many sensor signals are corrected for
nonlinearities even when they are not used for closed-loop control.

Engineering Units
Another potential input calculation expresses the input in engineering units, which
greatly simplifies the analysis of data by operations personnel. This calculation is



possible only in digital systems, as analog systems perform calculations using
voltage or pressure. Recall that the result of the transmission and any correction
for nonlinearity in digital systems is a signal in terms of the instrument range
expressed as a percent (0 to 100) or a fraction (0 to 1). The variable is expressed
in engineering units according to the following equation:

CV = Z + RiS3 - S30)

with S3 the signal from the sensor after correction for nonlinearity.

(12.4)
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Filtering
An important feature in input processing is filtering. The transmitted signal repre
sents the result of many effects; some of these effects are due to the process, some
are due to the sensor, and some are due to the transmission. These contributions
to the signal received by the controller vary over a wide range of frequencies,
as presented in Figure 12.6. The control calculation should be based on only the
responses that can be affected by the manipulated variable, because very high-
frequency components will result in high-frequency variation of the manipulated
variable, which will not improve and may degrade the performance of the con
trolled system.

Some noise components are due to such factors as electrical interference and
mechanical vibration, which have a much higher frequency than the process re
sponse. (This distinction may not be so easy to make in controlling machinery
or other very fast systems.) Other noise components are due to changes such as
imperfect mixing and variations in process input variables such as flows, temper
atures, and compositions; some of these variations may be closer to the critical
frequency of the control loop. Finally, some measurement variations are due to
changes in flows and compositions that occur at frequencies much below the criti
cal frequency; the effects of these slow disturbances can be attenuated effectively
by feedback control.

The very high-frequency component of the signal cannot be influenced by a
process control system, and thus is considered "noise"; the goal, therefore, is to
remove the unwanted components from the signal, as shown in Figures 12.7 and
12.8. The filter is located in the feedback loop, and dynamics involved with the
filter, like process dynamics, will influence the stability and control performance
of the closed-loop system. This statement can be demonstrated by deriving the
following transfer function, which shows that the filter appears in the characteristic
equation.

Gpis)Gds)Gds)CVjs) =
SP(5) 1 + Gp(s)Gds)Gc(s)Gf(s)Gs(s)

(12.5)

If it were possible to separate the signal ("true" process variable) from the noise, the
perfect filter in Figure 12.8 would transmit the unaltered "true" process variable
value to the controller and reduce the noise amplitude to zero. In addition, the
perfect filter would do this without introducing phase lag! Unfortunately, there is
no clear distinction between the "true" process variable, which can be influenced
by adjusting the manipulated variable, and the "noise," which cannot be influenced
and should be filtered. Also, no filter calculation exists that has the features of a
perfect filter in Figure 12.8.

Controllable disturbances
Uncontrollable disturbances

Measurement noise
Electrical interference

Sampling frequency

10r 4 1 0 - 2 1 Q 0 1 0 2
Frequency (Hz)

FIGURE 12.6

Example frequency ranges for
components in the measurement

(Reprinted by permission. Copyright
©1966, Instrument Society of America.

From Goff, K., "Dynamics of Direct
Digital Control, Part I," ISA J., 13,11,

45-49.)
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Block diagram of a feedback loop with a filter on the
measurement.
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FIGURE 12.8

The amplitude ratio and phase angle of
a perfect filter, which cannot be
achieved exactly.

The filter calculation usually employed in the chemical process industries is
a first-order transfer lag:

CVfis) = ZfS +1
CVm(*) (12.6)

with CVfis) = value after the filter
CV„,(s) —measured value before the filter

Zf = filter time constant

The gain is unity because the filter should not alter the actual signal at low fre
quency, including the steady state. The frequency response of the continuous filter
was derived in Section 4.5, is repeated in the following equations, and is shown in
Figure 12.9.

AR =
1

yjl+a>2x2
cp = tan_,(—cox/)

(12.7)

The filter time constant, t/, is a tuning parameter that is selected to approximate the
perfect filter shown in Figure 12.8; this goal requires that it be small with respect to
the dominant process dynamics so that feedback control performance is not signif
icantly degraded. Also, it should be large with respect to the noise period (inverse
of frequency) so that noise is attenuated. These two requirements cannot usually be
satisfied perfectly, because the signal has components of all frequencies and the cut
off between process and noise is not known. As seen in Figure 12.9, the amplitude
of high-frequency components decreases as the filter time constant is increased.
In the example, signal components with a frequency smaller than 0.5/t/ are es
sentially unaffected by the filter, while components with a much higher frequency
have their magnitudes reduced substantially. This performance leads to the name
low-pass filter, which is sometimes used to describe the filter that does not affect
low frequencies—lets them pass through—while attenuating the high-frequency
components of a signal. A simple case study has been performed to demonstrate
the trade-off between filtering and performance. The effect of filtering on a first-
order-with-dead-time plant is given in Figure 12.10. The controlled-variable per
formance, measured simply as IAE in this example, degrades as the filter time
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FIGURE 12.9

Bode plot of first-order filter.
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FIGURE 12.10

The effect of measurement filtering on feedback control
performance i$/i$ + z) = 0.33).

constant is increased. The results are given in Figure 12.10, which shows the per
cent increase in IAE over control without the filter as a function of the filter time
constant. This case study was calculated for a plant with fraction dead time of 0.33
under a PI controller with tuning according to the Ciancone correlations. Thus, the
results are typical but not general; similar trends can be expected for other systems.
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Based on the goals of filtering, the guidelines in Table 12.2 are recommended
for reducing the effects of high-frequency noise for a typical situation. These steps
should be implemented in the order shown until the desired control performance
is achieved. Normally, step 2 will take priority over step 3, because the controlled-
variable performance is of greater importance. If reducing the effects of high-
frequency noise is an overriding concern, the guidelines can be altered accordingly,
such as achieving step 3 while allowing some degradation of the controlled-variable
control performance.

The final issue in filtering relates to digital implementation. A digital filter
can be developed by first expressing the continuous filter in the time domain as a
differential equation:

xfdCWdft(t) +CVfit) = CVmit)

leading to the digital form of the first-order filter,

(CV/),, = AiCVf^ + (1 - A)(CVm)„ with A = e~At'T'

(12.8)

(12.9)

This equation can be derived by solving the differential equation defined by equa
tion (12.8) and assuming that the measured value (CVm )„ is constant over the filter
execution period At. The digital filter also has to be initialized when the calcu
lations are first performed or when the computer is restarted. The typical filter
initialization sets the initial filtered value to the value of the initial measurement.

(CV/),=(CVm), (12.10)

As is apparent, the first-order filter can be easily implemented in a digital
computer. However, the digital filter does not give exactly the same results as the
continuous version, because of the effects of sampling. As discussed in Chapter 11
on digital control, sampling a continuous signal results in some loss of information.
Shannon's theorem shows us that information in the continuous signal at frequen
cies above about one-half the sample frequency cannot be reconstructed from the
sampled data. For example, sampled data taken at a period of one minute could not

TABLE 12.2

Guidelines for reducing the effects off noise

Step Action Just ificat ion

1. Reduce the amplification of
noise by the control algorithm

2. Allow only a slight increase
in the IAE of the controlled
variable
3. Reduce the noise effects on
the manipulated variable

Set derivative time to zero
Td=0

Select a small filter zfl e.g.
zf < 0.05(6 + z)

Select filter time constant
to eliminate noise, e.g.,
Zf > 5/co„ where co„ is the
noise frequency

Prevent amplification of
high-frequency component
by controller
Do not allow the filter to
degrade control
performance
Achieve a small amplitude
ratio for the high-frequency
components



be used to determine a sinusoidal variation in the continuous signal with a period of
one second. As a result, the digital filter cannot attenuate higher-frequency noise.

This is potentially a serious problem, because very high-frequency noise is
possible due to mechanical vibrations of the sensor and electrical interference
in signal transmission, as shown in Figure 12.6. Since a digital filter alone at a
relatively long period cannot provide adequate filtering, most commercial digital
control equipment has two filters in series: an analog filter before the analog-
to-digital (A/D) conversion and an (optional) digital filter after the conversion, as
shown in Figure 12.11. The purpose of the analog filter is to reduce high-frequency
components of the signal substantially, and typically, it has a time constant on the
order of the sample period. The analog filter in this configuration is sometimes
referred to as an antialiasing filter, since it reduces potential errors resulting from
slowly sampling a signal with high-frequency components. The digital filter in
the design, if needed, would be tuned according to the guidelines in Table 12.2 to
further attenuate variations at higher frequencies.

There is a tendency to overfilter signals used for control. Thus, the following
recommendation should be considered:
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Since the filter is a dynamic element in the feedback loop, signals used for control
should be filtered no more than the minimum required to achieve good control
performance.

Not all measurements are used for control; in fact, a rough estimate is that less
than one-third of the signals transmitted to a central control room are used for
control. The other signals serve the important purpose of enabling plant personnel
to monitor the process. For displaying the current status of the process, these
signals should not be filtered, except for the analog filter before the A/D converter,
because any filter would delay the information display, which could confuse the
plant operator.

Much of this information is also stored for later process analysis. Since high-
frequency data is usually not required, a typical approach is to store data consisting
of averages of several samples of the measured variable within meaningful time pe
riods such as hour, shift (8 hours), day, and week. This data concentration approach
represents a filter that reduces the effects of high-frequency noise and short-term

Analog
filter

Digital
filter

i A/D (CV^AnCV,) , , . ,
+ i\-A)iCVm)nXS+ 1

CV(0

1
cvmit)

A/\yS/
cvm

• • • •

FIGURE 12.11

Schematic of the effects of analog and digital filters in series.
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plant variations. Assuming that the values used to calculate the average are taken
infrequently enough to be independent, the effect of the number of values used in
the average on the standard deviation is given as

Oavp.r —
*Jn (12.11)

*A0

fcr VAI

% r̂ VA2

t*ri

with o-aver = standard deviation of the average
Gm = standard deviation of the individual measurements used in

calculating the average
n = number of measurements used to calculate the average

This filtering is desired for the purpose of long-term process analysis, such as
detecting slow changes in heat transfer coefficients or catalyst activity, which in
many cases change slowly over weeks or months.
EXAMPLE 12.1.
The measurement of the controlled variable in the three-tank mixer feedback con
trol system in Example 7.2 is modified to have higher-frequency sensor noise.
Determine how a filter affects (a) the open-loop response of the controlled vari
able after the filter and ib) the control performance of the feedback system.
Recall that the feedback process is third-order with all time constants equal to
5 minutes.

Typical dynamic data of the controlled variable without control is shown in
Figure 12.12, along with the responses of the signal after filters with two different
time constants; the mean values are the same, but the plots are displaced for
clearer comparison. As expected, the filters reduce the high-frequency variation
in the unfiltered signal. The other key issue is the effect of the filter on the control
performance. The dynamic responses of the control system with and without the
derivative mode for various filter time constants are shown in Figure 12.13a through
c; in all of these figures, the value of the controlled variable plotted is before the

Time
FIGURE 12.12

Open-loop dynamic data for Example 12.1 with zf
equal to: (a) 0.0; ib) 3.0; and ic) 10.0 min.



filter; thus, this signal is modulated before being used in the controller. The amplifi
cation of the measurement noise by the derivative mode is apparent by comparing
Figure 12.13a and Figure 12.13b. In fact, simply eliminating the derivative might
be sufficient in this case. The addition of the filter further smooths the manipulated
variable but worsens the performance of the controlled variable. A measure of the
controlled-variable performance is summarized in Table 12.3, which includes the
need to change the controller tuning because of the addition of the filter in the
control loop. The results are in general agreement with the guidelines shown in
Figure 12.10.
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FIGURE 12.13

Closed-loop dynamic data for the system in Example 12.1: ia) PID without filtering; ib) PI without filtering; (c) PI with filtering
(t/ = 3.0 min).
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TABLE 12.3

Results from Example 12.1

Kc Ti Td T/ IAE

30 11 0.88 0 9.4 No filter
30 11 0 0 9.5 No filter
29 12 0 1 10.3 Generally acceptable, zf/i6 + z)& 0.066
26 14 0 3 12.5 Generally too much filtering, zf/i& + z) « 0.20
22 23 0 10 21.2 Too much filtering, zf/i& + z) « 0.66

Set-Point Limits

Often, limits are placed on the set point. Without a limit, the set point can take any
value in the controlled-variable sensor range. Since the controlled-variable sensor
range is selected to provide information during upsets and other atypical operations,
it may include values that are clearly undesirable but not entirely preventable.
Limits on the set point prevent an incorrect value being introduced (1) inadvertently
by the operator or (2) by poor control of a primary in a cascade control strategy
(see Chapter 14).

12.4 □ FEEDBACK CONTROL ALGORITHM

Many features and options are included in commercial PID control algorithms. In
this section, some selected features are introduced, because they are either required
in many systems or are optional features used widely. The features are presented
according to the mode of the PID controller that each affects.

Control ler Proport ional Mode

Throughout the previous chapters, we have allowed the controller gain to be either
positive or negative as required to achieve negative feedback. In many control
systems that use preprogrammed algorithms, the controller gain is required to be
positive. Naturally, another option must be added; this is a "sense switch" that
defines the sign of the controller output. The effect of the sense switch is

MV(0 = iKm)Kc K f" -^)* ' (12.12)

The sense switch has two possible positions, which are defined in the following
table using two common terminologies.

Value of K« Position Position

+1
-1

Direct-acting Increase/increase
Reverse-acting Increase/decrease



This approach is not necessary, but it is used so widely that control engineers
should be aware of the practice. We will continue to use controller gains of either
sign in subsequent chapters unless otherwise specified.
EXAMPLE 12.2.
What is the correct sense switch position for the temperature feedback controller
in Figure 12.2?

Note that the process gain and failure mode of the control valve must be
known to determine the proper sense of the controller. In this example, the valve
failure mode is fail-closed. Therefore, an increase in the controller output signal
results in (1) the valve opening, (2) the fuel flow increasing, (3) the heat transferred
increasing, and (4) the temperature increasing. The overall process loop gain is
the product of all gains in the system, which must be positive to provide the desired
(negative) feedback control.

Sign(loop gain) = s\gn(Kv) sign(Kp) s\gn(Ks)KSf.nseKc =+\
The sensor gain is always positive, and when using the convention that the con
troller gain is positive, the loop gain can be simplified to

Sign(loop gain) = s\gn(Kv) sign(Kp) sign*(K^K^B? = +1

g i v i n g K x m fi = s i g n ( j r , , ) s \ g n ( K p )
In this example, K%tmt. = (+1)(+1) = +1; thus, the sense is direct-acting.
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Another convention in commercial control systems is the use of dimensionless
controller gains. This is required for analog systems, which perform calculations in
scaled voltages or pressures, and it is retained in most digital systems. The scaling
in the calculation is performed according to the following equation:

MV
MV^

/
= (Kc)s E

cv; + 7>Uo W^ - T d -
lev J

dt
\

+ 1" (12.13)

with (Kc)s = dimensionless (scaled) controller gain = Kc(CVr/MVr)
MVr —range of the manipulated variable [100% for a control valve]
CVr = range of the sensor measuring the controlled variable

in engineering units

The range of values for the unsealed controller gain Kc is essentially unlimited, be
cause the value can be altered by changing the units of the measurement. For exam
ple, a controller gain of 1.0 (weight%)/(% open) is the same as 1.0 x 106(ppm)/(%
open). However, the scaled controller gain has a limited range of values, because
properly designed sensors and final elements have ranges that give good accuracy.
For example, a very small dimensionless controller gain indicates that the final
control element would have to be moved very accurately for small changes to
control the process. In this case, the final element should be changed to one with a
smaller capacity. A general guideline is that the scaled controller gain should have
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a value near 1.0. Scaled controller gains outside the range of 0.01 to 10 suggest
that the range of the sensor or final element may have been improperly selected.

Some commercial controller algorithms include a slight modification in the
proportional tuning constant term that does not influence the result of the controller
calculation. The controller gain is replaced with the term 100/PB, with the symbol
PB representing the proportional band.

The proportional band is calculated as PB = \00/(Kc)s. Proportional band is
dimensionless.

The net PID controller calculation in equation (12.13) is unchanged because the
controller gain is calculated as (Kc)s = 100/PB. Thus, the use of gain or propor
tional band is arbitrary; either gives the same control loop performance. However,
the engineer must know which convention is used in the controller and enter the
appropriate value. Note that in fine-tuning, the controller is modified to be less
aggressive by decreasing the controller gain or increasing the proportional band.

Integral Mode

Usually, the tuning constant associated with the integral mode is expressed in
time units, minutes or seconds. Some commercial systems use a PID algorithm
that calculates the same output as equation (12.13) but replaces the inverse of the
integral time with an alternate parameter termed the reset time.

The reset time is the inverse of the integral time, Tr = 1/T/. The units for reset time
are repeats per time unit, e,g., repeats per minute.

EXAMPLE 12.3.
For the three-tank mixing process, the concentration sensor has a range of 5%A,
and the control valve is fail-closed. Determine the dimensionless controller gain,
proportional band, controller sense, and reset time.

Recall that the process reaction curve identification and Ciancone tuning were
applied to determine values for the controller gain in engineering units and the
integral time, 30 (% opening/%A) and 11 minutes, respectively (see Example 9.2
for a refresher). Therefore, the dimensionless controller gain and proportional band
are

(Kc)s = Kc(CVr/MVr) = 30(% opening/%A)(5 %A)/(100% open) = 1.5
PB = \00/(Kc)s = 100/1.5 = 66.6

The controller sense is determined by

tfsense = sign(^) sign(i^) = sign (l)sign (0.039) = +1
Therefore, the controller sense is direct-acting. The reset time is the inverse of the
integral time,

Tr = 1/77 = 1/11 =0.919 repeats per minute



The integral mode is included in the PID controller to eliminate steady-state
offset for steplike disturbances, which it does satisfactorily as long as it has the
ability to adjust the final element. If the final element cannot be adjusted because
it is fully open or fully closed, the control system cannot achieve zero offset. This
situation is not a deficiency of the control algorithm; it represents a shortcoming
of the process and control equipment. The condition arises because the equipment
capacity is not sufficient to compensate for the disturbance, which is presumably
larger than the disturbances anticipated during the plant design. The fundamental
solution is to increase the equipment capacity.

However, when the final element (valve) reaches a limit, an additional diffi
culty is encountered that is related to the controller algorithm and must be addressed
with a modification to the algorithm. When the valve cannot be adjusted, the error
remains nonzero for long periods of time, and the standard PID control algorithm
[e.g., equation (12.12) or (11.6)] continues to calculate values for the controller
output. Since the error cannot be reduced to zero, the integral mode integrates
the error, which is essentially constant, over a long period of time; the result is a
controller output value with a very large magnitude. Since the final element can
change only within a restricted range (e.g., 0 to 100% for a valve), these large
magnitudes for the controller output are meaningless, because they do not affect
the process, and should be prevented.

The situation just described is known as reset (integral) windup. Reset windup
causes very poor control performance when, because of changes in plant operation,
the controller is again able to adjust the final element and achieve zero offset.
Suppose that reset windup has caused a very large positive value of the calculated
controller output because a nonzero value of the error occurred for a long time. To
reduce the integral term, the error must be negative for a very long time; thus, the
controller maintains the final element at the limit for a long time simply to reduce
the (improperly "wound-up") value of the integral mode.

The improper calculation can be prevented by many modifications to the stan
dard PID algorithm that do not affect its good performance during normal cir
cumstances. These modifications achieve anti-reset windup. The first modification
explained here is termed externalfeedback and is offered in many commercial ana
log and digital algorithms. The external feedback PI controller is shown in Figure
12.14. The system behaves exactly like the standard algorithm when the limitation
is not active, as is demonstrated by the following transfer function, which can be
derived by block diagram manipulation based on Figure 12.14.

Eis) (12.14)

MV*(s) = MV(s)

However, the system with external feedback behaves differently from the standard
PI controller when a limitation is encountered. When a limitation is active in Figure
12.14, the following transfer function defines the behavior:

MV*(s) = constant

MV(s) = KcE(s) +
MV*(s) (12.15)

7/5 + 1
with MV*(s) being the upper or lower MV limit. In this case, the controller output
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FIGURE 12.14

Block diagram of a PI control algorithm
with external feedback.
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approaches a finite, reasonable limiting value ofKcE(s)+MV*(s). Thus, external
feedback is successful in providing anti-reset windup. These calculations can be
implemented in either analog or digital systems.

The second, alternative anti-reset windup modification can be implemented
in digital systems. Reset windup can be prevented by using the velocity form of
the digital PID algorithm, which is repeated here.

AMVn — Kc J En ^n-i + ^ - T7(CV„ - 2CVn_, + CV„_2)
1 1 A t

MV„ = MV„_, + AMV„
(12.16)

This algorithm does not accumulate the integral as long as the past value of the
manipulated variable, MV„_i, is evaluated after the potential limitation. When
this convention is observed, any difference between the previously calculated MV
and the MV actually implemented (final element) is not accumulated.

Many other methods are employed to prevent reset windup. The two methods
described here are widely used and representative of the other methods. The key
point of this discussion is that

Anti-reset windup should be included in every control algorithm that has integral
mode, because limitations are encountered, perhaps infrequentiy, by essentially all
control strategies due to large changes in operating conditions.

•*A0" > * I . * A 1

EP
* ■

lA2

i*r#

Reset windup is relatively simple to recognize and correct for a single-loop
controller outputting to a valve, but it takes on increasing importance in more
complex control strategies such as cascade and variable-structure systems, which
are covered later in this book. Also, the general issue of reset windup exists for any
controller that provides zero offset when no limitations exist. For example, reset
windup is addressed again when the predictive control algorithms are covered in
Chapter 19.
EXAMPLE 12.4.
The three-tank mixing process in Examples 7.2 and 9.2 initially is operating in the
normal range. At a time of about 20 minutes, it experiences a large increase in
the inlet concentration that causes the control valve to close and thus reach a
limit. After about 140 minutes, the inlet concentration returns to its original value.
Determine the dynamic responses of the feedback control system with and without
anti-reset windup.

The results of simulations are presented in Figure 12.15a and b. In Figure
12.15a the dynamic response of the system without anti-reset windup is shown.
As usual, the set point, controlled variable, and manipulated variable are plotted.
In addition, the calculated controller output is plotted for assistance in analysis,
although this variable is not normally retained for display in a control system. After
the initial disturbance, the valve position is quickly reduced to 0 percent open.
Note that the calculated controller output continues to decrease, although it has
no additional effect on the valve. During the time from 20 to 160 minutes, the
controlled variable does not return to its set point because of the limitation in
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FIGURE 12.15

Dynamic response of the three-tank mixing system:
ia) without anti-reset windup; ib) with anti-reset windup.

Note that CV(f) = *A3 and MV(0 is the controller output.

the range of the manipulated variable. When the inlet concentration returns to its
normal value, the outlet concentration initially falls below its set point. The controller
detects this situation immediately, but it cannot adjust the valve until the calculated
controller output increases to the value of zero. This delay, which would be longer
had the initial disturbance been longer, is the cause of a rather large disturbance.
Finally, the PI controller returns the controlled variable to its set point, since the
manipulated variable is no longer limited.
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The case with anti-reset windup is shown in Figure 12.15b. The initial part
of the process response is the same. However, the calculated controller output
does not fall below the value of 0 percent; in fact, it remains essentially equal to
the true valve position. When the inlet concentration returns to its normal value,
the controller output is at zero percent and can rapidly respond to the new oper
ating conditions. The second disturbance is much smaller than in Figure 12.15a,
showing the advantage of anti-reset windup.

Derivat ive Mode

An additional modification of the PID algorithm addresses the effect of noise on
the derivative mode. It is clear that the derivative mode will amplify high-frequency
noise present in the measured controlled variable. This effect can be reduced by
decreasing the derivative time, perhaps to zero. Unfortunately, this step also reduces
or eliminates the advantage of the derivative mode. A compromise is to filter the
derivative mode by using the following equation:

- ^ - 7 ( 1 2 . 1 7 )ctdTds + 1
The result of this modification is to reduce the amplification of noise while retain
ing some of the good control performance possible with the derivative mode. As
the factor ad is increased from 0 to 1, the noise amplification is decreased, but the
improvement in control performance due to the derivative mode decreases. This
parameter has typical values of 0.1 to 0.2 and is not normally tuned by the engineer
for each individual control loop. Since the PID control algorithm has been changed
when equation (12.17) is used for the derivative mode, the controller tuning values
must be changed, with the Ciancone correlations no longer being strictly applica
ble. Tuning correlations for the PID controller with ad =0.1 are given by Fertik
(1974).

In i t ia l i za t ion

The PID controller requires special calculations for initialization. The specific ini
tialization required depends upon the particular form of the PID control algorithm;
typical initialization for the standard digital PID algorithm is as follows:

AMVn — K c l L n t L n-. + ^ - X7(CV„ - 2CV„_! + CV„_2)
7 ) A t

MV„ = MV„_, + AMV„

MVi = MV0 that is, AMVi = 0

L,n-\ = t,n

CV„_2 = CVn_! = cv„

for n = 1 for initialization

for n = 1

for n = 1
(12.18)

This initialization strategy ensures that no large initial change in the manipulated
variable will result from outdated past values of the error or controlled variables.
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The standard PID controller has no limits on output values, nor does it have special
considerations when the algorithm is first used, as when the controller is switched
from manual to automatic. As already described, the calculated controller output
is initialized so that the actual valve position does not immediately change on
account of the change in controller mode.

In addition to initialization, the PID algorithm can be modified to limit selected
variables. The most common limitation is on the manipulated variable, as is done
when certain ranges of the manipulated variable are not acceptable. Thus, the ma
nipulated variable is maintained within a restricted range less than 0 to 100 percent.

M V m i n < M V ( 0 < M V m a x ( 1 2 . 1 9 )
An example of limiting the manipulated variable is the damper (i.e., valve),

position in the stack of a fired heater as shown in Figure 12.2. The stack damper is
adjusted to control the pressure of the combustion chamber. Since the stack is the
only means for the combustion product gases to leave the combustion chamber,
it should not be entirely blocked by a closed valve. However, the control system
could attempt to close the damper completely due to a faulty pressure measurement
or poor controller tuning. In this case, it is common to limit the controller output to
prevent a blockage in the range of 0 to 80 percent (not 20 to 100 percent, because
the damper is fail-open, so that a signal of 100 percent would close the valve).

Sometimes the rate of change of the manipulated variable is limited using the
following expression:

/ AMV \
AMV„ = min( |AMV| , AMVmax) ( j ^y f ) (12-20)

This modification is appropriate when a rapid adjustment of the manipulated vari
able can disturb the operation of a process.

12.6 a CONCLUSIONS

Clearly, the simple, single PID equation, while performing well under limited con
ditions, is not sufficient to provide feedback control under the various conditions
experienced in realistic plant operation. Some of the most important modifications
have been presented in this chapter, and many more modifications are described
in publications noted in the references and additional resources.

To complete this chapter, the flowchart for a PID controller that includes
the modifications described in this chapter is given in Figure 12.16. The added
complexity is apparent. However, the computations are readily packaged in pre
programmed algorithms and performed rapidly by powerful microprocessor-based
instrumentation. A wise and productive engineer uses these programs and does not
attempt to develop all real-time calculations from scratch, although doing limited
algorithm programming is a useful learning exercise for the student.
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QUESTIONS
12.1. Many filtering algorithms are possible. For each of the algorithms suggested

below, describe its open-loop frequency response and sketch its Bode plot.
Also, discuss its advantages and disadvantages as a filter in a closed-loop
feedback control system.

(fl) x2s2+0Axs + \

ib) with n = posit ive integerixs + \)n
ic) Averaging filter with m values in average

,™ ^ CV« + CV"-1 + •' * + cv«—+i(CV/)„ = m

XfS + \

12.2. Answer the questions in Table Q12.2 for each PID controller mode or tuning
constant associated with each mode. Explain every entry completely, giving
theoretical justification as well as the brief answer indicated. Answer this
question on the basis of a commercial control system in which all control
calculations are performed in scaled variables.

12.3. You have been given three control systems to analyze. Each has the dimen
sionless controller gain given below. From this information alone, what can
you determine about each control system? iKc)s = ia) 0.02, ib) 0.75, and
ic) 123.00.

12.4. The control systems with the processes given below are to be tuned (1)
without a filter and with a first-order filter with (2) Xf = 0.5 min and (3)
Xf = 3.0 min. Determine the PI tuning constants for all three cases using
the Bode stability analysis and Ziegler-Nichols correlations. Also, state
whether you expect the control performance, as measured by IAE, to be
better or worse with the filter (after retuning). Why?
ia) The empirical model derived in question 6.1 for the fired heater.
ib) The empirical model for the packed-bed reactor in Figure 6.3 from the

data in Figure Q6.4c.
(c) The linearized, analytical model for the stirred-tank heater in Example

8.5.

12.5. For the process in Figure 2.2, answer the following questions.
ia) Determine the proper failure modes for all valves. Also, give the proper

controller sense for each controller, assuming that commercial con
trollers are being used iKc > 0).

Questions
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(a) Which modes eliminate offset?

(b) Describe the speed of response for an
upset (fastest, middle, slowest).

(c) Compare the propagation of high-
frequency noise from controlled to
manipulated variable (most, middle, least).

(d) As process dead time increases (with
9 + z constant), the tuning constant
(increases, decreases, unchanged)?

(e) Does the mode cause windup (Y, N)?

(0 Should tuning constant be changed when
filter is added to loop (Y, N)?

ig) Is tuning constant affected by limits on
the manipulated variable (Y, N)?

ih) Should tuning constant be altered if the
sensor range is changed (Y, N)?

(/) Does tuning constant depend on the
failure mode of the final element (Y, N)?

(/) Does tuning constant depend on the
linearization performed in the input
processing (Y, N)?

(/c) Should tuning constant be altered if the
final element capacity is changed (Y, N)?

(/) Should tuning constant be changed if
the digital controller execution period is
changed (Y, N)?

ib) What type of input processing would be appropriate for each measure
ment? Why?

ic) The following alterations are made after the process has been operating
successfully. Determine any other changes that must be made as a
consequence of each alteration. Your answers should be as specific
and quantitative as possible. (1) The control valve for a steam heat
exchanger is increased to accommodate a flow 50 percent greater than
the original. (2) The failure mode of the control valve in the liquid



product stream changed from fail-open to fail-closed. (3) The range of 407
the temperature sensor is changed from 50-100°C to 75-125°C. \jmmmm^nmimmm

12.6. Answer questions 12.5 ia) and ib) for the CSTR in Figure 2.14. Questions
12.7. Answer questions 12.5 ia) and ib) for the boiler oxygen control in Figure

2.6.
12.8. In the discussion on external feedback, equations (12.14) and (12.15) were

given to prove that reset windup would not occur.
id) Derive these equations based on the block diagram and explain why

reset windup does not occur.
ib) Prepare the equations in their proper sequence for the digital imple

mentation of external feedback.

12.9. An alternative anti-reset windup method is to use logic to prevent "inappro
priate" integral action. This logic is based on the status of the manipulated
variable. Develop a flowchart or logic table for this type of anti-reset windup
and explain how it would work.

12.10. The goal of initializing the PID controller is to prevent a "bump" when the
mode is changed and to prepare the controller for future calculations. De
termine the proper initialization for the full-position digital PID controller
algorithm in equation (11.6) and explain each step.

12.11. A process uses infrequent laboratory analyses for control. The period of the
analyses is much longer than the dynamics of the process. Due to the lack
of accuracy in the laboratory method, the reported value has a relatively
large standard deviation, resulting in noise in the feedback loop. Describe
steps you would take to reduce this noise by a factor of 2. (For the purposes
of this problem, you may not change the frequency for collecting one or a
group of samples from the process.)

12.12. A signal to a digital controller has considerable high-frequency noise in
spite of the analog filter before the A/D converter. The controller is being
executedaccordingtotherulethatAf/(# + r) = 0.05, and the manipulated
variable has too large a standard deviation. Explain what steps you would
take in the digital PID control system to reduce the effects of noise on
the manipulated variable and yet to have minimal effect on the control
performance as measured by IAE of the controlled variable.

12.13. Answer the following questions regarding filtering.
ia) Confirm the transfer function in equation (12.5).
ib) The equation for the digital first-order filter is presented in equation

(12.9). Confirm this equation by deriving it from equation (12.8).
ic) Discuss the behavior of a low-pass filter and give examples of its use

in process control.
id) A high-pass filter attenuates the low-frequency components. Describe

an algorithm for a high-pass filter and give examples of its use.

12.14. Consider an idealized case in which process data consists of a constant true
signal plus purely random (white) noise with a mean of 0 and a standard
deviation of 0.30.
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of Feedback Control ^ Determine the number of duplicate samples of the variable to be taken

every execution so that the average of these values will have a standard
deviation of 0.10.

12.15. Consider the situation in which the measured controlled variable consisted
of nearly all noise, with very infrequent changes in the true process variable
due to slowly varying disturbances. Suggest a feedback control approach,
not a PID algorithm, that would reduce unnecessary adjustments of the
manipulated variable.

12.16. Many changes have been proposed to the standard digital PID controller,
and we have considered several, such as the derivative on measured vari
able rather than error. For each of the following proposed modifications
in the PID algorithm, suggest a reason for the modification (that is, what
possible benefit it would offer and under what circumstances) and any
disadvantages.
id) The proportional mode is calculated using the measured variables

rather than the error.

MV„ = Kc
A t n T

CV„ + — £>P/ - CV/) - ^(CV„ - CV,,.,)
7 j'=0

+ /

ib) The controller gain is nonlinear; for example,
For (SP„ - CV„) > 0 Kc = K'
For (SP„ - CV„) < 0 KC = K' + K" |SP„ - CV„ |

ic) The rate of change of the manipulated variable is limited, | AMV| <
max.

id) The allowable set point is limited, SPmin < SP < SPraax.
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1 3 . 1 □ I N T R O D U C T I O N

As we have learned, feedback control has some very good features and can be
applied to many processes using control algorithms like the PID controller. We
certainly anticipate that a process with feedback control will perform better than
one without feedback control, but how well do feedback systems perform? There
are both theoretical and practical reasons for investigating control performance at
this point in the book. First, engineers should be able to predict the performance
of control systems to ensure that all essential objectives, especially safety but also
product quality and profitability, are satisfied. Second, performance estimates can
be used to evaluate potential investments associated with control. Only those con
trol strategies or process changes that provide sufficient benefits beyond their costs,
as predicted by quantitative calculations, should be implemented. Third, an engi
neer should have a clear understanding of how key aspects of process design and
control algorithms contribute to good (or poor) performance. This understanding
will be helpful in designing process equipment, selecting operating conditions, and
choosing control algorithms. Finally, after understanding the strengths and weak
nesses of feedback control, it will be possible to enhance the control approaches
introduced to this point in the book to achieve even better performance. In fact,
Part IV of this book presents enhancements that overcome some of the limitations
covered in this chapter.

Two quantitative methods for evaluating closed-loop control performance are
presented in this chapter. The first is frequency response, which determines the
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response of important variables in the control system to sine forcing of either the
disturbance or the set point. Frequency response is particularly effective in de
termining and displaying the influence of the frequency of an input variable on
control performance. The second quantitative method is simulation, involving nu
merical solution of the equations defining all elements in the system. This method
is effective in giving the entire transient response for important changes in the
forcing functions, which can be any general function. Both of these methods re
quire computations that are easily defined but very time-consuming to perform by
hand. Fortunately, the calculations can be programmed using simple concepts and
executed in a short time using digital computers.

After the two methods have been explained and demonstrated, they are em
ployed to develop further understanding of the factors influencing control per
formance. First, a useful performance bound is provided that defines the best
performance possible through feedback control. Then, important effects of ele
ments in the feedback system are analyzed. In one section the effects of feedback
and disturbance dynamics on performance are clarified. In another section the
effects of control elements, both physical equipment and algorithms, on control
performance are evaluated. The chapter concludes with a table that summarizes
the salient effects of control loop elements on control performance.

13.2 a CONTROL PERFORMANCE

Many measures of control performance are possible, and each is appropriate in
particular circumstances. The important measures are listed here, and the reader
is referred to Chapter 7 to review their meanings.

• Integral error (IAE, ISE, etc.)
• Maximum deviation of controlled variable
• Maximum overshoot of manipulated variable
• Decay ratio
• Rise time
• Settling time
• Standard deviation of controlled and manipulated variables
• Magnitude of the controlled variable in response to a sine disturbance

Two additional factors should be achieved for control performance to be ac
ceptable; generally, they are not difficult to achieve but are included here for com
pleteness of presentation. The first is zero steady-state offset of the controlled
variable from the set point for steplike input changes. For nearly all control sys
tems, zero offset is a desirable feature, and control systems must use a controller
with an integral mode to achieve this objective. An important exception where zero
offset is not required occurs with some level controllers. Level control is addressed
in Chapter 18, where different control performance criteria from those used in this
chapter are introduced.

The second factor is stability. Clearly, we want every control system to be sta
ble; therefore, control algorithms and tuning constants are selected to give stable
performance over a range of operating conditions. It is very important to recog
nize that stability places a limit on the maximum controller gain and, in a sense,



the control system performance. Without this limit, proportional-only controllers
with very high gains might provide tight control of the controlled variable in many
applications.
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In this chapter we will confine our discussion to control systems that require zero
offset and to controller tuning constant values that provide good performance over
a reasonable range of operating conditions.

Also, we recognize that no general boundary exists between good and poor
process performance. A maximum controlled-variable deviation of 5°C may be
totally unacceptable in one case and result in essentially no detriment to operation
in another case. In this chapter we identify the key factors influencing control per
formance and develop quantitative methods for predicting performance measures
that can be applied to a wide range of processes; the desired value or limit for each
measure will depend on the particular process being considered. In evaluating
control performance, we will use the following definition.

Control performance is the ability of a control system to achieve the desired dy
namic responses, as indicated by the control performance measures, over an expected
range of operating conditions.

This definition of performance includes both set point changes and disturbances.
The phrase "over an expected range of operating conditions" refers to the fact
that we never have perfect information on the process dynamics or disturbances.
Differences between model and plant are inevitable, whether the models were
derived analytically from first principles or were developed from empirical data
such as the process reaction curve. In addition, differences occur because the
plant dynamics change with process operating conditions (e.g., feed flow rate and
catalyst activity). Since any model we use has some error, the control system
must function "well" over an expected range of errors between the real plant and
our expectation, or model, of the plant. The expected range of conditions can be
estimated from our knowledge of the manner in which the plant is being operated
(values of feed flow, reactor conversion, and so forth).

The ability of a control system to function as the plant dynamics change is
sometimes referred to as robust control. However, throughout this book we will
consider performance to include this factor implicitly without expressly including
the word robust every time. To reiterate, we must always consider our lack of perfect
models and changing process dynamics when analyzing control performance.

It is important to emphasize that the performance of a control system depends
on all elements of the system: the process, the sensor, the final element, and the
controller. Thus, all elements are included in the quantitative methods described
in the next two sections, and important effects of these elements on performance
are explored further in subsequent sections.
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13.3 □ CONTROL PERFORMANCE VIA CLOSED-LOOP
FREQUENCY RESPONSE

Continuously operating plants experience frequent, essentially continuous, dis
turbances, so predicting the control system performance for this situation is very
important. The approach introduced here is very general and can be applied to any
linear plant, not just first-order-with-dead-time, and any linear control algorithm.
Also, it provides great insight into the influence of the frequency of the input (set
point and disturbance) changes on the effectiveness of feedback control.

The approach is based on the frequency response methods introduced in pre
vious chapters. Frequency response calculates the system output in response to a
sine input; we will use this approach in evaluating control system performance by
assuming that the input variable—set point change or disturbance—is a sine func
tion. While this is never exactly true, often the disturbance is periodic and behaves
approximately like a sine. Also, a more complex disturbance can often be well
represented by a combination of sines (e.g., Kraniauskas, 1992); thus, frequency
response gives insight into how various frequency components in a more complex
input affect performance.

The control performance measure in this section is the amplitude ratio of the
controlled variable, which can be considered the deviation from set point because
the transfer function equations are in deviation variables. The frequency response
of a stable, linear control system can be calculated by replacing the Laplace variable
s with jco in its transfer function. The resulting expressions describe the amplitude
ratio and phase angle of the controlled variable after a long enough time that the
nonperiodic contribution to the solution is negligible. The control system in Figure
13.1 is the basis for the analysis, and this system has the following transfer function
in response to a disturbance:

C V j s ) = G r f ( £ )
Dis) l + Gp(s)Gds)Gc(s)Gds)

It is helpful to consider the amplitude ratio of the controlled variable to the
disturbance in equation (13.1), which can be expressed as the product of two
factors:

\CV(jco)\
\D(jco)\ -[\Gd(jco)\

1
1 + Gp(jco)Gdjco)Gc(jco)Gs(jco) (13.2)

Dis)- Gdis)

SPis) -K>—*- Gcis)
MVis)

Gvis) GJs)
CVis)

Gsis)

FIGURE 13.1
Block diagram of feedback control system.



The first factor of the amplitude ratio is the numerator, which contains the open-
loop process disturbance model. The second factor is the contribution from the
feedback control system. The frequency responses of the factors are given in Figure
13.2a and b and are referred to in analyzing the frequency response of the closed-
loop system. The results in Figure 13.2 are for the (arbitrary) system

Gpis)Gds)Gds) =
1.0*-155

Gr = 0.60 (1+i) Gd =
0.48

20s+ \ " " ' " V " " 30sJ " 20s + 1
When interpreting these plots, it is helpful to remember that (unachievable)

perfect control would result in no controlled-variable deviation for all frequencies;
in other words, the output (CV) amplitude would be zero for all frequencies. The
closed-loop system is first considered at limits of very low and very high frequency.
This analysis makes use of equation (13.2) and Figure 13.2a and b. For disturbances
with a very low frequency, the first factor (i.e., the process through which the
disturbance travels) does not attenuate the disturbance; thus, its magnitude is large.
(The disturbance dynamics are assumed similar to the feedback dynamics for
this example.) However, the relatively fast feedback control loop will effectively
attenuate a disturbance in this frequency range; thus, the magnitude of the feedback
factor is small. The control system response is the product of the two magnitudes;
therefore, the control system provides good performance at input frequencies much
lower than the critical frequency, because of feedback control. Note that the integral
mode of the PI controller is especially effective in rejecting slow disturbances and
that in general, feedback control systems provide good control performance at very
low disturbance frequencies.

For disturbances at the other extreme of very high frequency, the feedback
controller is not effective, because the disturbance is faster than the control loop
can respond. In this case the magnitude of the second factor is nearly 1. However,
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FIGURE 13.2

Amplitude ratios in equation (13.2): ia) numerator; ib) denominator.
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the disturbance process, as long as it consists of first- or higher-order time constants
(and not simply gains and dead times), filters the high-frequency disturbance. This
filter results in a small magnitude of \Gdijco)\, reducing the magnitude of the
controlled variable substantially. Therefore, the feedback control system provides
good control performance for very high frequencies as well. Note that the good
performance is not due to feedback control but rather to the disturbance time
constant(s), which in this range is much larger than the disturbance period (i.e.,
l f rd<£o>d)>

For intermediate frequencies, a harmonic or resonant peak occurs. This peak
represents the most difficult frequencies for the feedback control system. In fact, for
some systems the control system can perform worse than the same plant without
control, indicating that disturbances can be slightly amplified by the feedback
control loop around the harmonic frequency.

The general shape of the closed-loop frequency response to a disturbance
for most feedback controller systems is similar to the curve in Figure 13.3. It is
important that the engineer understand the reasons for the behavior in the low-,
intermediate-, and high-frequency regions. Many disturbances in process plants
have low frequencies, because they result from the changing operation of slowly re
sponding systems such as the composition of flows from large upstream feed tanks.
Many very fast disturbances occur due to imperfect mixing and high-frequency
pressure disturbances. For both disturbances, feedback control performance tends
to be good. However, many disturbances also occur around the critical frequency

Input
DO) W
Output
CV(/) <vw

\Gdija>)\
1 + GpiJ(o) GviJ(o) Gcij<o) Gsija>) |

1(T7 IO-6 IO-5 IO-4 IO-3 IO-2 10_1 10° 101 102
Frequency, (o

FIGURE 13.3

Frequency response of feedback-controlled variable to disturbance.



of a feedback loop, because oscillations caused by an integrated process under
feedback control tend to be in the same frequency range.

Disturbances around the closed-loop resonant frequency are essentially uncontrol
lable with any single-loop feedback controller, and therefore such disturbances
should be prevented by changes to the process design or attenuated using enhance
ments discussed in Part IV.
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EXAMPLE 13.1.
The plants presented in Figure 13.4 are subject to periodic disturbances. All plants
have the same equipment structure, but they have different equipment sizes. They
can all be modelled as first-order-with-dead-time processes, and the dynamics of
the sensor and valve are negligible. Determine the control performance in re
sponse to a disturbance (£>) possible with the four designs and rank them ac
cording to the amplitude ratios achieved by PI controllers.

The solution to the example involves calculating the closed-loop frequency
response for each case. The calculations are based on equation (13.2), with the
appropriate transfer functions for the individual elements—in this case, a first-
order-with-dead-time process, a first-order disturbance, and a PI controller. The
calculation of the amplitude ratio follows the same procedure used in Chapter
10, where s is replaced by jco in the transfer function; then the magnitude of the
complex expression is determined. The results of the algebraic manipulations for
this example are given in equation (13.3); recall that the frequency response could
also be evaluated using computer methods not requiring these extensive algebraic
manipulations.

Amplitude ratio = \Gdijco)\
1

1 + Gcijco)Gpijco) (13.3)

r-G
% *■

do

Case KP e T y

A 1.0 1.0 1.0 1.0
B 1.0 4.0 4.0 1.0
C 1.0 0.5 1.5 1.0
D 0.1 0.5 1.5 1.0

FIGURE 13.4
Schematic of process with model parameters for

Example 13.1.
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where \Gdjco)\ = —&
yj\+(o2z2d

1

with Kd = 1

y/jAC + BD)2 + jBC + AD)2
C2 + D21 + Gdjco)Gpijco)

A = -TiZpco2 B = T,co
C = KpKc[cos i-9co) - T/wsin i~9co)] - TiZpco2
D = KpKc[sm i-9co) + T{co cos i-9co)] + Ttco

In each case, the PI controller has to be tuned; the tuning for this example is
given below based on the Ciancone correlations in Figure 9.9a and b.

Case 0/iO + z) KcKp T,/i$ + z) Ke 1/

A 0.5 0.85 0.75 0.85 1.5
B 0.5 0.85 0.75 0.85 6.0
C 0.25 1.70 0.65 1.70 1.3
D 0.25 1.70 0.65 17.0 1.3

The best control performance has the smallest amplitude ratio (i.e., the smallest
deviation from set point). These calculations have been performed, and the results
are given in Figure 13.5, which shows that the best performance is possible with
designs C and D. The next best is case A, and the worst is case B.

Since the disturbance transfer function is the same for all cases, the processes
with the longest dead time and the longest dead time plus time constant in the
feedback path are more difficult to control; this explains why case B has the poorest

10' e—i i i nun—ii i i i mi—ii i i i mi—I I I I I i m

io-3
IO"2

FIGURE 13.5
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IO2

Closed-loop frequency responses for the cases in
Example 13.1.



performance and why case A is not as good as C and D. Note that processes C and
D have the same dynamics and differ only in their gains. Thus, the controller gain
can be selected to achieve the same KPKC and the same control performance.
(This result assumes that the manipulated variable can be adjusted over a larger
range for the process with the smaller process gain.) In addition to finding the best
process, we have identified a region of disturbance frequency for which feedback
control will not function well. Process changes or control enhancements would
be in order if disturbances with large magnitudes were expected to occur in this
frequency range.
tt̂ mm&Mmmimm:, mmmm®Mmm!®mmmmmmMM^^

EXAMPLE 13.2.
Normal plant disturbances have many causes with different frequencies. This ex
ample presents a simple case of two disturbances. As depicted in Figure 13.6,
the input disturbance is the sum of two sine waves that have the same phase and
have the amplitudes and frequencies given in the following table. The input dis
turbances are not measured, but sample open-loop dynamic data of the output
variable [i.e., Gds)Dis)] are given in Figure 13.7a. What is the magnitude of the
sine wave of the controlled variable when PI feedback control is implemented for
the same disturbance?
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Input No. 1 Input No. 2
Frequency (rad/min)
Amplitude

0 . 0 1 0 0 . 2 0
1 . 0 0 . 5 0

The first step in the solution is to calculate the closed-loop frequency response
for this process with PI control. The process is first-order-with-dead-time, and the
calculations employ equation (13.3) with the following parameters:

7^ = 1.0 9 = 1.0 Gdis) = \r = 2.0

Kc = \.0 Tf =2.0
The amplitude ratio of each input considered individually can be determined as

s?is) —•O"*'_T

Input No. 1

Input No. 2 ^K/KT*

H) }+2s

I
+1 CVis)
<J

FIGURE 13.6
Schematic showing the system and disturbances considered in Example 13.2.
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FIGURE 13.7

Results for Example 13.2: (a) disturbance without control;
ib) closed-loop dynamic response with PI control.

shown in Figure 13.8. The lower-frequency disturbance (input no. 1) has a very
small amplitude ratio. Thus, the control performance for this part of the disturbance
is good. The amplitude ratio for the higher-frequency input (input no. 2) is not small
and is about 0.50, because it is in the region of the resonant frequency. Therefore,
input No. 2 contributes most of the deviation for the closed-loop feedback control
system.

This analysis can be compared with the dynamic response of the closed-loop
control system with the two sine disturbances given in Figure 13.7b. The response
shows almost no effect of the slow sine disturbance and a significant effect from
the faster sine disturbance. The magnitude of the closed-loop simulation, about
0.25, is the same as the prediction from the frequency response analysis, 0.5 x 0.5.
We can conclude from this example that the frequency response method provides
valuable insight into which disturbance frequencies will and will not be attenuated
significantly by feedback control.
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FIGURE 13.8

Closed-loop amplitude ratio for Example 13.2.
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Most process control systems are primarily for disturbance response, but some
have frequent changes to their set points. The frequency response approach devel
oped for disturbance performance analysis can be extended to set point response
to determine how well the control system can follow, or track, its set point. The
following transfer function relates the controlled variable to the set point for the
system in Figure 13.1:

CVjs) = Gpis)Gds)Gcjs)
SPis) \+Gpis)Gds)Gds)Gds)

The amplitude ratio of this transfer function can be calculated using standard pro
cedures (setting s = jco) and plotted versus frequency of the set point variation.
Perfect control would maintain the controlled variable exactly equal to the set
point; in other words, the amplitude ratio would be equal to one (1.0) for all fre
quencies. Very good control performance is achieved for very low frequencies,
when the feedback control system has time to respond to slow set point change. As
the frequency increases, the control performance becomes poorer, because the set
point variations become too fast for the feedback control system to track closely.
Again, a resonant peak can occur at intermediate frequencies.
EXAMPLE 13.3.
Calculate the set point frequency response for the plant in Example 13.1, case C.

The transfer functions of the process and controller are given in Example 13.1.
The result of calculating the amplitude ratio of equation (13.4) is given in Figure
13.9. As shown in the figure, the control system would provide good set point
tracking (i.e., an amplitude ratio close to 1.0) for a large range of frequencies.
The frequency range for which the amplitude ratio responds satisfactorily is often
referred to as the system bandwidth; taking a typical criterion that the amplitude
ratio of 1.0 to 0.707 is acceptable, the bandwidth of this system is frequencies
from 0.0 to about 3 rad/time.

yMmiMmmk^^mMmmm^mmaii^
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FIGURE 13.9

Closed-loop frequency response for the set point response in
Example 133.

The calculation of the frequency response for the closed-loop system is per
formed by applying the same principles as for open-loop systems. However, the
calculations are much more complex. The frequency response for closed-loop sys
tems requires that the transfer function be solved for the magnitude, and the results
must be derived for each system individually, as was done analytically in equation
(13.3). Clearly, this amount of analytical manipulation could inhibit the application
of the frequency response technique.

In the past, graphical correlations have been used to facilitate the calcula
tions for a limited number of process and controller structures. The Nichols charts
(Edgar and Hougen, 1981) are an example of a graphical correlation approach to
calculate the closed-loop from the open-loop frequency response. These charts are
not included in this book because closed-loop calculations are not now performed
by hand.

Since the advent of inexpensive digital computers, the calculations have been
performed with the assistance of digital computer programs. Most higher-level
languages (e.g., FORTRAN) provide the option for defining variables as complex
and solving for the real and imaginary parts; thus, the computer programming is
straightforward, basically programming equation (13.2) with complex variables.
An extension to the programming approach is to use one of many software packages
that are designed for control system analysis, such as MATLAB™. An example
of a simple MATLAB program to calculate the frequency response in Figure 13.9
is given in Table 13.1. For simple models, the approach in Example 13.1 can be
used, but computer methods are recommended over algebraic manipulation for
closed-loop frequency response calculations.

The frequency response approach presented in this section is a powerful,
general method for predicting control system performance. The method can be
applied to any stable, linear system for which the input can be characterized by a



TABLE 13.1

Example MATLAB™ program to calculate a closed-loop frequency
response
% ** EXAMPLE 13.3 FREQUENCY RESPONSE ***
% this MATLAB M-file calculates and plots for Example 13.3
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
% parameters in the linear model
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
kp = 1.0 ; taup = 1.5 ; thetap = 0.5;
kc = 1 .7 ; t i = 1 .3 ;
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
% simulation parameters
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
wstart = .0001 ; % the smallest frequency
wend = 100 ; % the h ighes t f r equency
wtimes =800 ; % number of points in frequency range
omega = logspace ( loglO(wstart), loglO(wend), wtimes);
j j = sqr t ( - l ) ; % define the complex var iab le
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
% put calculations here
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
for kk = 1:wtimes

s = j j * o m e g a ( k k ) ;
Gp(kk) = kp * exp (- thetap * s) /( ( taup*s +1)) ;
Gc(kk) = kc*(l + 1/ (ti * s) ) ;
G (kk) = Gc(kk)*Gp(kk)/(l + Gc(kk)*Gp(kk));
AR(kk) = abs (G(kk));

end % for cnt
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
% plot the results in Bode plot
! t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

loglog( omega, AR)
a x i s ( [ - 4 2 - 2 1 ] )
x label ( ' f requency, rad/ t ime ' )
y labe l ( 'ampl i tude ra t io ' )
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dominant sine. The calculations of the amplitude ratio for a closed-loop system are
usually too complex to be performed by hand but are easily performed via digital
computation.

The great strength of frequency response is that it provides a clear indication of
the control performance for an input (disturbance or set point change) at various
frequencies.
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13.4 [l CONTROL PERFORMANCE VIA CLOSED-LOOP
SIMULATION
Solution of the time-domain equations defining the dynamic behavior of the sys
tem is another valuable method for evaluating the expected control performance
of a design. Unfortunately, the differential and algebraic equations for a realistic
control system are usually too complex to solve analytically, although that would
be preferred so that analytical performance relationships could be determined.
However, numerical solution of the algebraic and differential equations is possi
ble and usually provides an excellent approximation to the behavior of the exact
equations.

One reason for using simulation is that control performance specifications
are defined in the time domain. The comparison of the predicted performance
to the specifications often requires the entire dynamic response—the variables
over the entire transient response—to ensure proper dynamic behavior. Thus, the
solution to the complete model is required. Also, the engineer likes to see the entire
transient response to evaluate all factors, such as maximum deviation, decay ratio,
and settling time. The simulation approach is particularly useful in determining the
response of a system to a worst-case disturbance. This largest expected disturbance
can be introduced, and the resulting response will indicate whether or not all process
variables can be maintained within their specified limits.

Numerical methods used to solve ordinary differential equations were de
scribed briefly in Chapter 3. Note that equations for all elements in the system—
process, instrumentation, and controller—must be solved simultaneously. Also,
since the solution is numerical, there is no requirement to linearize the equations,
although insight from the analysis of linear models is always helpful. Simulation
methods have been used to prepare most of the closed-loop dynamic responses in
figures for this book.
EXAMPLE 13.4.
Determine the dynamic response of the three-tank mixing process defined in Ex
ample 7.2 under PID control to a disturbance in the concentration in stream B of
+0.8%.

This is the case considered in Example 9.2, in which the PID tuning was first
determined from a process reaction curve. The dynamic response of the closed-
loop control system was then determined by solving the algebraic and differential
equations describing the system, along with the algorithm for the feedback con
troller. The following equations summarize the model:

E = SP - *A3

v = Kc\E + ±rj\(t')dt'-Td dt + 50

FA = 0.0028u
Fb(xA)b + FdxA)A

(13.5)

XAQ = FB + FA

Vr
dxA/

dt
= (FA + FB)(xAi-i - xAi) for / = 1,3

The PID controller can be formulated for digital implementation as described
in Chapter 11. Also, the differential equations can be solved by many methods;
here they are formulated in the discrete manner using the Euler integration method.



Both the process and the controller are executed at the period At.

E„ = SP„ — (xA3)n

(v)n = (»)„_, + Kc\En - £„_, + ^- + j; [-(xA3)n + 2Cka3)„_, - (*A,)„_2]}

(FA)n=0.002S(v)n
(13.6)

, v [FB(xA)B + FdxA)A~{ x A o ) „ = — — —
L F B + F A J „

A t c r - _ l r . )
- [(xAi-1)„ - (xAi)„] for / = 1, 3
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C*A/)n+l = ixAi)n +
Vi

The initial conditions are (jcA()0 = 3.0% A for / = 0,3 and (u)0 = 50% open. The
controller tuning constants are Kc = 30, 7) = 11, and Td = 0.8. The disturbance
was a step in ixA)B from its initial value of 1.0 to 1.8 at time 20. The execution
period was selected to be small relative to the time constants of the process,
0.1 minute. The result of executing the equations (13.6) recursively is the entire
transient response. The manipulated and controlled variables are plotted in the
adjacent figure. Note that the numerical simulation approach is not limited to linear
systems. In fact, this example involves several nonlinearities, e.g., Fajca.

The simulation method is not restricted to simple input forcing functions,
and this flexibility is very useful in estimating likely improvements in control
performance. As demonstrated in the previous example, the control performance
can be determined based on a model of the feedback process and a model of the
disturbance. If the disturbance is a complicated function, a representative sample
of the effect of the disturbance on the variable to be controlled can be used as a
"model" of the disturbance. The effect of the disturbance(s) can be obtained by
collecting open-loop data of the variable to be controlled as typical variabilities in
plant operation occur.
EXAMPLE 13.5.
PI control is to be applied to the plant with feedback dynamics characterized by
a dead time and single time constant. In the plant an undesirable feed compo
nent is reacted to a benign effluent component. The outlet concentration is to be
controlled by adjusting the feed preheat. The control objective is to maintain the
outlet concentration just below its maximum value. Too low a concentration leads
to costly side reactions and byproducts; thus, the goal is to reduce the variance.
The model, determined by empirical identification, and the controller tuning are
as follows:

GPis)Gds)Gis) =
ACjs) \.0e
vis)

- 2 5

\+2s G' = ,0(I + 237) <13'7)

A sample of representative dynamic data of the reactor effluent without control
is presented in Figure 13.10a. Note that some of the variation is of low frequency;
feedback control would be expected to be successful in attenuating these low-
frequency components. Also, some of the variation is relatively high-frequency,
which, we expect, would be difficult to reduce with feedback control.

To predict the performance of the control system, a simulation can be per
formed using the plant model with the sample disturbance data. This approach
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FIGURE 13.10

Reactor outlet concentration, Example 13.5: (a) effect of
disturbance without control; ib) dynamic response with
feedback control.

is shown schematically in Figure 13.11, where the digital simulation would in
troduce the disturbance data collected from the process, Figure 13.10a, as the
forcing function. Naturally, the controller calculation, here a proportional-integral
algorithm, receives the controlled process output, which is the sum of the effects
from the manipulated variable and the disturbance. The results of the simulation
are given in Figure 13.10b. The variability of the controlled variable, measured by
standard deviation, has been reduced substantially by feedback control. Analysis
of a larger set of data than shown in the figure, which gives a more reliable indica
tion of performance, shows that the standard deviation is reduced by a factor of
5. As expected, the high-frequency components are not substantially reduced by
the feedback control system. Because of the smaller variation, the average value
of the concentration (i.e., the controller set point) could be changed to realize the
benefits from improved control performance.
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FIGURE 13.11

Schematic of the calculation method for predicting control performance with a
complex disturbance model by a simulation method.

This example clearly demonstrates the improvement possible with feedback
control and provides a simple, simulation-based method for estimating control
performance. The method requires a process model, a controller equation, and
a sample of the output variable without control; it provides a prediction of the
standard deviation of the manipulated and controlled variables. It can be used in
conjunction with the benefits calculations to estimate control benefits quantita
tively, as shown in Figure 13.11.

The material in this section has demonstrated that:
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Dynamic simulation via numerical solution of the system equations provides a man
ner for determining the dynamic performance of a closed-loop process control sys
tem. The approach can (1) provide a solution for nonlinear as well as linear systems;
(2) consider any input forcing functions; and (3) provide detailed information on all
variables throughout the transient response.

Frequency response and dynamic simulation, provide methods required to analyze
control systems quantitatively. These methods are applied in the next sections to
develop understanding of how specific aspects of process dynamics and the PID
controller influence performance.

13.5 □ PROCESS FACTORS INFLUENCING SINGLE-LOOP
CONTROL PERFORMANCE
Because the process iGpis) and Gdis)), instrumentation iGds) and Gsis)), and
the controller (Gc(s)) appear in the closed-loop transfer function in equation (13.1),
all elements in the feedback system influence its dynamic response and control



426

CHAPTER 13
Performance of
Feedback Control
Systems

performance. It is tempting to believe that a cleverly designed controller algorithm
can compensate for a difficult process; however, the process imposes limitations on
the achievable feedback control performance, regardless of the feedback algorithm
used. An understanding of the effects of process dynamics on control performance
enables us to design plants that are easier to control, recognize limits to the perfor
mance of single-loop feedback control, and design enhancements. The next topic
establishes a bound on the best achievable feedback control performance that gives
valuable insight into the effects of process dynamics.

A Bound on Achievable Performance
The first topic introduced in this section is the performance bound (i.e., the best
achievable performance) for a feedback system. The best performance is explained
with reference to the process shown in Figure 13.4, where the control system is
subjected to a step change disturbance. (Note that this concept is applicable to
more general processes than Figure 13.4.) The dynamic responses of the controlled
and manipulated variables are graphed versus time in Figure 13.12, and several
important features of the response are highlighted. First, note that the effect of
the feedback adjustment has no influence on the controlled variable for a period
of time equal to the dead time in the feedback loop. Therefore, the integral error
and maximum deviation shown in Figure 13.12 cannot be reduced lower than
the open-loop response for time from zero (when the disturbance first affects the
controlled variable) to the dead time. For the special case of a step disturbance
with magnitude AD and a first-order disturbance transfer function with gain Kd
and time constant xd, the limiting integral error and maximum deviation can be
simply evaluated by the equations

IAEr

'max I mm

E = Kd(\ - e(-t/Xd))AD for 0 < t < 6

= / \E\dt
Jo

= \KdAD\ / \(\-e-VTd))\dt
Jo

= \KdAD\[6 + xd(e-e^-l)]

= \KdAD\ (1 - *-<*/*>)

(13.8)

(13.9)

(13.10)

IAEmin represents the minimum IAE possible, and |£maxlmin represents the mini
mum value possible for the maximum deviation for a feedback system with dead
time 6, a step disturbance, and a disturbance time constant of xd. No single-loop
feedback controller can reduce the values further. As shown in the figure, these
values provide a useful bound with which to evaluate control performance. The
important conclusion from this discussion is that

The dead time in the feedback path is the facet of the process that usually limits the
control performance.
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FIGURE 13.12

Typical dynamic response for a feedback control system.
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The theoretical best achievable control performance cannot usually be realized
with a PID control algorithm, although the PID often provides entirely satisfac
tory performance. Methods exist for deriving the control algorithms giving the
theoretical best or "optimal" control, with optimal defined several ways, such as
minimum integral of error squared (Newton, Gould, and Kaiser, 1957; Astrom and
Wittenmark, 1984). It is important to recognize that these optimal controllers can
result in excessive variation in the manipulated variable, and their performance can
be very sensitive to model errors. Therefore, the "optimal" algorithms are not often
applied in the process industries, although their concepts are useful in determining
the achievable performance bounds in equations (13.9) and (13.10).

EXAMPLE 13.6.
The potential designs shown in Figure 13.4, plus one additional, have been pro
posed for a plant. It is expected that all designs have nearly the same capital
cost. The major disturbance is an occasional step with magnitude of 2.5 units.
Which of the designs will have the best control performance? The dynamic model
parameters are summarized in the following table.

Feedback process Disturbance process

Case Kp e T xd Kd
A 1.0 1.0 1.0 1.0 2.0
B 1.0 4.0 4.0 1.0 2.0
C 1.0 0.5 1.5 1.0 2.0
D 0.1 0.5 1.5 1.0 2.0
E 1.0 0.5 1.5 4.0 2.0

The feedback control systems could be simulated to determine the perfor
mance for each. The selection of the best performing design would be straightfor
ward, but the total effort would be substantial. In this example, the limiting (best
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possible) performances will be evaluated using equations (13.9) and (13.10) as a
basis for selecting the best design. The results of the calculations are given in the
following table.

Case

Minimum IAE
equation (13.9)
(smallest is best)

Minimum |£maxl
equation (13.10)
(smallest is best)

Ranking
(1 = best)

A 1.85 3.15 4
B 15.10 4.90 5
C 0.55 1.95 2 (tied)
D 0.55 1.95 2 (tied)
E 0.15 0.59 1

The rankings of the original four cases agree with the conclusions in Example
13.1. All of these have the same disturbance dynamics, so that the performance
ranking depends entirely on the feedback dynamics. Since cases C and D have
the smallest dead time and fraction dead time, they provide the best performance
from among the original cases A to D. Case E has the same feedback dynamics
as cases C and D, but it has slower disturbance dynamics. Slower disturbance dy
namics are favorable, because feedback compensation has more time to correct
for the disturbance before a large deviation from set point occurs. The performance
measures indicate that case E should give substantially better performance than
the other designs for this step disturbance. Simulations with realistic PID con
troller tuning confirm these conclusions, which are based on the theoretically best
possible performance.

h J
D

f c ®

EXAMPLE 13.7.
As a result of Example 13.6, we have selected the case E process design. The
customers of the product have stated that they will not accept the product if it ever
deviates more that ± 0.40 units from the desired value, i.e., the controller set point.
How does our design measure up to this demand?

The results table in Example 13.6 shows that the smallest possible maximum
deviation is 0.59, which is larger than the maximum allowable violation. Since this
is the best possible performance—with feedback control—we know that we should
not investigate alternative PID tuning or alternative feedback control calculations.
We know that we must change the structure of the problem. Possible solutions
include (1) reducing the magnitude of the disturbance in an upstream process
(always a good concept), (2) making the feedback process faster, (3) making
the disturbance process slower, or (4) inventing a control approach different from
feedback. In this example, we will investigate (3) by modifying the disturbance
process. (In the next few chapters, we will develop new control approaches that
might be less expensive.)

The simplest change to the disturbance process would be an increase in
the volume of the mixing tank that would increase the disturbance time constant.
From equation (13.10), the minimum disturbance time constant to achieve the
required performance (minimum lE^ < 0.40) is about 6.0. However, this cal
culation assumes the best possible feedback compensation; therefore, a larger
disturbance tank volume would be expected for realistic feedback control. A few
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FIGURE 13.13
Disturbance response of the case E process in Example 13.7 modified

to have zd = 10.

simulations with PI control and Ciancone tuning (Kc = 1.7 and T, = 1.3) found that
a disturbance time constant of 10 was just large enough to achieve the desired
control performance. The dynamic response to the disturbance for a disturbance
time constant of 10 is shown in Figure 13.13. As expected, the behavior of the
controlled variable with a realistic PI controller is not as good as with the optimal
controller; as a result, the disturbance time constant had to be increased substan
tially to obtain the desired performance. The wise engineer would evaluate the
likely errors in the plant models and further increase the disturbance mixing tank
volume to account for these uncertainties.

m^m :̂m¥m&mmmmMmmmmmM
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The preceding discussion and examples demonstrate that both feedback and distur
bance process dynamics influence control performance. Fast feedback dynamics and
slow disturbance dynamics favor good performance. Understanding this difference
is crucial when designing plants with favorable dynamic behavior.

The Effect of Inverse Response

Inverse response is an important characteristic of the feedback process dynamics
that, when it exists, has a major effect on control performance. The reasons why
inverse responses occur are explained in Section 5.4 on parallel systems, and
some process systems that have parallel structures are presented and modelled
in Appendix I. The process considered here is modelled in Example 1.2. In that
example, the parallel process structure resulted in the concentration first increasing,
then decreasing in response to a step increase in the solvent flow rate. (The reader



430

CHAPTER 13
Performance of
Feedback Control
Systems

may want to review this example before proceeding.) Clearly, such a process is
difficult to control, because the initial response of the controlled variable is in the
"wrong" direction. The initial inverse response imposes a limit to the achievable
control performance in a way similar to dead time.

EXAMPLE 13.8.
The inverse response process, the reactor in Example 1.2, is shown in Figure 13.14
with the proposed feedback control system. Determine the control performance
for this system in response to a step change in the set point of a PI controller.

The model for this process, linearized about the initial steady state, is repeated
here; however, this model is not exact for the transient considered, because the
gain and time constants depend on the flow of solvent, which changes through
the transient:

GPis) =
-1.66(-8.0$-H)

(8.25* + l)2 (13.11)

The tuning for the PI controller was determined by trial and error to be Kc =
-0.45 m3/min(mole/m3) and Tt = 13.0 min, which resulted in the transient response
in Figure 13.15. This transient was evaluated by a numerical solution of the nonlin
ear differential equations. The control performance is less than ideal, because the
initial response of the controlled variable is inverse to the change in the set point.
However, the response is stable, returns to the set point, and is "well behaved"
(i.e., not unduly oscillatory or slow to return to the set point).

It is important torecognize that this second-order process without dead time
cannot be controlled tightly, because of the inverse response, regardless
of the feedback control algorithm.

Again, we see the influence of feedback dynamics on control performance.

FIGURE 13.14
Feedback control design for Example 13.8.
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0.12

FIGURE 13.15

Closed-loop response of the inverse response process in Example 13.8.

Model Requirements for Predicting Control Performance

Throughout this book, we have monitored the effects of modelling errors on de
sign decisions such as tuning and on the resulting control performance. Here the
effects of modelling errors on the accuracy of control performance predictions
are considered. Two linear models for the three-tank mixing process have been
developed; one involves a third-order system, and the other involves a first-order-
with-dead-time approximation. How well does the performance predicted using
the approximate model compare with the performance using the "exact" third-
order model? To answer the question for this example, the closed-loop frequency
responses have been calculated for both cases. The controller is a PI algorithm
with the tuning constants from Example 9.2 (with the small derivative time set to
zero). The closed-loop transfer functions for the two cases are as follows:
Exact third-order model.

CVjs)
Dis)

1
i5s + l)3

0039 „„, + (57TIF30

Approximate first-order-with-dead-time model.
le-5.5s

CVis)

( ' ♦ i l O

(13.12)

lA0" l̂nAI
A

tr lA2

I A A 3l*lir
(10.5*+ 1)

Dis) ,-5.5s
1 + 0.039

(10.5s+ 1)
■30 (-ib)

(13.13)
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The results of the analysis are plotted in Figure 13.16. The approximate first-
order-with-dead-time model represents the system with sufficient accuracy to pre
dict the control performance, especially for the low-frequency disturbances, which
is the range for which feedback control is designed and effective. The predictions
differ in the high-frequency range, but they both predict very good disturbance
attenuation. The approximate model leads to some error in the region of the res
onance peak; however, both models identify the proper resonance frequency and
properly predict that feedback is not effective in this frequency region.

The results of this example on control performance, along with Examples 9.2
and 9.3 on tuning and Example 10.17 on stability analysis, lead to a very important
conclusion:

An approximate first-order-with-dead-time model typically provides sufficient ac
curacy for single-loop control tuning and performance analysis when the open-loop
process has an overdamped, sigmoidally shaped response between the manipulated
and controlled variables.

Since many processes have such well-behaved dynamic responses, the first-order-
with-dead-time models are used frequently in the process industries.

The topics in this section demonstrate some key limitations imposed on control
performance by process dynamics and provide some quantitative estimates of how
various process parameters affect performance. From these results, it becomes clear
that many deficiencies in control performance cannot be corrected by improving
the single-loop control algorithm or tuning. Finally, the sensitivity of control design
methods to modelling errors has been analyzed, and the results in this section, in
conjunction with previous chapters, confirm the usefulness of approximate models.

io-3 io-2 io-1 10°
Frequency (rad/min)

FIGURE 13.16

102

Comparison of closed-loop frequency response for (a) exact
third-order model, equation (13.12), and (b) approximate
process model, equation (13.13).
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The goal of the control instrumentation and algorithm is to achieve, as closely as
is practically possible, the best control performance (for the controlled and ma
nipulated variables) for the existing process dynamics. The effect of controller
algorithm and tuning constants on the system's stability has been covered exten
sively in Chapters 9 and 10 and will not be repeated here. Suffice it to say that
the controller tuning is selected to provide a compromise that gives acceptable be
havior over a range of process dynamics. Several other important control system
factors are discussed in this section.
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Manipulated-Var iab le Behavior
As emphasized in Chapter 9, the behavior of the manipulated variable is also
considered when evaluating control system performance. The effect of feedback
control can be determined from the block diagram in Figure 13.1.

MV(j) = -Gd(s)Gds)Gc(s)
Dis) \+Gpis)Gds)Gds)Gds)

The numerator includes the product of the disturbance and controller transfer
functions. As the controller tuning is selected for more aggressive control (i.e., the
gain is increased or integral time decreased), the magnitude of the manipulated-
variable variation is increased. In contrast, maintaining the controlled variable close
to its set point requires aggressive control, as limited by feedback dynamics. Thus,
the tuning is often selected as a compromise of these two concerns, manipulated-
and controlled-variable performance.
EXAMPLE 13.9.
Evaluate the frequency response of the controlled and manipulated variables for
the system in Example 13.1, case C. Evaluate three values of the controller gain
relative to the base case: (a) 75%, (b) 100%, and (c) 125%.

The magnitude of the controlled variable is determined from equation (13.2),
and the magnitude of the manipulated variable is determined from the following
equation:

\DiJco)\
Gdijco)GdJco)Gcijco) (13.15)1 + GpiJco)GviJio)Gcijco)GdJ(o)

The results are given in Figure 13.17a and b. Note that the manipulated-variable
variation at low frequencies is nearly independent of the controller gain, since the
manipulated variable is adjusted slowly, in quasi-steady state, in response to the
disturbance magnitude. However, at higher frequencies a smaller controller gain
results in a smaller manipulated-variable magnitude (variation). As expected, the
smaller controller gain also results in an increased controlled-variable magnitude
(variation).

Sensor and Final Element Dynamics

The dynamics of the final control element, usually but not always a valve, and
the sensor appear in the feedback path. Therefore, they influence the stability and
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FIGURE 13.17

Amplitude ratios for disturbance input for Example 13.9:
(a) of manipulated variable; ib) of controlled variable.

control performance. The closed-loop transfer function, including the instrument
elements, for the system was derived in Chapter 7 and is repeated here:

Gdis)CVjs) =
Dis) \ + Gpis)Gds)Gds)Gds) (13.16)

EXAMPLE 13.10.
Calculate the frequency response of the controlled variable to a disturbance input
for the system in Example 7.1, case A, (a) when the sensor and final element



dynamics are as given in the Example, and ib) when these dynamics are negligible
(i.e., all instrument dead times and time constants are reduced to zero, so that
the only significant dynamics in the feedback path are from the process). For
both cases, the disturbance time constant is 3 minutes. The models for the two
situations are given below.

Example 13.10(a)
1 . 8 4 < r s „ , N 1 . 0

G p i s ) = , _ n „ , , v G d s ) =(0.5* + \)i\.5s + \)(3s + \)i\0s + l)(0.5b + l)(j +1)
Example 13.10(b)

1.84*-'

i3s+\)

GPis) = Gds) =
1.0

( 3 5 + 1 ) " " ( 3 5 + 1 )
The controller tuning has to be determined individually for (a) and (b). The

dynamics can be approximated from the process reaction curves in Figure 7.3a
using the process reaction curve graphical Method II, and the tuning can be cal
culated from the Ciancone correlations.
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Kt e Kc

Example 13.10(a) 1.84 5.5 13.5 0.65 13.3
E x a m p l e 1 3 . 1 0 ( b ) 1 . 8 4 1 . 0 3 0 . 6 5 2 . 8

The results of the frequency response calculations are given in Figure 13.18.
Clearly, the control performance is better for ib), where the instrumentation dy
namics are negligible, because the instrumentation dynamics in (a) are substantial
compared with the process.

10' kin nun—i i i nun—i i i min—i i i nun—i i 111in

3D
Q

f 10°
>

Q.E<

IO'2 ,IO-3
I " I I I

10 I O - 1 1 0 °
Frequency (rad/min)

10' IO2

FIGURE 13.18

Amplitude ratio of controlled variable to disturbance for
Example 13.10.
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Recall that the dynamic model determined through empirical identification in
cludes all elements in the feedback path, Gpis)Gds)Gds)Gsis). When the control
system uses the same instrumentation, the identified model provides the informa
tion needed for tuning and control performance assessment.

Digital PID Controllers
The PID algorithm can be implemented in a digital, or discrete manner, where the
calculation is performed periodically. The effects of the execution period on tuning
and control performance were covered in Chapter 11, where At/i6 + x) was iden
tified as the parameter indicating the change from a continuous system. When this
parameter is small, approximately 0.05, the system behavior is similar to that with
a continuous controller; as the parameter increases, the control performance de
grades from that achieved with a continuous controller. The digital control system
can be easily simulated by executing the appropriate number of process simula
tion time steps between successive controller executions to provide an accurate
representation of the process dynamics. The magnitude of the controlled variable
in response to a sine input (i.e., the amplitude ratio of the frequency response) can
be obtained; the calculations require mathematical methods for discrete systems
(z-transforms) covered in this book in Appendix L and in Ogata, 1987.

PID Mode Selection
With detailed analysis of controller tuning and control system performance, it is
possible to discuss the selection of controller modes—proportional, integral, and
derivative—for various applications. Naturally, the appropriate selection depends
on the control objectives. For the vast majority of applications, zero offset is desired
for steplike inputs, and an integral mode is required, as was demonstrated in Chapter
8. A few control strategies do not require zero offset, and proportional-only control
is possible for these. The most common instances are some, but not all, level
controllers, which are described in Chapter 18. Also, the proportional mode is
nearly always used with the integral mode, because control systems with integral-
only controllers tend to have slow, oscillatory dynamic responses.

Therefore, the proportional and integral modes are used for nearly all con
trollers, and the only choice regards the use of the derivative mode. The tuning
correlations in Chapter 9 show that the derivative time (i.e., the contribution from
the derivative mode) should be small for small fraction dead times and increase
as the fraction dead time increases. A rationale for this trend is that the derivative
is a "predictive" mode and that prediction is needed because of the dead time in
the closed-loop system. A quantitative explanation is that the phase lead provided
by the derivative mode allows a higher controller gain and shorter integral time,
resulting in better control performance.

As previously discussed, the derivative mode amplifies high-frequency noise
in the measured variable. If the difference between the noise and process response
frequencies is large, the noise can be attenuated by filtering (see Chapter 12). If this
is not the case, the controller derivative time must be reduced, perhaps to zero, to
observe the limitation on the high-frequency variation of the manipulated variable.



EXAMPLE 13.11.
Select appropriate modes for the PID controller applied to the process shown in
Figure 13.19.
LL1 and LI'S. The feed tanks have periodic, rather than continuous, supply
flows. As a result, their levels must vary with time, and their total volumes must
be large enough to contain the change in inventory accumulated between supply
or delivery flows. Therefore, their levels are not controlled. Level indication allows
plant operating personnel to monitor the levels.

FC-f and FC-2. Flow controllers should maintain the flows at their set points.
The flow process has little dead time and a relatively noisy measurement signal.
Therefore, a PI controller is used. Since the flow process is so fast, the PI is some
times tuned with a small gain and small integral time so that it performs closer to
an integral-only controller. This tuning further reduces the effects of noise.

LC-2. The reactor level influences the residence time and, therefore, the reaction
conversion. The level should be maintained at its set point, but extremely rapid
changes to the manipulated flow are not desirable. A PI controller is used.
TC-1. The reactor temperature is also a key variable in determining the reaction
conversion. The controller would be PID or PI, depending on the fraction dead
time.
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FIGURE 13.19

Schematic of process and controllers considered in Example 13.11.
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TC-2. The flash drum temperature is an important variable in controlling the sep
aration. The controller would be PID or PI, depending on the fraction dead time.

LC-3. There is no incentive to maintain the flash drum level at a specific value
as long as the level remains within its allowed range. Also, flow variation to down
stream units should be small. Therefore, a P-only controller could be used. A PI
controller is also allowable in this case.

PC-f. The pressure of the flash drum is important for safety. It is also important for
product quality, because the pressure affects the components in the flash vapor
and liquid phases. The pressure dynamics should have essentially no dead time.
Therefore, a PI controller is selected.

Selecting the Manipulated Variable
In Chapter 7, five criteria were presented for selecting a manipulated variable from
among several candidates. Here, we apply these criteria using quantitative dynamic
models that improve our ability to evaluate candidate designs and to select the best
manipulated variable.
EXAMPLE 13.12.
Using the following quantitative data, select the manipulated valve for feedback
control for the reactor in Figure 13.20 that will provide better control performance.

Control objective. Maintain the reactant concentration in the reactor at 0.465
mole/m3.

Design problem. Should the feedback controller manipulate vA or vc to achieve
good dynamic performance?
Disturbance. The reactant concentration in the solvent, (Ca)sol. is normally zero
but can increase to 0.463 mole/m3 in a step.

Solvent-
-AO

«XVA

Pure A

FIGURE 13.20

Chemical reactor analyzed in Example 13.12.



Model Information.
1. The reaction is first-order with Arrhenius temperature dependence; -rA =

koe-E'*TCA.
2. The reactor is well mixed, and the volume is constant.
3. Flows depend on the valve openings linearly; Fc = Kvcvc and FA = KAvA.
4. Heat transfer can be modelled similarly to Example 3.7, and heat losses are

negligible.
5. The heat of reaction is zero.

Data. F = 0.085 m3/min, V = 2.1 m3, p = 106 g/m3, Cp = 1 cal/(g°C), T0 = 150°C,
Tcin = 25°C, Fcs = 0.50 m3/min, Cpc = 1 cal/(g°C), pc = IO6 g/m3, *0 = 5.62 x 107
min"1, E/R = (15,000//?)K

Steady-state operation. (Ca)sol = 0, CA0 = 0.965 mol/m3, CA = 0.465 mol/m3,
Ts = 85.4°C, vA = 50%, vc = 50%

A thorough analysis of the potential control designs requires information about
the feedback dynamics. To provide this information, a dynamic model of the system
is formulated, based on the following energy and component material balances.

VpCp^ = FpCp iT0 -T ) -
aF*+x

Fc +
aFi iT-Tcin)

£Pc*-pc

V^£ = F(CA0 - CA) - Vhe-E'RTCAdt
with Fc = Kvcvc, FA = KAvA, and CA0 = itiA)iFA)/F, with p,A molar density in
moles/m3

The equations can be linearized and the following transfer functions can be
derived for the two potential feedback dynamic systems.

CAis) KFC with KFC = 0.00468
vcis) iz\s + \)iz2s + 1)

Z\ = 12.4 min and r2 = 11.7 min

mole/m3
%open

CAjs) _ KFA
vAis) ~ (Tj + 1)

with KFA = 0.0097 mole/m3
%open

r = 12.4 min

Now, the five basic criteria are evaluated for the two potential manipulated
variables.
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Feedback with vA -+ CA Feedback with vc -*- C-
1. Causal relationship
2. Automated valve available
3. Fast feedback dynamics

4. Able to compensate for
largest disturbance
5. Adjust the valve without
upsetting the plant

Yes, KFA # 0
Yes
Stable, first-order system with
z = 12.4 min; this is faster!
Yes, when (Ca)Sol = 0.463, uA = 25%

Yes, a tank of reactant is available

Yes, KFC # 0
Yes
Stable, second-order system with
T| = 12.4 and z2 = 11.7 min; this is slower!
Yes, when (Ca)SOl = 0.463, vc = 25%

Yes, cooling water is available
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Based on the analysis, either valve could be used for feedback control be
cause a causal relationship exists, an automated valve is available, and the valve
has sufficient range to compensate for the largest expected disturbance. The
control performance would be best for the system with the fastest feedback dy
namics, therefore, feedback using the reactant valve, vA, is chosen as the better
manipulated variable.

This analysis is confirmed by the dynamic responses of both feedback control
systems in Figure 13.21. The PI controller tunings are

Manipulating vA
Manipulating uc

Kc = 200%/(mole/m3)
Kc = 200%/(mole/m3)

Ti = 3.0 min
7> = 13.0 min

The transient responses show the concentration deviating much less from its set
point when vA is manipulated. This confirms our qualitative analysis. Naturally, the
selection could be influenced by other factors like the cost of energy and potential
side reactions, which are not considered in this example.

Process Design for Control Performance

Various process designs can have identical steady-state conditions but very dif
ferent dynamic behavior. One aspect of dynamic behavior that significantly influ
ences control performance is process self-regulation. Processes with strong self-
regulation tend to be affected less by some disturbances and can be quickly returned
to desired values. The following example shows that fundamental models provide
insight that enables us to design processes with good control performance.
EXAMPLE 13.13.
A stirred-tank heat exchanger was modelled in Example 3.7, and the control
performance of the linearized approximation was evaluated analytically in Exam
ple 8.5. The results indicated reasonably good performance, because the feed
back dynamics Gpis) were first-order. However, the question remains whether the
performance could be improved by simple process modifications. A reasonable
goal would be to change the process so that the feedback dynamic response is
faster and the controlled variable is less sensitive to disturbances. This can be
achieved by increasing the "self-regulatory" nature of the process without control.
For the heat exchanger, the process will be more self-regulatory if the tempera
ture driving force for exchange is small; then, a small increase in the exchanger
fluid temperature due to a feed inlet temperature increase will substantially in
crease the cooling duty. Naturally, the heat exchanger area must be increased to
achieve the same heat transfer rate as in the base case with a smaller temperature
difference.

This concept is applied to the example heat exchanger by increasing the
cooling temperature from the original value of 25°C to 65°C, with a commensurate
increase in the heat exchanger area. The data for this example, which is the same
as the original process in Examples 3.7 and 8.5, are summarized below, and the
modified data are summarized in Table 13.2.

F = 0.085 m3/min V = 2.1 m3 7; = 85.4°C p = IO6 g/m3

Cp = 1 cal/(g°C) r0 = 150°C
Fa = 0.50 m3/ min Cpc = 1 cal/(g°C) pc = IO6 g/m3

The following fundamental nonlinear and linearized models can be derived for a
disturbance in the inlet temperature
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Better performance by
manipulating valve vA

ia)

ib)

* 20

FIGURE 13.21

ia) Dynamic response of the control design in Example 13.12 manipulating vA.
ib) Dynamic response of the control design in Example 13.12 manipulating vc.
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dT_
dtVpCp-- = FpCpiT0-T)

aF»x

Fc +
aF° iT-Tcin)

Gds)Tjs) =
T0is) 1 + Gcis)Gpis)

^Pc^pc

\zds + \J

( # & ) ( ■ ♦ £ )
1 +

(F UA* \ - i

Kp=Wf
\ c 2pcCpc)

The data in Table 13.2 demonstrate that the approximate linear dynamic model
has two significant improvements for the modified process. First, the feedback
time constant is smaller, allowing better feedback performance. Second, the dis
turbance gain is smaller, meaning that the same feed inlet temperature distur
bance has a smaller effect on the process without control because of the stronger
self-regulation. The faster feedback dynamics and smaller disturbance gain in
dicate that the feedback control performance should be better for the modi
fied process. This analysis is confirmed by the results in Figure 13.22, which
shows the temperature responses for the original and modified processes, and
by the results summarized in Table 13.2 on control performance. The tuning was

TABLE 13.2

Data and selected results for Example 13.13

Parameter Or ig inal va lue Modified value Comment
Process data

a (cal/min °C) 1.41 x IO5 5.21 x 105 UA = aFc
Tcin (°C) 25 65
Kp (°C/(m3/min)) -33.9 -19.6
r (min) 11.9 5.93
Kd (°C/°C) 0.52 0.24
zd (min) 11.9 5.93

Controller data
Kc ((m3/min)/°C)
T, (min)

-0.059
0.95

-0.10
0.47

KCKP the same
Ti\z the same

Control system performance
I A E ( ° C m i n ) 5 . 3 1 1 . 2 7
M a x i m u m d e v i a t i o n 0 . 6 6 0 . 3 3
from set point (°C)

Due to smaller Kd and z
Due to smaller Kd
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Transient responses for Example 13.13.

similar for both systems, adjusted to have the same values for the key dimen
sionless parameters KCKP and Tt/z so that the manipulated-variable behavior is
reasonable (and similar) for both transients. These responses were determined
by numerically integrating the nonlinear differential equations for the process and
controller.

The substantially improved performance for the inlet temperature disturbance
has been accomplished with minor modification to the process. However, it is not
without some negative impact. First, the heat exchanger area and cost have been
increased. Second, the sensitivity of the process performance to disturbances
in the coolant inlet temperature has increased. Thus, the best overall design and
dynamic behavior must be tailored to each specific situation. This example demon
strates that strong self-regulation for key disturbances can reduce controlled vari
able variation and thus, improve control performance.

13.7 a CONCLUSIONS

Two general, quantitative methods—frequency response and dynamic simulation—
have been introduced for analyzing the control performance of feedback control
systems. Each has specific strengths. Frequency response clearly shows the ef
fects of the input frequency on the closed-loop performance, as indicated by the
magnitude of important variables; it is applicable to stable, linear systems. Dy
namic simulation provides detailed information on the performance of variables
throughout a transient for any time-varying input function and can be applied to any
system, linear or nonlinear. Both of these methods require extensive computation
and are implemented using computer calculations.
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The two quantitative analysis methods have been used to develop insights
and generalizations about control performance. Many general conclusions have
been developed about the effects of process and controller parameters on control
performance, and they are summarized in Table 13.3.

TABLE 13.3

Summary of factors affecting single-loop PID controller performance

Key factor Typical parameter Effect on control performance
Feedback Kp
process gain

Feedback 6 + z
process "speed"

6
6 + zFeedback fraction

process dead time
Inverse response Numerator term in

transfer function, izs+\)
with r < 0

Magnitude of \KdAD\
disturbance effect
Disturbance xd
dynamics

cod

6d
Sensor

Filter Tf/iO + x)

Final element

Controller execution At

period
V + z

Controller tuning KcKp

T , T D
i6 + z) i6 + z)

Modelling errors

Limitations on min < MV(0 < max
manipulated
variables

The key factor is the product of the process and controller gains.
For example, a small process gain can be compensated by a large
controller gain. Note that the manipulated variable must have
sufficient range.
Control performance is always better when this term is small.

Control performance is always better when this term is small.

Control performance degrades for large inverse response.

Control performance is always better when this term is small.

Control performance is best when the disturbance is slow (the time
constant is large).
Feedback control is effective for low-frequency disturbances and is
least effective at the resonant frequency.
Disturbance dead time does not influence performance.
Measurement should be accurate. Dynamics should be fast with little
noise.
Attenuates higher-frequency components of measurement. Reduces
the variability of the manipulated variable, but degrades
controlled-variable performance as filter time constant is increased.
Dynamics should be fast without sticking or hysteresis. Range should
be large enough for response to demands.
Control performance is best when this parameter is small. Continuous
PID tuning correlations can be used by modifying the dead time,
6' = 6 + At/2.
These terms are determined from tuning correlations based on control
objectives (see Chapters 7, 9, and 10).

Errors in the process model parameters lead to poorer control
performance and, potentially, instability. Tuning should consider
the estimate of model errors.
Limitations on manipulated variables reduce the operating window
(the range of achievable conditions). An active limit would cause
steady-state offset from the set point.



The analysis of controller modes, tuning, and stability in Chapters 8 through
10 emphasized the feedback process dynamics. In fact, it was demonstrated in
Chapter 10 that the stability of linear systems is independent of the type of input,
so long as it is bounded. In contrast:
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Additional Resources

Control system performance depends on the dynamics of both the feedback and the
disturbance processes and depends critically on the frequency and magnitude of the
disturbance.

Although generally giving good performance, the PID controller does not
provide the best performance in all cases. The performance of a single-loop PID
control system can be improved in some cases by using additional measurements,
modified PID algorithms, or entirely new feedback algorithms. Some of the most
successful enhancements for single-loop control are described in Part IV of this
book.
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Control performance depends on all elements in the feedback loop and the distur
bance path. The following questions require you to (1) apply general principles to
evaluate designs and (2) apply quantitative analysis to answer analytical or numerical
questions.

QUESTIONS
13.1. The mixing process in Figure Q13.1 is to be analyzed in this question. The

concentration at the outlet is controlled by adjusting a mixing stream at the
inlet of three tanks. The main disturbance is the concentration of a stream
flowing through a long pipe and a single stirred tank. Assume that in the
base case the feedback PI controller is well tuned. For each of the following
changes id) through (f) from the base case answer the following questions
and explain your answer,
(i) How should the two tuning constants be changed (increased, decreased,

or unchanged) to maintain good control performance?
(ii) After the tuning has been adjusted, when necessary, how would the

control performance, as measured by maximum deviation of the con
trolled variable in response to a step disturbance, differ from the base
case (larger, smaller, same value)? Hint: It would help to identify the
feedback and disturbance paths, which elements are in each, and how
each is affected by the changes considered.
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Process changes (considered individually)
id) The volume of each of the three tanks, V, is increased by 50%.
ib) The volume of the single tank, Vd, is increased by 50%.
ic) The initial operating condition (controller set point) is increased from

1 % to 2% of A in the product.
id) The length of pipe is doubled.
ie) The maximum flow capacity of the control valve is doubled.
if) The solvent flow, Fs, is reduced by 50%.

13.2. Five mixing process designs, all having the process structure shown in
Figure Q13.2, are to be analyzed in this question. The concentration at the
outlet is controlled by adjusting a mixing stream at the inlet. The main
disturbance is the concentration of a stream flowing through a pipe and
a single stirred tank. The key parameters for each design are given in the
following table, with all values in minutes.

Design L1A/iFA + Fs) Vi/(FA + Fs) V2/iFA + Fs) Ld/iF/A) Vd/iF)
1 1.0 1.0 1.0 1.0 1.0
II 0.5 1.0 1.0 1.0 1.0
III 1.0 0.5 1.0 1.0 1.0
IV 1.0 1.0 1.0 0.5 1.0
V 1.0 1.0 1.0 1.0 0.5

KW9R8B*ffiB?H5EJ»i9K58SM?&8^^

Rank the five designs from best to worst control performance in response
to a step disturbance in Ca shown in the figure. Maximum deviation of the
controlled variable from its set point is the measure of control performance.
Assume that the feedback control system in the figure is used without
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change, but properly retuned for each plant. Hint: It would help to identify
the feedback and disturbance paths, which elements are in each, and how
each is affected by the process designs considered.

13.3. Assume that the process transfer function Gp is) used in deriving equations
(13.9) and (13.10) is unchanged but that the disturbance transfer function
was modified to second-order of the form that follows. Derive expressions
for the minimum values for the IAE and the maximum deviation of the
controlled variable equivalent to equations (13.9) and (13.10).

r ( \ - CV(S) - KdUdKS)- Dis) ~ (tV + 2t^ + 1)

13.4. In this chapter the statement is made that the integral mode is particularly
effective in reducing the effect of sine disturbances with low frequencies.
Evaluate this statement by comparing the closed-loop frequency responses
for PI and P-only controllers in the very low-frequency region. Is the P-only
controller as effective? Explain your answer.

13.5. Concerning the frequency response equation (13.3):
id) Verify that the equations are correct.
ib) Determine the modifications for a second-order disturbance model

in question 13.3 being used in place of the first-order model. How
would this change affect the general shape of the closed-loop frequency
response?

13.6. For the following process control designs, select the proper feedback con
troller modes and discuss the proper execution periods for digital imple
mentation, id) Figure Q7.6, ib) Figure 2.2, and (c) Figure Q1.9 (those
designs for which feedback control is possible).



13.7. ia) A plant with the process configuration of Figure 13.4 is analyzed in this 449
question. Calculate closed-loop frequency responses of the controlled- w^^MtmA^MMMMm
variable response to a disturbance. The plant transfer functions follow Questions
with all time units in minutes, and the controller algorithm is a PI, with
tuning to be determined by you. You may use equation (13.3) or use a
computer program to perform the complex manipulations.

2 . 2 c - 3 * _ 1 . 0
GP = , , „ . Gd =1 + 3 . 4 ^ \ + 2 s

ib) The process requires a deviation from set point of less than 1.0 for the
dominant disturbance, which has a magnitude of 1.5 at a frequency
of 0.40 rad/min. Determine whether the PI controller can achieve the
performance. If not, how should the disturbance and process feedback
transfer functions be changed to satisfy the control objective?

(c) How would the answers to parts id) and ib) of this question change if
the disturbance transfer function Gdis) had an additional dead time of
3 min?

13.8. id) In your own words, describe why processes with large dead times are
difficult to control.

ib) Sketch a typical closed-loop frequency response and explain the three
major sections of the curve at low, intermediate, and high frequencies.
Perform this exercise for both set point and disturbance inputs.

ic) As discussed in previous chapters and reiterated here, controller tun
ing is selected to be somewhat conservative to ensure stability as the
process dynamics change. Discuss how this tuning practice influences
controller performance.

id) Place each of the following factors in one of two categories, labelled
"favorable" and "unfavorable" for control performance: disturbance
frequency near critical frequency; small fraction dead time; large dis
turbance dead time; large process steady-state gain; ratio of digital
execution period to feedback dynamics greater than 0.20; detuning
controller gain for robustness; large value of i6 + x).

13.9. Open-loop responses between the manipulated and controlled variables
for four potential process designs are given in Figure Q13.9, all having the
same scales.
id) Rank the processes for the expected control performance for set point

changes.
ib) Rank the processes for the expected control performance for distur

bance response.

13.10. Based on the model of the feedback process, how would the control per
formance change for the system in Example 8.5 for each of the following
changes, made individually, to the initial steady-state operating conditions?
Calculate the modification of tuning in response to the operating condition
change and assume that this tuning change has been made.
id) Determine the PI tuning that would give "good" control performance

for the initial plant operating conditions in Example 8.5.
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ib) The flow through the heat exchanger is reduced from 0.085 to 0.0425
m3/min.

ic) The volume in the tank is increased from 2.1 to 3.0 m3.
id) The temperature set point is changed from 85.4 to 90°C.

13.11. The closed-loop frequency response calculated using equation (13.2) for
a process with the structure in Figure 13.4 and with the following process
parameters is given in Figure Q13.ll. Results are shown for several values
of the controller gain, all with the integral time at a value of 6.0. Critically
discuss these calculations and select from the three alternatives the value
of the controller gain that would give the best control performance.

GPis) =
-2.Qg-2-5'

l +4s Gds) =
1.0

1+1.85
Gds)

- * ( ■ ♦ £ )

13.12. ia) One rule of thumb for quickly estimating the standard deviation of a
sample of process data is that it is equal to | of the difference between
the maximum and minimum values in the sample. Discuss the basis
and validity of this rule of thumb.

ib) Apply this rule of thumb to the data in Figure 13.10a and b.
ic) Assume that the goal is to increase the average concentration without

exceeding the value of 6.2. Evaluate the performance of the system
in Figure 13.10ft and suggest any changes to the set point that are
appropriate.

id) Discuss some of the factors you would consider in selecting "represen
tative" open-loop dynamic data that could be used in estimating feed-
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back control performance for a potential PI controller by the method
in Example 13.5.

13.13. Based on the model of the feedback process, answer the following questions
for the three-tank system in Examples 7.2 and 9.2 for the situation in which
each tank volume is increased from 35 to 105 m3.
id) Describe the control performance you would expect with the original

tuning constants from Example 9.2 applied to the modified process.
ib) If necessary, modify the PID controller tuning.
ic) Compare the control performance for the original system and the modi

fied system after tuning changes in ib). Consider the IAE and maximum
deviation for a step inlet concentration disturbance.

13.14. Discuss how the process structure in the following systems would affect the
feedback control performance: (a) Example 1.1 (overshoot); ib) Example
5.5 (recycle); and (c) Section 3.6 (underdamped).

13.15. The tradeoff between manipulated- and controlled-variable behaviors has
been discussed frequently.
id) Describe the behavior of the manipulated variable for the system in

Figures 9.2 and 9.3. On each figure, sketch an approximate plot of the
variability of the manipulated variable, showing where the variability
is high and low as a function of the variable tuning constant(s). Either
of the following measures of the variability can be used.

2 r ° ° \ d W [ V ( t \
dtrm* -1 d t

ib) Recalculate Figure 13.7 with a PID controller and discuss the differ
ence.

13.16. The system in Example 13.10(a) evaluated the closed-loop amplitude ratio
of the controlled to disturbance variables. For the same system, calculate
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Systems 13.17. The transfer function between the set point and the controlled variable is

given in equation (13.4). Apply the following controller design method to
arrive at an algorithm other than PID. Assume the input-output response is
defined at some good performance [i.e., CV(.s)/SP(.s) = Tis) is specified].
Solve for the controller transfer function that would give this performance.
Discuss whether this controller can be implemented in analog or digital
form.

13.18. The process design in Example 13.8 with a parallel structure is considered
in this question. The concentration at the outlet of the second reactor is to
be controlled as in Example 13.8, except that the flow rate of stream A (not
the solvent) is to be manipulated.
id) Based on the different dynamics between the manipulated and con

trolled variables, predict the control performance and whether it would
be better than the system in Example 13.8. (Hint: The results from end-
of-appendix question 1.3 will help in answering this question.)

ib) Develop a dynamic simulation for this design, tune the feedback PI
controller, and compare the control performance with Example 13.8.

13.19. The process with recycle was analyzed in end-of-chapter question 5.14.
Determine the value of the recycle for which a feedback PI control system,
controlling the outlet composition Ca2 by adjusting Cao, would give the
best performance.

13.20. Chemical reactors were analyzed in question 5.7 for two different reaction
kinetics. For both kinetics (answered separately), determine which feed
back control system, controlling CA or Cb by adjusting CAo, would provide
the best performance. Base your answer entirely on the feedback dynamics,
not the process gain.
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Control
As we have seen, single-loop PID feedback control often provides good control
performance and always yields zero steady-state offset for steplike inputs. The
controller is easy to use, because the PID control algorithm can be applied on
nearly all processes without alteration. The performance is very good, considering
the little information required for design and tuning. As might be expected, the
simplicity of the PID controller, while reducing engineering effort and computer
calculations, results in control performance that is not always the best possible. The
key advantages and disadvantages of single-loop feedback control are summarized
in Table IV. 1. The methods in Part IV are designed to partially overcome these
disadvantages.

The best approach for improving control performance is to eliminate or reduce
the disturbances by improving the operation of upstream processes. The next best
solution is to eliminate the difficult factors from the feedback dynamic responses
by changing the process design. For example, the dead time could be reduced by
relocating sensors or eliminating sample systems by placing the sensor in situ. If
the dead time could be reduced sufficiently, much improved control performance
could be achieved. However, changing the process design is not always possible
or the best economic decision.

We assume here that all reasonable process modifications have been made
and that further enhancements are to be achieved through control modifications.
To improve the feedback performance, the controller design must be changed in a
manner that takes advantage of additional knowledge about the process dynamics
or control objectives through one or more of the following steps:
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TABLE IV.1

Summary of single-loop feedback control

Advantages Disadvantages
Achieves zero steady-state offset for all
step-like inputs

Process output must be upset before
feedback action begins.

Uses only one measurement Feedback control performance can be
poor for some combinations of disturbance
frequencies and feedback dynamics.

Algorithm and tuning rules available Poor feedback can cause instability.
PID does not provide the best possible
control for all processes.

• Use additional measures of process outputs.
• Use additional measurements of the process inputs.
• Use explicit modelling in the control calculation.
• Modify the PID algorithm and tuning to match the control objective.

To achieve enhancements the engineer requires additional process insight, which is
developed though increased engineering analysis and effort. The additional effort
can be richly rewarded, because the enhancements can substantially improve con
trol performance, reducing the integral errors and maximum deviations by more
than a factor of ten, in some situations. The success of the enhancement depends
on the quality of the engineering analysis—that is, the accuracy of the process
insight and the application of the design principles. It is important to remember
that regardless of the complexity of the enhancements, feedback control from the
controlled variable should always be retained (when the sensor exists) so that zero
steady-state offset is achieved.

Several control enhancements are presented in this part of the book. They
were chosen based on the following criteria:

• Reinforce principles. Each of these enhancements partially overcomes one
or more of the causes for poor control performance. Thus, we have the op
portunity to reconsider these process-related limitations as we leam how an
enhancement improves performance. This perspective is important because
the enhancements are designed based on sound control theory and are not a
collection of "ad hoc tricks."

• Demonstrate practice. The enhancements are some of the most frequently ap
plied designs in the process industries and can be implemented in commercial
control equipment at low cost.

• Apply process insight. The proper use of the enhancements requires sound
understanding of dynamics and operating goals of the process. Thus, this part



strengthens our understanding of how the process equipment and operating
conditions influence designs to achieve specified control performance.

Each enhancement is briefly summarized in Table IV.2; the reader may find it
helpful to refer to this table after covering each chapter in this part.

The single-loop enhancements covered in this part are used widely in pro
cess control. They become especially important when designing control strategies
for complex units with many controlled variables, sensors, and final control ele
ments. Therefore, it is essential that the student master these enhancements before
progressing to the more advanced, multivariable design topics.
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TABLE IV.2

Summary of single-loop control enhancements
N e w N e w S t a n d a r d N e w
i n p u t o u t p u t P r o c e s s o r m o d i fi e d c o n t r o l

E n h a n c e m e n t K e y i s s u e m e a s u r e m e n t m e a s u r e m e n t m o d e l l i n g P I D a l g o r i t h m

Cascade Feedback
dynamics

Feedforward Feedback
dynamics

Nonlinear Changing
processes process

dynamics
Inferential Lack of

online
sensor

Level Different
control
objective

Predictive Complex
control feedback

dynamics

X X

X

X

X

X

X

mmmMmmmnm^m^Mmmmsmmn



Cascade
Control -i a

14.1 n INTRODUCTION
Cascade control is one of the most successful methods for enhancing single-loop
control performance. It can dramatically improve the performance of control strate
gies, reducing both the maximum deviation and the integral error for disturbance
responses. Since the calculations required are simple, cascade control can be im
plemented with a wide variety of analog and digital equipment. This combination
of ease of implementation and potentially large control performance improvement
has led to the widespread application of cascade control for many decades. In
this chapter, cascade control is fully explained with special emphasis placed on
clear guidelines that, when followed, ensure that the cascade method is properly
designed and is employed only where appropriate.

As explained in the introduction to this part, single-loop enhancements take
advantage of extra information to improve on the performance of the PID feedback
control system. Cascade uses an additional measurement of a process variable to
assist in the control system. The selection of this extra measurement, which is
based on information about the most common disturbances and about the process
dynamic responses, is critical to the success of the cascade controller. Therefore,
insight into the process operation and dynamics is essential for proper cascade
control design.

The basic concepts of cascade control are presented in the next section. Sub
sequent sections provide concise explanations of the design criteria, performance
expectations, tuning methods, and implementation issues. All of the methods and
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guidelines are presented for continuous systems but are applicable to digital con
trol systems. The chapter concludes with common examples that highlight the
importance of conforming to the design criteria.

14.2 m AN EXAMPLE OF CASCADE CONTROL
The best way to introduce cascade control is with reference to a simple process
example, which will be the stirred-tank heat exchanger shown in Figure 14.1.
The goal is to provide tight control of the exit temperature. The conventional
feedback controller, with integral mode, attempts to maintain the exit temperature
near its set point in response to all disturbances and ensures zero steady-state
offset for steplike disturbances. Suppose that one particularly frequent and large
disturbance is the heating oil pressure. When this pressure increases, the initial
response of the oil flow and the heat transferred is to increase. Ultimately, the
tank exit temperature increases, and the feedback controller reduces the control
valve opening to compensate for the increased pressure. While the effect of the
disturbance is ultimately compensated by the single-loop strategy, the response is
slow because the exit temperature must be disturbed before the feedback controller
can respond.

Cascade control design considers the likely disturbances and tailors the control
system to the disturbance(s) that strongly degrades performance. Cascade control
uses an additional, "secondary" measured process input variable that has the im
portant characteristic that it indicates the occurrence of the key disturbance. For
the stirred-tank heat exchanger, all measured variables are shown in Figure 14.1.
The secondary variable is selected to be the heating oil flow, because it responds
in a predictable way to the disturbances in the oil pressure, which is not measured
in this case. The control objective (tight control of the outlet temperature) and the
final element are unchanged.

The manner in which the additional measurement is used is shown in Figure
14.2. The control system employs two feedback controllers, both of which can
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Stirred-tank heat exchanger with cascade control.



use the standard PID controller algorithm. The important feature in the cascade
structure is the way in which the controllers are connected. The output of the exit
temperature controller adjusts the set point of the flow controller in the cascade
structure; that is, the secondary controller set point is equal to the primary con
troller output. Thus, the secondary flow control loop is essentially the manipulated
variable for the primary temperature controller. The net feedback effect is the same
for single-loop or cascade control; in either case, the heating oil valve is adjusted
ultimately by the feedback. Therefore, the ability to control the exit temperature
has not been changed with cascade.

As described previously, the single-loop structure makes no correction for
the oil pressure disturbance until the tank exit temperature is upset. The cascade
structure makes a much faster correction, which provides better control perfor
mance. The reason for the better performance can be seen by analyzing the initial
response of the cascade system to an oil pressure increase. The valve position is
initially constant; therefore, the oil flow increases. The oil flow sensor quickly
detects the increased flow. Since the flow controller set point would be unchanged,
the controller would respond by closing the valve to return the flow to its desired
value. Because the sensor and valve constitute a very fast process, the flow con
troller can rapidly achieve its desired flow of oil. By responding quickly to the
pressure increase and compensating by closing the control valve, the secondary
controller corrects for the disturbance before the tank exit temperature is signifi
cantly affected by the disturbance. Typical dynamic responses of the single-loop
and cascade control systems are given in Figure 14.3a and b for a decrease in oil
pressure.

A few important features of the cascade structure should be emphasized. First,
the flow controller is much faster than the temperature controller. The improvement
results from the much shorter dead time in the secondary loop than in the original
single-loop system; as discussed in Chapter 13, shorter dead times improve single-
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Dynamic response of stirred-tank heat exchanger to a disturbance in oil pressure: (a) with single-loop control;
ib) with cascade control.
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CHAPTER 14 in the design to ensure zero offset for all disturbance sources. The primary con-
Cascade Control trailer is essential, because (1) the secondary variable may not totally eliminate

the effect of the disturbance, (2) other disturbances that are not affected by the
cascade will also occur, and (3) the ability to change the primary set point must
be retained. Remember that the secondary variable is selected for one (or a few)
common disturbances; in the example, a heat exchanger feed temperature distur
bance would affect the tank outlet temperature but does not influence the heating
oil measurement. Finally, the judicious selection of the secondary variable has
made the improvement possible without using a model of the effect of pressure on
exit temperature in the control calculation; the only models used were the process
models used to tune the two feedback controllers. As a result, cascade control
is not strongly sensitive to modelling errors, although large errors could lead to
oscillations or instability in one of the feedback controllers.

The two controllers in the cascade are referred to by various names. The three
pairs of names in the most commonly used terminology are presented as they
would be applied to the stirred-tank heat exchanger:

Temperature Flow

P r i m a r y S e c o n d a r y
O u t e r I n n e r
M a s t e r S l a v e

At first encounter, it may seem improper to use two feedback controllers to
achieve one objective; however, the propriety of cascade control can be established
by analyzing the degrees of freedom of the system. For the heat exchanger in Figure
14.2, the material and energy balances were derived in Example 3.7 (for cooling)
and are repeated here for heating.

F 0 = F i ( 1 4 . 1 )
d T a F ^ ^
d t _ a F u

Fh + h
ZphCph

The heating flow is related to the valve position (v) according to the following
general equation:

F h = C v v J P ° P ] ( 1 4 . 3 )
V Ph

where we assume that the pressures and the coefficient Cv are constant, although
they can be variables (see Chapter 16). The final equations are the two cascade
controllers:

FhsP = Kd \iTsp -T) + ^r~ f iTsp - T) dA + IFh (14, 4)



v = Kc2 [(F„sp - Fh) + ^- j (F,,sp - Fh) dA + Iv (14.5)

Variables: Fx, Fh, T, (F/,)sp, v DOF = 5-5 = 0
External variables: F0, To, 7/,jn, Tsp
Parameters: V, p, Cp, ph, Cph,a, b, Cv, P0, P\, Kc[, Tn,Kc2,

7/2» /fAi h
The number of degrees of freedom is equal to the number of variables minus

the number of equations; thus, the system is exactly specified when the primary
temperature controller set point has been defined. Note that the cascade secondary
controller was placed between the primary controller output and the valve, which
added one variable (F/,sp) and one equation (14.5).

14.3 m CASCADE DESIGN CRITERIA

The principles of cascade control have been introduced with respect to the example
stirred-tank heater. In Table 14.1, the design criteria are summarized in a concise
form so that they can be applied in general. Adherence to these criteria ensures that
cascade control is designed properly and used only where appropriate. The first
two items address the selection of cascade control. Naturally, only when single-
loop control does not provide acceptable control performance is an enhancement
such as cascade control necessary. As described in Chapter 13, single-loop control
provides good performance when the dynamics are fast, the fraction dead time
is small, and disturbances are small and slow. Also, the second criterion requires
an acceptable measured secondary variable to be available or added at reason
able cost.

A potential secondary variable must satisfy three criteria. First, it must in
dicate the occurrence of an important disturbance; that is, the secondary variable
must respond in a predictable manner every time the disturbance occurs. Naturally,
the disturbance must be important (i.e., have a significant effect on the controlled
variable and occur frequently), or there would be no reason to attenuate its effect.
Second, the secondary variable must be influenced by the manipulated variable.
This causal relationship is required so that a secondary feedback control loop

TABLE 14.1

Cascade control design criteria

Cascade control is desired when

1. Single-loop control does not provide satisfactory control performance.
2. A measured secondary variable is available.

A secondary variable must satisfy the following criteria:

1. The secondary variable must indicate the occurrence of an important disturbance.
2. There must be a causal relationship between the manipulated and secondary variables.
3. The secondary variable dynamics must be faster than the primary variable dynamics.
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functions properly. Finally, the dynamics between the final element and the sec
ondary must be much faster than the dynamics between the secondary variable and
the primary controlled variable. The secondary must be relatively quick so that it
can attenuate a disturbance before the disturbance affects the primary controlled
variable. A general guideline is that the secondary should be three times as fast
as the primary. This could be roughly interpreted as the secondary reaching its
steady state in one-third the time of the primary after an open-loop step change in
the manipulated variable. A more proper comparison is the critical frequency of
each loop; cascade is recommended when the critical frequency of the secondary
is at least three times that of the primary. Using critical frequencies accounts for
differences in the fraction dead time as well as the speed of response.

A cascade control strategy combines two feedback controllers, with the primary
controller's output serving as the secondary controller's set point. The design should
conform to the design criteria in Table 14.1, which provide a simple, step-by-step
procedure for selection.

14.4 ® CASCADE PERFORMANCE
In the introduction to this chapter, cascade was described as simple and effec
tive. The foregoing material has demonstrated how simple a cascade strategy is to
design. In this section, its effectiveness is shown by calculating its performance
using simulation and frequency response for a few cascade systems and comparing
with single-loop control performance on the same systems. Because the number of
parameters in a cascade system—primary dynamics, secondary dynamics, distur
bance dynamics—make general performance correlations intractable, this section
presents sample results for typical process dynamics. The general trends showed
by these results should be expected for most realistic processes.

The block diagram in Figure 14.4 presents the structure of a cascade control
system, which summarizes the flow of information and can be used to evaluate
important properties such as stability and frequency response. Transfer functions
can be derived from this block diagram for the relationships between the primary
controlled variable CVi is) and the secondary disturbance D2is), the primary dis
turbance D\ is), and the primary set point SPj (s), as follows:

C V i ( j ) = G d 2 G p d s )
D2is) 1 + Gc2is)Gds)Gp2is)Gs2is) + Gcds)Gc2is)Gds)Gpds)Gp2is)Gsds)

(14.6)

CVi f r ) = Gd l js ) [ l + Gc2 is )Gds)Gp2 is )Gs2 is ) ]
Dds) 1 + Gc2is)Gds)Gp2is)Gs2is) + Gclis)Gt2is)Gds)Gpiis)Gp2is)Gsds)

(14.7)

C V i l ? ) = G c d s ) G c 2 i s ) G d s ) G p 2 i s ) G p d s )
SP,(j) 1 + Gc2is)Gds)Gp2is)Gs2is) + Gcds)Gc2is)Gds)Gpds)Gp2is)Gslis)

(14.8)
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FIGURE 14.4

Block diagram of cascade control.

As apparent from the introductory example, a key factor in cascade control
is the relative dynamic responses of the secondary and primary processes. Since
the main reason for cascade is secondary disturbances, the studies in this section
evaluate the responses to secondary disturbances: step, sine, and stochastic. For
these simulation studies, the models for the sensors GSiis) and valve Gds) were
taken to be unity, and the dynamics of the plant models and disturbance model are
given below, with all times scaled so that the process models have a common value
of the fraction dead time. The relative dynamics between the secondary and primary
are defined by a variable n, which will be allowed to vary in the following models:

Cascade System

Process Control

Secondary: Gp2is) =

Primary: Gp\ =

1.0e(-°-3/*)s
1 + (0.7/i|)*

\.0e(~03)s
1 + 0.7*

PI controller tuned accordingly

PI controller tuned accordingly
l « » k f r f a ^ * ^ ^

Single-Loop System

Process Control

1 ,Oe~(0-3+03/'')5
Gp= [1 + (0.7/i7)*](1+0.7j) PI controller tuned accordingly
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For All Cases

Disturbance:

Instrumentation:

1.0
Gd2is) = -1 + i0.1/r))s
Gsds) = Gs2is) = Gds) = \.0

Response to Step Disturbance in D2
In the first cascade system studied, a step disturbance was introduced in the sec
ondary loop, and no noise was added to the measurements, so that only the effect
of the cascade could be determined. Both primary and secondary controllers used
PI algorithms with conventional tuning. The control performance measure is the
integral of the absolute value of the error, IAE, of the primary controlled variable; it
is reported as a ratio of cascade to single-loop IAE to characterize the improvement
achieved through cascade. The resulting control performance is shown in Figure
14.5 as a function of the relative secondary/primary process dynamics, n. As ex
pected, the performance is very good when the secondary is fast. For example,
the integral error is reduced by 95 percent or more for cascade versus single-loop
control when the secondary is more than 20 times faster. This large ratio in primary
to secondary dynamics is typical when the secondary is a fast loop such as a flow
or pressure controller, which is often the case. However, many cascade control
systems cannot achieve such a remarkable improvement because the secondary
loop is not so fast, and some potential secondary loop dynamics are so slow as to
prohibit cascade control.

Sample dynamic responses from cascade control are shown in Figure 14.6a
and b for a step disturbance in the secondary loop, D2is) = — \/s at time = 10.

5 1 0 1 5 2 0 2 5 3 0 3 5
Relative primary-to-secondary dynamics

TI
FIGURE 14.5
Relative performance (IAEcasc/IAEsi) of cascade and
single-loop control for a step disturbance in the secondary
loop.
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FIGURE 14.6

Performance of cascade control for a disturbance in the
secondary loop: (a) with /; = 10; ib) with ̂  = 1.0. [Scales for the

plots: One tick (10%) is 0.15 for primary, 0.50 for secondary, and
2.5 for manipulated variable.]

The case with a very fast secondary demonstrates how quickly the secondary con
troller attenuates the effect of the disturbance. The case of a much slower secondary
shows much poorer performance, especially the highly oscillatory response. These
oscillations, which are more troublesome with the continuous disturbances experi
enced in industrial plants, usually prohibit the use of cascades with PID controllers
when n is less than about 3, although Figure 14.5 shows that some improvement
in performance may be possible. (See Chapter 19 for the use of predictive con
trollers in cascade control, which can increase the region of acceptable cascade
performance.)
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In a second study, the same process was considered with a stochastic disturbance,
which is more representative of the responses encountered in a continuously operat
ing plant. The block diagram and models were the same as for the step disturbance,
and the disturbance enters in the secondary loop. Again, the system was simulated
with single-loop PI control and cascade control tuning. The control performance
in Figure 14.7 is expressed as standard deviation from the set point

0"sp =

N
,A(_SP,-cv,y
/=0

n

The standard deviation of the primary variable is plotted as a function of the
relative secondary/primary dynamics, n. Again, the faster the secondary, the better
the performance of the cascade. Dynamic responses for this system are given for
n = 10 in Figure 14.8a through c for open-loop, single-loop, and cascade control,
respectively. It is important to recognize that the results in Figure 14.7 are limited
to the specific process and disturbance studied; other disturbances, with different
frequency components, would give different results, although the general trend
would be unchanged.

Response to Sine Disturbance in D2
The third cascade study investigates the frequency response, which evaluates the
control performance of a cascade control system for a range of disturbance fre
quencies. As described in Chapter 13, the amplitude ratio gives the magnitude
of the variation in the controlled variable for a unit sine input; thus, the smaller
the amplitude ratio for a disturbance response, the better the control performance.

0.80

5.00
Relative primary-to-secondary dynamics

T|

10.00

FIGURE 14.7

Relative control performance of single-loop and cascade
(ocasc/osi) for a stochastic disturbance in the secondary loop.



The amplitude ratios for the cascade control system were calculated for a range of
frequencies using equation (14.6). Because of the complexity of the algebra, the
amplitude ratios were evaluated using a computer program similar to the one in
Table 13.1, and the results are plotted in Figure 14.9.

The smaller amplitude ratio for cascade clearly demonstrates the advantage
of cascade control, especially when the secondary process is much faster than the
primary (here, n = 10). The cascade system is very effective for slower disturbance
frequencies. Both systems have little deviation for very fast disturbances, because
the process attenuates these disturbances. Also, the effect of the resonant frequency,
which was discussed in Chapter 13, is attenuated but not eliminated by the cascade
system.

Finally, the performance of a cascade control strategy must be evaluated for
circumstances for which this enhancement was not specifically designed—that is,
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FIGURE 14.8

Dynamic responses for stochastic secondary disturbance with n = 10: (a) open-loop process; ib) single-loop
control; ic) cascade control.
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FIGURE 14.9

Closed-loop frequency responses for single-loop (solid curve)
and cascade (dotted curve) control with ri = 10.

primary disturbances that do not directly affect the secondary variable and changes
to the primary set point. By analyzing the cascade block diagram, it is apparent
that the primary controller can respond to other types of disturbance in the cascade
design; the only difference is that it manipulates the secondary set point rather
than the valve directly. One would expect that the responses to unmeasured distur
bances and set points are not substantially changed. This is the case, with cascade
providing slightly better performance because it increases the critical frequency
of the secondary loop (Krishnaswamy et al., 1990). In conclusion,

Cascade control can substantially improve control performance for disturbances
entering the secondary loop and is recommended for use when the secondary loop
is much faster than the primary loop.

14.5 ® CONTROLLER ALGORITHM AND TUNING
Cascade control can use the standard feedback control PID algorithm; naturally,
the correct modes must be selected for each controller. The secondary must have
the proportional mode, but it does not require the integral mode, because the
overall control objective is to maintain the primary variable at its set point. How
ever, integral mode is often used in the secondary, for two reasons. First, since a
proportional-only controller results in offset, the secondary must have an integral
mode if it is to attenuate the effect of a disturbance completely, preventing the
disturbance from propagating to the primary. Second, the cascade is often oper
ated in a partial manner with the primary controller not in operation, for example,
when the primary sensor is not functioning or is being calibrated. A negative side
of including integral mode in the secondary controller is that it tends to induce os-



dilatory behavior in the cascade system, but the result is not significant when the
secondary is much faster than the primary. Studies have demonstrated the effec
tiveness of the integral mode in the secondary loop (Krishnaswamy et al., 1992).
The secondary may have derivative mode if required, but the fast secondary loop
almost never has a large enough fraction dead time to justify a derivative mode.

The modes of the primary controller are selected as for any feedback PID
controller. It is again emphasized that the integral mode is essential for zero offset
of the primary variable.

The cascade strategy is tuned in a sequential manner. The secondary controller
is tuned first, because the secondary affects the open-loop dynamics of the primary,
CV\is)/S?2is). During the first identification experiment (e.g., process reaction
curve), the primary controller is not in operation (i.e., the primary controller is
in manual or the cascade is "open"), which breaks the connection between the
primary and secondary controllers. The secondary is tuned in the conventional
manner as described in Chapter 9. This involves a plant experiment, initial tuning
calculation, and fine tuning based on a closed-loop dynamic response.

When the secondary has been satisfactorily tuned, the primary can be tuned.
The initial plant experiment perturbs the variable that the primary controller ad
justs; in this case, the secondary set point is perturbed in a step for the process
reaction curve. The calculation of the initial tuning constants and the fine tun
ing follow the conventional procedures. Naturally, the secondary must be tuned
satisfactorily before the primary can be tuned.
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Implementation Issues

Tuning a cascade control system involves two steps; first, the secondary controller
is tuned; then, the primary controller is tuned. Conventional initial tuning guidelines
and fine-tuning heuristics apply.

1 4 . 6 □ I M P L E M E N TAT I O N I S S U E S

When properly displayed for the operator, cascade control is very easy to under
stand and to monitor. Since it uses standard PID control algorithms, the operator
displays do not have to be altered substantially. The secondary controller requires
one additional feature: a new status termed "cascade" in addition to automatic and
manual. When the status switch is in the cascade position (cascade closed), the
secondary set point is connected to the primary controller output; in this situation
the operator cannot adjust the secondary set point. When the status switch is in the
automatic or manual positions (cascade open), the secondary set point is provided
by the operator; in this situation the cascade is not functional.

Cascade control is shown in a very straightforward way in engineering draw
ings. Basically, each controller is drawn using the same symbols as a single-loop
controller, with the difference that the primary controller output is directed to the
secondary controller as shown in Figure 14.2. Often, the signal from the primary
controller output is annotated with "reset" or "SP" to indicate that it is adjusting
or resetting the secondary set point.

The calculations required for cascade control, basically a PID control algo
rithm, are very simple and can be executed by any commercial analog or digital
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Control design with a switch to bypass
the cascade and convert to single-loop
control.

control system. Two special features contribute to the success of cascade. The
first is anti-reset windup. The potential exists for any controller in a cascade to
experience integral windup due to a limitation in the control loop. Analysis for the
secondary is the same as for a single-loop design; however, reset windup can occur
for one of several reasons in the primary controller. The primary controller output
can fail to move the valve because of limits on (1) the secondary set point, (2) the
secondary controller output, or (3) the valve (fully opened or closed). Thus, the po
tential for reaching limits and encountering reset windup, along with the need for
anti-reset windup, is much greater in cascade designs. Standard anti-reset windup
methods described in Chapter 12 provide satisfactory anti-reset windup protection.

The second feature is "bumpless" initialization. Note that changing the sec
ondary status switch to and from the cascade position could immediately change
the value of the secondary set point, which is not desired. The desired approach is
to recalculate the primary controller output to be equal to the secondary set point
on initialization. Many commercial controllers include calculations to ensure that
the secondary set point is not immediately changed (bumplessly transferred) when
the secondary mode switch is changed.

Digital control equipment can use the standard forms of the PID algorithm
presented in Chapter 11 for cascade control. In addition to the execution period of
each controller, the scheduling of the primary and secondary influences cascade
control performance. To reduce delays due to control processing, the secondary
should be scheduled to execute immediately after the primary. Naturally, it makes
no sense to execute the primary controller at a higher frequency (i.e., with a shorter
period) than the secondary, because the primary can affect the process (move the
valve) only when the secondary is executed.

The cascade control system uses more control equipment—two sensors and
controllers—than the equivalent single-loop system. Since the cascade requires all
of this equipment to function properly, its reliability can be expected to be lower
than the equivalent single-loop system, although the slightly lower reliability is not
usually a deterrent to the use of cascade. If feedback control must be maintained
when the secondary sensor or controller is not functioning, the flexibility to bypass
the secondary and have the primary output directly to the valve can be included
in the design. This option is shown in Figure 14.10, where the positions of both
switches are coordinated.

Since the cascade involves more equipment, it costs slightly more than the
single-loop system. The increased costs include a field sensor and transmission
to the control house (if the variable were not already available for monitoring
purposes), a controller (whose cost may be essentially zero if a digital system with
spare capacity is used), and costs for installation and documentation. These costs
are not usually significant compared to the benefits achieved through a properly
designed cascade control strategy.

Cascade control, where applicable, provides a simple method for substantial im
provements in control performance. The additional costs and slighdy lower reliabil
ity are not normally deterrents to implementing cascade control.



14.7 m FURTHER CASCADE EXAMPLES
The concept of cascade control is consolidated and a few new features are presented
through further examples in this section.
EXAMPLE 14.1. Packed-bed reactor.
The first example is the packed-bed reactor shown in Figure 14.11. The goal is to
tightly control the exit concentration measured by AC-1. Suppose that the single-
loop controller does not provide adequate control performance and that the most
significant disturbance is the heating medium temperature, T2. The goal is to de
sign a cascade control strategy for this process using the sensors and manipulated
variables given. The reader is encouraged to design a cascade control system
before reading further.

Since we are dealing with a cascade control strategy, the key decision is
the selection of the secondary variable. Therefore, the first step is to evaluate the
potential measured variables using the design criteria in Table 14.1; the results of
this evaluation are summarized in Table 14.2, with Y(N) indicating that the item is
(is not) satisfied. Since all of the criteria must be satisfied for a variable to be used
as a secondary, only the reactor inlet temperature, T3, is a satisfactory secondary
variable.

The resulting cascade control strategy is shown in Figure 14.12. Given the
cascade design, an interesting and important question is, "How well does it re
spond to other disturbances for which it was not specifically designed?" Several
disturbances are discussed qualitatively in the following paragraphs.

Feed temperature, Tf. A change in the feed temperature affects the outlet
concentration through its influence on the reactor inlet temperature, T3. Therefore,
the cascade controller is effective in attenuating the feed temperature disturbance.

Heating oil pressure (not measured). A change in the oil pressure influences
the oil flow and, therefore, the heat transferred. As a result the reactor inlet tem
perature, T3, is affected. Again, the cascade controller is effective in attenuating
the oil pressure disturbance.

Feed flow rate, F1. A change in the feed flow rate influences the reactor outlet
concentration in two ways: it changes the inlet temperature T3, and it changes
the residence time in the reactor. The cascade controller is effective in attenuating
the effect of the disturbance on T3 but is not effective in compensating for the
residence time change. The residence time effect must be compensated by the
primary controller, AC-1.
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FIGURE 14.11

Single-loop packed-bed reactor control.

FIGURE 14.12

Cascade packed-bed reactor control.

TABLE 14.2

Evaluation of potential secondary variables

Criterion A 2 F 1 F 2 T 1 T 2 T 3

1. Single-loop control is not satisfactory Y
2 . V a r i a b l e i s m e a s u r e d Y
3. Indicates a key disturbance N
4 . I n fl u e n c e d b y M V N
5. Secondary dynamics faster N/A

Y Y Y Y
Y Y Y Y
N N N Y
N Y N N
N/A Y N/A N/A
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Feed composition, A2. A change in the feed composition clearly changes the
reactor outlet concentration. The cascade has no effect on the feed composition
disturbance, because the composition does not influence T3. Therefore, this dis
turbance must be totally compensated by the primary feedback controller, AC-1.

A single cascade control system can be effective in compensating for the
effects of several disturbances, and given several possible secondary vari
ables, the one that attenuates the most important disturbances is the best
choice.

Conclusions and tuning. In some cases, the attenuation is complete (at least
in the steady-state sense); in other cases, the attenuation is partial. Thus, a well-
designed cascade strategy can produce a major improvement in the control sys
tem performance. This example is completed by describing the tuning procedure.

1. Both controllers are placed in the manual mode, and a process reaction curve
experiment is performed to obtain a model for tuning the secondary controller.
The model parameters and tuning based on Figure 9.9a and b are

Model relating valve to T3 T3 controller

Kp2 = 0.57°C/%
62 = 8 s
r2 = 20 S

Kc2 = 2.4%/°C
TI2 = 23 s

2. The tuning constants are entered into the secondary controller, which is fine-
tuned by placing it in automatic and entering small set point changes.

3. A process reaction curve experiment is performed to obtain the model for
tuning the primary controller. The model and parameters are

Model relating T3 set point to A} A, controller

KpX =-0.19mole/m3/°C
0i = 20 s
t, = 50 s

Kc\ = -7.9°C/mole/m3
(changed to -3.7 in fine tuning)

Tn = 54 s (changed to 70 in fine tuning)

4. The tuning constants are entered into the primary controller, and the controller
is fine-tuned by placing it in automatic and entering small set point changes.
Note that the primary loop was somewhat oscillatory, so that the primary con
troller gain and time constant were modified as noted in the foregoing list.

5. The response to a disturbance is observed and further fine tuning is applied
to improve the response, if necessary. A dynamic response to a disturbance



in the secondary loop is shown in Figure 14.13: D2is) = -1.8/^; Gd2is) =
1/(1+20j).

Finally, we note that the secondary variable is sensed at the outlet of the
heat exchanger. This contributes to its effectiveness, because it can sense the
influence of many inlet temperature and flow disturbances. However, the heat
exchanger dynamics make the secondary dynamic response somewhat slow. One
improvement in the design is to add another level of cascade to compensate for
the oil pressure disturbance, which can be sensed by the flow sensor F2. The
three-level cascade is shown in Figure 14.14. Industrial designs with three to four
cascade levels (and sometimes more) are not unusual and function well.

There is no theoretical or practical limit to the number of cascade levels used as long
as each level conforms to the design criteria in Table 14.1.

FIGURE 14.14
Three-level cascade control for

packed-bed reactor.

I-©*-
Fuel oil

FIGURE 14.15
Cascade control design for outlet

temperature.
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Cascade control can be applied to a variety of processes. A few more examples
are presented briefly to demonstrate the diversity of the cascade approach. In each p
case, an analysis similar to the method shown in Table 14.2 was performed to
d e s i g n t h e c a s c a d e s t r a t e g y . - 1

EXAMPLE 14.2. Fired heater.
Another typical cascade design is given in Figure 14.15 for furnace control. A
single-loop temperature controller would adjust the fuel valve directly, making the
fuel flow subject to pressure disturbances. A cascade control strategy is possible
that satisfies all of the design criteria. In the cascade, the outlet temperature of the
fluid in the coil is controlled tightly by adjusting the fuel flow controller set point,

Flue gas

Feed
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FIGURE 14.13

Dynamic response of the reactor cascade
controller to a disturbance in the heating

medium temperature in Example 14.1.
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which adjusts the valve position. An additional advantage of the cascade becomes
apparent when considering the performance of many real control valves; the valve
does not always move exactly the amount directed by the controller, because
friction occasionally causes sticking, which degrades control performance. The
cascade design with a flow controller as its fast secondary corrects quickly for both
fuel pressure disturbances and the effects of a sticking valve and substantially
improves control performance over the single-loop strategy.

Remote location

©"
S , t / , !

Positioner located at valve
FIGURE 14.16

Schematic of a valve
positioner.

Flue gas

&
;---<£)

Superheated
steam

-T^] Treated
water

£L_■ Treated
water

Fuel
FIGURE 14.17
Cascade control design for boiler
superheated steam temperature control.

EXAMPLE 14.3. Valve positioner.
Cascade control principles are used to enhance the performance of control valves
when fast secondary variables cannot be included in the design. Because of
a difference between static and dynamic friction, valves often stick and do not
exactly achieve the percent stem position demanded by the controller output. The
result is that the valve may remain stationary and then "jump" to a value beyond
necessary to bring the controlled variable to its set point. A standard control valve
can have a dead zone of up to 3 percent (Buckley, 1970), which can lead to poor
control and cycling in many control systems. If the valve is being adjusted by a
fast control loop (and the process is not sensitive to high-frequency cycling), no
corrective action may be necessary; however, valve sticking can lead to severe
control performance degradation.

The effects of valve sticking can be reduced by including a cascade con
troller called a valve positioner, which is included as part of the valve equipment
as shown in Figure 14.16. The primary controller, which can be controlling any
measured process variable, sends a signal, which is interpreted as the desired
valve stem position (0-100%), to the valve positioner. The positioner senses the ac
tual valve stem position and adjusts the air pressure until the desired stem position
is (nearly) achieved. Since a valve positioner uses a proportional-only algorithm,
it does not give perfect compensation for sticking, but the fast dynamics allow
a very high controller gain, which reduces the dead zone to about one-tenth of
that experienced without a positioner. It is worth noting that this improvement is
achieved with minimal investment.

Other advantages are provided by valve positioners, such as faster valve
dynamics and overcoming large pressure drops. They are also used when split
range control (see Chapter 22) or changes in the valve characteristic (see Chapter
16) are required. There is no consensus concerning the application of positioners
on fast loops; some practitioners recommend them on essentially all control valves,
whereas others recommend them only on slow loops.

EXAMPLE 14.4. Steam superheater.
Industrial processes consume large quantities of steam for heating, and machin
ery consumers require superheated steam for power. As shown in Figure 14.17,
steam is generated by vaporizing water in a boiler where the heat transfer is by
radiation. The saturated steam temperature is then raised further by convecrive
heat exchange with the hot combustion flue gases. The final steam temperature
is controlled by injecting water in the steam. The primary temperature controller
could adjust the spray water valve directly, but the control performance would not
be good, because of the long dynamic response to disturbances in water flow



and heat transfer. The control performance is good for the cascade control with a
secondary that responds quickly to both types of disturbances.
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EXAMPLE 14.5. Heater exchanger.
A process stream can be cooled by exchanging heat with a refrigerant, which is
vaporized in the exchanger. An example is shown schematically in Figure 14.18,
which shows that the rate of heat transfer can be controlled by adjusting the heat
transfer area (i.e., the liquid refrigerant level in the exchanger). This operating
policy is implemented by the cascade control strategy in the figure, where the
secondary controller responds quickly to disturbances in liquid flow resulting from
pressure variations. An additional advantage is that the level controller maintains
the liquid level within acceptable limits; in contrast, a single-loop temperature
controller directly adjusting the valve might cause liquid refrigerant to carry over
and damage downstream equipment.

EXAMPLE 14.6. Pressure control.
Normally, pressure control involves fast process responses and does not require
cascade control. However, processes sometimes have large, integrated systems
with a single valve regulating the pressure. An example is shown in Figure 14.19,
where the most important pressure is at the initial unit, and the pressure control
valve is located far downstream. In this case, pressure disturbances near the
control valve can cause a relatively large, prolonged disturbance in the initial unit's
pressure. The cascade strategy shown in the figure rapidly senses and corrects
for downstream disturbances before they upset the integrated upstream unit.

EXAMPLE 14.7. Jacketed CSTR.
An often-noted example of cascade control is the jacketed continuous-flow stirred-
tank reactor shown in Figure 14.20. The dynamics related to the thermal capac
itance of the jacket fluid and metal could lead to poor control performance with

Vapor
refrigerant

Process
inlet

Process
outlet

js£*_ Liquid
refrigerant

FIGURE 14.18
Cascade control design for temperature

control.

Pressure
disturbances

FIGURE 14.19
Cascade control design for pressure

control.
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A cascade process at a university.

single-loop control from the reactor temperature directly to the valve that controls
the inlet temperature of the jacket fluid. A cascade controller uses a secondary
variable to sense and quickly correct a disturbance in the jacket fluid inlet tem
perature.

14.8 □ CASCADE CONTROL INTERPRETED
AS DISTRIBUTED DECISION MAKING
Cascade control is essentially a way to delegate decision making to the lowest
level possible. In the packed bed reactor (Figure 14.12), the outlet analyzer AC-1
determines the desired value for the inlet temperature TC-3. The inlet temperature
controller is free to determine the valve position that is required to achieve the
desired value of TC-3. Since the T3 measurement provides rapid indication of
every effect on the reactor inlet temperature, it can achieve the required inlet
temperature control better than AC-1.

Cascade control concepts are not limited to engineering control systems. So
cial and business organizations also benefit from distributed decision making. A
hypothetical example of university decision making is given in Figure 14.21. The
president of a university decides to improve the education of the engineering stu
dents. Rather than tell each student how and what to learn, the president informs
the Dean of Engineering. The Dean of Engineering gives directions to the Process
Control professor, who finally gives directions to the students. The students then
implement the decision by adjusting their studying to satisfy the requirements set
by the professor. This distribution allows quick response to disturbances, such as
competing demands of other courses, and provides frequent feedback from class
discussion and course quizzes. The distributed system surely functions better than
the single-loop feedback approach in which the president would obtain feedback
every few years and then give directions to every student in the university. It also
might clarify why the secondary controller is sometimes called the "slave"!
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In this chapter, the principles of cascade control have been presented, and the
excellent performance of cascade control for disturbance rejection has been es
tablished. Cascade control employs the principle of feedback control, since the
secondary variable is a process output that depends on the manipulated variable in
a causal manner. Cascade control can improve performance when the dynamics,
mainly the dead time, of the secondary loop is much shorter than in the primary. In
this situation, some disturbances can be measured and compensated quickly. As
shown in Figure 14.3a and b, this improved performance of the controlled vari
able is achieved without significantly increasing the variability of the manipulated
variable. Based on this performance improvement and simplicity of implementa
tion, the engineer is well advised to evaluate cascade control as the first potential
single-loop enhancement.

The first few times new control engineers evaluate cascades, they should per
form a careful study like the one in Table 14.2, but after some experience they
will be able to design cascade controls quickly by applying the design principles
without explicitly writing the criteria and table.

However, cascade control is not universally applicable; the design criteria in
Table 14.1 can be used to determine whether cascade is appropriate and if so, select
the best secondary variable. If it is not immediately possible and a significant
improvement in control performance is desired, the engineer should investigate
the possibility of adding the necessary secondary sensor. Even with improved
sensors, cascade is not always possible; for example, a causal relationship between
the manipulated variable and a measurement indicating the disturbance may not
exist. Thus, while cascade is usually the preferred choice for enhancing control
performance, further enhancement approaches are often required, and some of
these are introduced in subsequent chapters.
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QUESTIONS
14.1. id) In your own words, discuss each of the cascade design criteria. Give a

process example in which cascade control is appropriate.
ib) Identify the elements of the cascade block diagram in Figure 14.4 that

are process, instrumentation, and control calculations.
ic) Discuss the topics in Table 13.3 that are influenced by cascade control,

explaining how cascade improves performance for each.
id) For the mixing system in Figure 13.4 and a disturbance in the feed con

centration, discuss how you would add one sensor to improve control
performance through cascade control.

14.2. Derive the transfer function in equations (14.6) to (14.8) based on the block
diagram in Figure 14.4.

14.3. Figure 14.9 presents the frequency responses for single-loop and cascade
control with a disturbance in the secondary loop.
id) Sketch the general shapes and discuss the frequency responses for

cascade and single-loop control for (1) a set point change and (2) a
disturbance in the primary loop.

ib) Calculate the frequency responses for (a), with Gd\ is) = Gp\ is) and
n = 10.

14.4. Based on the transfer function in equation (14.6), mathematically demon
strate the assertion made in this chapter that cascade control performance
for a secondary disturbance improves as the secondary becomes faster. For
this question, assume that the secondary controller is a PI. (Hint: Evaluate
the amplitude ratio as a function of frequency.)

14.5. Answer the following questions based on the transfer function in equation
(14.6).
id) Mathematically demonstrate the assertion made in this chapter that

integral mode in the secondary controller is not required for zero offset
in the primary.

ib) Demonstrate the assertion that the secondary controller must be tuned
before the primary is tuned.

ic) This question addresses why the integral mode is often included for
the secondary controller. Consider the secondary controller and its
initial response to a disturbance before any feedback from the primary.
Calculate the amount that a P-only and a PI controller attenuate the
same disturbance at the limit of low frequency (i.e., at steady state).
Based on this analysis, which controller is more effective in attenuating
a disturbance?

id) When the secondary has an integral mode, the integral error of the
primary is zero for a step disturbance. The oscillatory effect of the
integral error being zero is apparent in Figure 14.6. For the transfer
function in equation (14.6), prove this statement. You may use the



following relationship (see Appendix D, equation (D.4)):

Jo
Edt'W = Eds)\s=0
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14.6. Discuss the proposed cascade control designs. In particular, apply the cas
cade control criteria to each proposed design, and estimate whether the
cascade design would provide better performance than single-loop for dis
turbance response. Consider each of the disturbances separately. To assist
in the analysis, prepare a block diagram for each process showing the ap
propriate cascade control systems.
ia) Jacketed stirred-tank reactor in Figure 14.20; disturbances are (1)

coolant pressure, (2) coolant temperature, (3) recycle pump outlet pres
sure, (4) reaction rate (e.g., feed concentration), and (5) feed flow rate.

ib) Furnace coil outlet temperature control in Figure 14.15; disturbances
are (1) fuel pressure, (2) fuel density (composition), (3) valve sticking,
and (4) feed temperature.

ic) Repeat ib) with the temperature controller cascaded to a valve posi
tioner, without the flow controller.

id) Figure Ql .9a modified for cascade control with a level to flow to valve
control structure; disturbances are (1) pump outlet pressure and (2)
second outflow valve percent open.

ie) Analyzer to reboiler flow cascade for distillation in Figure Q14.6;
disturbances are (1) heating medium temperature, (2) feed temperature,
(3) tower pressure, and (4) heating medium downstream pressure.

14.7. Assume that the dynamic behavior in Figure 14.8a through c are for a fired
heater in Example 2.1 that has the goal of maximizing temperature without
exceeding a maximum constraint of 864°C; a performance correlation is
provided in the example. The primary variable is temperature, which is
plotted as the top variable in Figure 14.8a through c. Assume that 10 percent
of the scale represents 5°C and that the top of the scale is 864°C.
ia) Estimate the benefit for (1) single-loop and (2) cascade control due

to the reduction in the variability in the temperature using the data in
Figure 14.8a through c.

ib) Suggest changes to the operating conditions (set points) for both con
trol designs and repeat the estimation done in id).

14.8. The cascade control design shown in Figure 14.12 should have anti-reset
windup protection.
ia) Discuss the potential causes for integral windup in this strategy.
ib) Assume that the feedback algorithms are of the form that use external

feedback, as described in Chapter 12. Which signal should be used for
external feedback for each controller? Explain your answer.

(c) In Chapter 11, the use of digital PI algorithms was explained. Discuss
the performance of the incremental (velocity) algorithm as the primary
temperature controller when the valve reaches its maximum or mini
mum position. Does the velocity form of the PI controller satisfactorily
prevent reset windup?

FIGURE Q14.6
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14.9. The initial design for the packed-bed reactor, Figure 14.11, included a con
troller for the outlet concentration and a single control valve. The cascade
control design added a controller but did not change the number of control
valves. This might seem to violate the degrees of freedom of the process.
id) In your own words, discuss why the cascade is possible.
ib) Perform a degrees-of-freedom analysis to demonstrate that the cascade

control is possible. You may use the transfer function model of the
reactor for this analysis.

14.10. For the following control designs determine which valves should have
positioners and explain why: id) Figure 13.19, ib) Figure 2.2, (c) Figure
14.1, and id) Figure 14.2.

14.11. A stirred-tank chemical reactor is shown in Figure Q14.11 with the follow
ing reaction.

A -+ B AH™ = 0

rA = -k0e-ElRT CA
l+kCx

The available sensors and control valves are shown in the figure, and no
changes to these are allowed. The goal is to control the reactor concentration
of A tightly by single-loop or cascade control, whichever is better. For each
of the following disturbances, design the best control system and explain
your design: (a) the heating medium pressure (Pi), ib) the solvent feed
temperature iTs), ic) the reactant feed pressure iP2), and id) the inhibitor
concentration iCx) which enters in the solvent. (To assist in the analysis,
prepare a block diagram for each case showing the appropriate single-loop
or cascade control system.)

Reactant

FIGUREQ14.il

14.12. A set of cascade design criteria are presented in an article by Verhaegen
(1991). Discuss the similarities and differences between the criteria in this
chapter and in the article.



14.13. The chemical reactor with separate solvent and reactant feed flows in Fig
ure Q14.13 has the following properties: well-mixed, isothermal, constant
volume, constant density, and Fs % FA. The chemical reaction occurring
is A -▶ B with the reaction rate, rA = —kCA. The concentrations of the
reactant and the product can be measured without delay. Follow the steps in
this question to evaluate two possible cascade control designs to select the
best for controlling the concentration of product B in the effluent, measured
byA2.
id) The total feed flow (F1) and the feed concentration (A 1) are the poten

tial secondary variables for the reactor effluent primary composition
control. Construct a control scheme and sketch it on the figure that will
control these two variables (Fl, Al) simultaneously to independent
set point values. You must add two feedback controllers. If needed,
you may move the locations of the sensors and valves.

ib) Derive the dynamic model Cnis)/CAois) [or A2(.s)/A1(j)] under the
control in ia), i.e., with Fl constant. Analyze the model regarding (i)
order, (ii) stability, (iii) periodicity, and (iv) step response characteris
tics.

(c) Derive the dynamic model for C$is)/Fis) [or A2is)/F 1 is)] under the
control in ia), i.e., with Al constant. Analyze the model regarding (i)
order, (ii) stability, (iii) periodicity, and (iv) step response characteris
tics.

id) The results in ib) and (c) provide the dynamics of the primary feedback
process for the two designs. Based on these results, select which of the
secondary variables would provide the best feedback control for a set
point change in A2. Your answer should be either A2 -» Al or A2 -»
Fl. Sketch the feedback (cascade) structure on the figure prepared in
ia).
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ie) Compare with the solution in Example 13.8 and discuss whether your
design is expected to provide better or worse control performance for
A2.

14.14. In the packed-bed reactor example (14.1) an alternative approach would
be possible. In the alternative approach, the oil temperature (T2) would be
measured and the effect on the outlet analyzer due to changes in oil tem
perature could be calculated and used to adjust the valve. Which design—
cascade control or the alternative described here—would you prefer? Dis
cuss why.

14.15. Prepare a digital computer program to perform the control calculations
for the cascade control system in Figure 14.12. Include initialization, reset
windup, and other factors required for good implementation.

14.16. A vaporizer process is shown in Figure Q14.16. The gas pipe (header)
has several sources and sinks of gas, and the pressure in the pipe is to be
controlled by adjusting the amount vaporized.
id) A cascade control design has been suggested from the pressure to the

flow of vapor to the heating medium valve. Evaluate this design using
the cascade design criteria. Correct it if necessary.

ib) Discuss the response of this cascade design to a disturbance in the
heating medium pressure, upstream of the control valve.

ic) Discuss the response of this cascade design to a disturbance in one of
the source or sink flows.

id) Discuss the response of this cascade design to a disturbance in the
liquid temperature.

ie) Generalize the results from ib) through id) and develop a further cas
cade design criterion to be added to those in Table 14.1.
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1 5 . 1 □ I N T R O D U C T I O N

Feedforward uses the measurement of an input disturbance to the plant as addi
tional information for enhancing single-loop PID control performance. This mea
surement provides an "early warning" that the controlled variable will be upset
some time in the future. With this warning the feedforward controller has the op
portunity to adjust the manipulated variable before the controlled variable deviates
from its set point. Note that the feedforward controller does not use an output of
the process! This is the first example of a controller that does not use feedback
control; hence the new name feedforward. As we will see, feedforward is usually
combined with feedback so that the important features of feedback are retained in
the overall strategy.

Feedforward control is effective in reducing the influences of disturbances,
although not usually as effective as cascade control with a fast secondary loop.
Since feedforward control also uses an additional measurement and has design
criteria similar to cascade control, engineers often confuse the two approaches.
Therefore, the reader is urged to master the design criteria for feedforward control
introduced in this chapter and be able to distinguish between opportunities for
cascade and feedforward designs.

15 .2 □ AN EXAMPLE AND CONTROLLER DERIVATION

The process example used in this introduction is the same stirred-tank heat ex
changer considered in Chapter 14 for cascade control. The control objective is still
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the maintenance of the outlet temperature very close to its set point, and the ma
nipulated variable is still the heating medium valve position. The only difference
is that the heating oil pressure is not varying significantly; thus, the cascade con
troller is not required, as shown in Figure 15.1. In this case, the inlet temperature
varies with sufficient amplitude to disturb the outlet temperature significantly. The
challenge is to design a feedforward controller that reduces or, in the ideal case,
eliminates the effect of the inlet temperature on the outlet temperature by adjusting
the heating oil valve.

The approach to designing a feedforward controller is based on completely
cancelling the effect of the disturbance. This concept is sketched in Figure 15.2.
The disturbance is shown as a step change to simplify the discussion, but the
analysis and resulting feedforward controller are applicable to any disturbance of
arbitrary time dependence. The change in the outlet temperature in response to
the inlet temperature change, shown as curve A, is the response that would occur
without control. For perfect control, the outlet temperature would not change;
this is shown as curve B. To achieve perfect control the manipulated variable
must be adjusted to compensate for the disturbance—that is, to cause the mirror
image of the disturbance so that the sum of the two effects is zero. Thus, curve C
shows the effect of the manipulated variable on the outlet temperature; the sum of
curves A and C is a zero disturbance to the controlled variable, which gives perfect
feedforward control. The feedforward control algorithm uses the measurement
of the disturbance to calculate the manipulated variable with the goal of perfect
feedforward compensation as shown in Figure 15.2.

The control calculation that achieves this goal can be derived by analyzing the
block diagram of the feedforward control system in Figure 15.3. The individual
blocks account for the process Gpis), the disturbance Gdis), and the feedforward
controller G îs). The equation that relates the measured disturbance to the outlet
variable is

CV(s) = [Gds) + G{fis)GPis)]Dmis) (15.1)

Feed
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FIGURE 15.1

Stirred-tank heat exchanger with single-loop
feedback temperature control.
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compensation for a measured disturbance.



Since equation (15.1) involves deviation variables, the goal is to maintain the outlet
temperature at zero, CV(̂ ) = 0 [T^mis) = 0]. The only unknown, which is the
controller, Gffis), can be determined by rearranging equation (15.1). The result is

Feedforward controller design: Gds) = - Gdjs)
GPis) (15.2)

It is important to note that the feedforward controller depends on the models for the
disturbance and the process. The feedforward controller is never a PID algorithm—
a result that should not be surprising, because we have a new control design goal
that does not apply feedback principles.

Equation (15.2) provides the general feedforward control equation. Typical
transfer functions for the disturbance and the process are now substituted to derive
the most common form of the controller. Assume that the transfer functions have
the following first-order-with-dead-time forms:

CV(*) = Gpis) = Kpe-°°
xs+ 1

C V i s ) K d e - e « s= Gds) = -^—— (15.3)
M V i s ) " v x s + 1 D m i s ) " " x - ' x d s + 1

By substituting equations (15.3) into equation (15.2), the feedforward controller
would have the form

Gff =
MVis)
Dmis)

Gdjs)
Gpis) -*(££)•"• (,54)

where lead/lag algorithm = iT\ds + l)/iT\gs + 1)
feedforward controller gain = Kr = —Kd/Kp
feedforward controller dead time = 0r- = 6d — 6
feedforward controller lead time = T^ = x
feedforward controller lag time = 7ig = xd

In most (but not all) cases, this form of the feedforward controller provides suf
ficient accuracy; usually, second- or higher-order terms in the controller do not
improve the control performance, especially because the models are not known
exactly.

The special form of the feedforward controller in equation (15.4) consists of a
gain, dead time, and a factor called a lead/lag. The dynamic behaviors of gains and
dead times are well known by this point in the book, but lead/lag is new, so a few
typical dynamic responses are presented in Figure 15.4. Each result uses the same
lead/lag algorithm with different parameters as indicated. Again, for simplicity,
the input is a step change, but the feedforward controller with a lead/lag performs
well for any input function. The analytical expression for the output of a lead/lag,
here represented as yit), for a unit step input can be determined from entry 5 in
Table 4.1 to be

y(t) = i + ?>LJke-</T* (15.5)

As seen in the figure of dynamic responses, when the lead time is less than
the lag time, the manipulated variable rises to the steady-state value as a first-
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Stirred-tank heat exchanger with
feedforward-feedback control strategy.

order response from an initial step that does not reach the final steady state. This is
consistent with a process whose disturbance time constant is greater than its process
time constant, requiring the control action to be slowed so that the effects of the
disturbance and the feedforward controller cancel. When the lead and lag times
are equal, the manipulated variable immediately attains its steady-state value. This
is consistent with a process that has equal disturbance and process time constants.
Finally, when the lead time is greater than the lag time, the manipulated variable
initially exceeds, then slowly returns to, its steady-state value. This is consistent
with a process whose disturbance time constant is smaller than its process time
constant.

The derivation of the feedforward controller ensures perfect control if (1)
the models used are perfect, (2) the measured disturbance is the only disturbance
experienced by the process, and (3) the control calculation is realizable, that is,
capable of being implemented as discussed in Section 15.7. Neither of conditions
1 or 2 is generally satisfied. Therefore, feedforward control is always combined
with feedback control, when possible, to ensure zero steady-state offset! Since the
process and control calculations are considered to be linear, the adjustments to
the manipulated variable from the feedforward and feedback controllers can be
added. A typical feedforward-feedback control system is given in Figure 15.5 for
the stirred-tank heat exchanger.

15 .3 □ FEEDFORWARD CONTROL DESIGN CRITERIA

The principles of feedforward control have been introduced with respect to the
stirred-tank heater. In Table 15.1 the design criteria are summarized in a concise
form so that they can be applied in general. Adherence to these criteria ensures
that feedforward control is used when appropriate.

The first two items in the table address the application of feedforward con
trol. Naturally, only when feedback control does not provide acceptable control
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1. Feedback control does not provide satisfactory control performance.
2. A measured feedforward variable is available.

A feedforward variable must satisfy the following criteria:

3. The variable must indicate the occurrence of an important disturbance.
4. There must not be a causal relationship between the manipulated and feedforward variables.
5. The disturbance dynamics must not be significantly faster than the manipulated-output

variable dynamics (when feedback control is also present).

performance is an enhancement like feedforward control employed. The second
criterion requires that an acceptable measured feedforward variable be available
or that it can be added at reasonable cost.

A potential feedforward variable must satisfy three criteria. First, it must in
dicate the occurrence of an important disturbance; that is, there must be a direct,
reproducible correlation between the process disturbance and the measured feed
forward variable, and the measured variable should be relatively insensitive to other
changes in operation. Naturally, the disturbance must be important (i.e., change
frequently and have a significant effect on the controlled variable), or there would
be no reason to attenuate its effect. Second, the feedforward variable must not be
influenced by the manipulated variable, because the feedback principle is not used.
Note that this requirement provides a clear distinction between variables used for
cascade and feedforward. Finally, the disturbance dynamics should not be faster
than the dynamics from the manipulated to the controlled variable.

This final requirement is related to combined feedforward-feedback control
systems. Should the effect of the disturbance on the controlled variable be very fast,
feedforward could not affect the output variable in time to prevent a significant
deviation from the set point. As a result, the feedback controller would sense
the deviation and adjust the manipulated variable. Unfortunately, the feedback
adjustment would be in addition to the feedforward adjustment; thus, a double
correction would be made to the manipulated variable; remember, the feedforward
and feedback controllers are independent algorithms. The double correction would
cause an overshoot in the controlled variable and poor control performance. In
conclusion, feedforward control should not be used when the disturbance dynamics
are very fast and PID feedback control is present. Naturally, if feedback is not
present (perhaps due to the lack of a real-time sensor), feedforward can be applied
regardless of the disturbance dynamics.

Feedforward and Feedback Are Complementary

Feedforward and feedback control each has important advantages that compensate
for deficiencies of the other, as summarized in Table 15.2. The major advantage of
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TABLE 15.2

Comparison of feedforward and feedback principles
Feedforward Feedback

Advantages

Disadvantages

Compensates for a disturbance
before the process output is affected
Does not affect the stability of the
control system
Cannot eliminate steady-state
offset

Requires a sensor and model
for each disturbance

Provides zero steady-state offset

Effective for all disturbances

Does not take control action until
the process output variable has
deviated from its set point
Affects the stability of the
closed-loop control system

feedback control is that it reduces steady-state offset to zero for all disturbances.
As we have seen, it can provide good control performance in many cases but
requires a deviation from the set point before it takes corrective action. However,
feedback does not provide good control performance when the feedback dynamics
are unfavorable. In addition, feedback control can cause instability if not correctly
tuned.

Feedforward control acts before the output is disturbed and is capable of
very good control performance with an accurate model. Another advantage is
that a stable feedforward controller cannot induce instability in a system that is
stable without feedforward control. This fact can be demonstrated by analyzing the
transfer function of a feedforward-feedback system shown in Figure 15.6, which
accounts for sensors and the final element explicitly:

CV(j) = Gds)Gpis)Gfkis)Gffis) + Gdjs)
Dmis) 1 + Gds)Gpis)Gfbsis)Gcis)

As long as the numerator is stable, which is normally the case, stability is in
fluenced by the terms in the characteristic equation, which contain terms for the
feedback process, instrumentation, and controller. The disturbance process, feed
forward instrumentation, and feedforward controller appear only in the numerator.
Therefore, a (stable) feedforward controller cannot cause instability, although it
can lead to poor performance if improperly designed and tuned. The major limi
tation to feedforward control is its inability to reduce steady-state offset to zero.
As explained, this limitation is easily overcome by combining feedforward with
feedback.

(15.6)

Feedforward control uses a measured input disturbance to determine an adjustment
to an input manipulated variable. All feectforward control strategies should conform
to the design criteria in Table 15.1.
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Block diagram of feedforward-feedback control system with sensors
and final element
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15.4 D FEEDFORWARD PERFORMANCE
In the introduction to this chapter, feedforward control was described as simple
and effective. The foregoing material has demonstrated how simple a feedforward-
feedback strategy is to evaluate and design. In this section, the performance is cal
culated for a few sample systems and compared to the single-loop feedback-only
performance to demonstrate the effectiveness of feedforward. Due to the large
number of process and controller parameters, no general correlations concern
ing feedforward control performance are available. The general trends in these
examples should be applicable to most realistic processes.

Based on the feedforward design method, perfect control performance is the
oretically possible; however, it is never achieved because of model errors. There
fore, a key factor in feedforward control performance is model accuracy. A typical
feedforward-feedback system consistent with the block diagram in Figure 15.6 was
simulated for various cases; this system can be thought of as the heat exchanger
system in Figure 15.5 with the following process and controller models:

,-155 ,-30*

Gpis) = 205+1 Gdis) = 205 + 1

Gffis) = -L0e-^2^^ = - l .0e-^20s + 1

Gffds) = \ G^is) = \ Gds) = \ Gds)

(15.7)

V 2 0 5 /
The upset was a single step change and no noise was added to the measure

ments, so that the effect of the control alone could be determined. The actual process
and disturbance responses remain unchanged for all cases; the feedforward con
troller tuning parameters are changed to determine the effect of controller model
errors on performance. The feedback PI controller was tuned by conventional
means for good regulation of the controlled variable without excessive variation
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in the manipulated variable. The control performance measure was the integral of
the absolute value of the error (IAE).

The resulting control performances are shown in Figure 15.7 as a function
of the feedforward model error. Note that the results are reported relative to the
feedback-only performance, so any value less than 100 percent represents an im
provement through feedforward control; recall that the system returns to the set

-50 -40 -30 -20 -10 0 10 20 30 40 50
% Error in controller dead time

-50 -40 -30 -20 -10 0 10 20
% Error in lead time

30 40 50

-50 -40 -30 -20 -10 0 10 20
% Error in controller gain

FIGURE 15.7

3 0 4 0 5 0

Example of the effect of errors in the feedforward
controller on the performance, reported as a percent of
feedback-only IAE.



point, even with feedforward errors, because of the feedback controller's integral
mode. This provides a simple comparison of performances in a manner useful
for answering the key question of whether or not to use feedforward to enhance
feedback. Separate plots provide the control performance with errors in the gain,
dead time, and ratio of lead to lag times. For each of these plots the other model
parameters matched the process exactly.

The results demonstrate that feedforward control can substantially improve
control performance, even with significant errors in the model used. For this process
studied, feedforward would provide substantial improvement, maintaining the IAE
much lower than that achieved by feedback-only for the large range of model errors
considered. This insensitivity of performance to model error leads to robust control
over a large range of process dynamics without updating feedforward controller
parameters.

Typical transient responses with feedback/feedforward control are given in
Figure 15.8a through e for the example system subject to a unit step disturbance.
Figure 15.8a shows the performance of feedback-only, and the next three parts
show the performance of the feedforward-feedback control system with model
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Transient responses: (a) feedback-only; ib) feedforward-feedback with -25% error in Kft; ic) feedforward-feedback with
-20% error in %; id) feedforward-feedback control with +25% error in the r^; ie) feedforward-only control with -25%

error in ATff. One tick (10% of scale) is 0.2 for the controlled variable, 0.50 for the manipulated variable, and 1.0 for the
disturbance.
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errors as indicated in the caption. These sample results, along with Figure 15.7,
demonstrate the general insensitivity of feedforward control to model errors, which
is an important property contributing to its successful application. The final sample
result, Figure 15.8e, shows the performance with feedforward-only control, which
gives steady-state offset unless the feedforward gain is perfect—a highly unlikely
situation. The steady-state offset could be determined by applying the final value
theorem to equation (15.1).

The results in Figures 15.7 and 15.8 support a frequently used simplification
to feedforward control. Often the lead/lag and dead time elements are eliminated
from the feedforward controller; the resulting controller is usually called steady-
state feedforward. This simplification does not substantially degrade control per
formance when the feedforward controller dead time is small and the lead and lag
times are nearly equal. In conclusion:

Feedforward control can substantially improve control performance of processes for
which feedback alone does not provide acceptable control, and its performance does
not degrade rapidly with model errors.

15.5 a CONTROLLER ALGORITHM AND TUNING
The approach to deriving the feedforward controller algorithm was described along
with the first example in Section 15.2. The controller is expressed as a transfer func
tion in that section. Analog implementation would require an electrical circuit that
closely approximates the transfer function. Such a circuit would be costly and is
seldom made for a range of model structures, but it is available for the lead/lag
with gain. To clarify the application of feedforward, the digital implementation of
a typical feedforward controller is developed here. The programming of the con
troller is shown schematically in Figure 15.9. The gain is simply a multiplication.
The dead time can be implemented by using a table of data whose length times the
sample period equals the dead time. The data location (or pointer) is shifted one
step every time that the controller is executed. The lead/lag element must be trans
formed into a digital algorithm. One way to do this is to convert the lead/lag into a
differential equation by remembering that multiplication of the Laplace transform

rvy i

G a i n D e a d t i m e t a b l e L e a d / l a g
FIGURE 15.9
Schematic diagram of a digital feedforward controller.

r.-CMVff),
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T d Y ( t ) 4 - Y ( t \ - T d X { t ) 4 - Y ( t \ n s * \ m m m ^ m m m m mI l g — T r / ( 0 — i w — r V A i t ) ( 1 5 . 8 ) C o n t r o l l e r A l g o r i t h m
and Tuning

with X the input to the lead/lag and Y the output from the lead/lag algorithm. The
differential equation can be transformed into a difference equation by approximat
ing the derivative by a backward difference, as follows:

dY(t) „Y„- r„_, dXQ) ^ Xn - X._,
d t A t d t A t

The resulting equation can be rearranged to yield the following equation, which
can be used in a digital computer to implement the digital lead/lag.

T \ g \ / 7 i d \ / 7 i d \
k„ = I ^ k-, +1-£—K ' A'T * l ' i i - i ' I t I " I tZi + J l^ + il l£ + ii

A t / ^ A t ' ^ A t '
X„_! (15.10a)

where y„ = output signal from the lead/lag
Xn = the input signal to the lead/lag

which can be combined with the gain and dead time for the digital form of a
feedforward controller with lead/lag:

MV„ =
/ £ \ (£ + *

At ' MV,,-, +Kff M I (Dm)n_r

v Z k + i l l l k + i\ A t / V A /

—#ff
Z l l \ ( 1 5 . 1 0 i b )
Ar

Tig
\ Ar

(^m)«- r - i

with T = 6/At. The reader should note that the method in equation (15.10) is
not the best, most general method for converting the algorithm to digital form.
Limitations are presented by the delay table, which requires the dead time divided
by the execution period to be an integer. In addition, the difference approximation
is accurate only for execution times that are small compared to the lead and lag
times. More general methods (which require the use of z-transforms) for deriving
digital algorithms are available (see Appendix L or Smith, 1972).

Tuning the feedforward-feedback control system follows a simple, stepwise
procedure. Either controller may be tuned first; assume that the feedback is tuned
first, which requires the identification of the feedback process model Gpis). Be
cause the tuning parameters for the feedforward controller are derived from both
the disturbance and process models, the disturbance model must also be identified
through plant experiments, as described in Chapter 6. The disturbance variable
cannot normally be changed in a perfect step; thus, the statistically based methods
are usually required for identifying Gdis). The feedforward control performance
can be tested through application of feedforward-only control (i.e., with the feed
back controller temporarily in manual mode). A typical transient result is given
in Figure 15.Se. The steady-state offset gives an indication of the error in the
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feedforward gain Kff, which can be further adjusted until the desired accuracy is
achieved. Some information on the dynamic tuning parameters can be deduced
from feedforward-only control. Should the controlled variable initially respond in
the direction indicating too rapid a change in the manipulated variable, either the
feedforward controller dead time is too short or the lead/lag time constant ratio is
too high. Trial and error are required to establish the improved values. A method
for adjusting the lead and lag times is available (Shinskey, 1988), but it requires
a perfect step change in the disturbance variable. The disturbance is not usually
controlled independently (if it were controlled, it would not be a disturbance), so
the method is of limited applicability.

Finally, some common sense is required when tuning the lead/lag times. First,
the effect of high-frequency noise in the feedforward measurement should be con
sidered. The lead/lag calculation can amplify noise when the lead time is much
greater than the lag time. This effect can be understood by noting that the lead/lag
calculation approaches a proportional-derivative calculation as the lead time in
creases (i.e., 7]g % 0):

5 ^ * ^ + 1 ( 1 5 . 1 1 )T\gS + 1
Even without high-frequency noise, the lead/lag could make large changes in the
manipulated variable when the lead time is much larger than the lag time, as
shown in Figure 15.4. To reduce the effect of noise and limit the overshoot in the
manipulated variable, the ratio of lead to lag times should not exceed about 2:1,
unless plant experience indicates otherwise.

Tuning a feedforward-feedback control system requires that each controller be tuned
independently, following individual initial and fine-tuning methods.

1 5 . 6 □ I M P L E M E N TAT I O N I S S U E S

Feedforward control involves a new algorithm for which there is no accepted
standard display used in commercial equipment. Since the feedforward controller
responds to disturbances, it has no set point—a factor that changes the display
significantly. One feature that should be provided in the display is the ability for
the operator to turn the feedforward and the feedback on and off separately. Also,
the operator should have a display of the result after the feedforward and feedback
signal have been combined, because the operator always wants to know the signal
sent to the final control element.

The calculations for feedforward, equations (15.4) and (15.10b), are simple
and can be performed with standard algorithms available in most commercial
control equipment. The engineer normally connects or "configures" the prepro
grammed algorithms and enters the tuning constants. An important feature that
must be included is smooth (i.e., "bumpless") transfer when feedforward or feed
back controllers are turned on and off. One approach to bumpless transfer is to
use incremental or velocity forms of the feedforward and feedback control equa
tions. Whenever one or both of the controllers is turned off (i.e., put in manual),
the change in its output becomes zero. When it is turned on, or put in automatic,



its output calculation resumes. This is an example of an approach to bumpless
transfer; other approaches are possible (for example, see Gallun et al., 1985).

The feedforward-feedback control system uses more control equipment—two
sensors and controllers—than the equivalent single-loop system. Since the system
performance requires all of this equipment to function properly, its reliability can
be expected to be lower than that of the equivalent single-loop system. However,
it is important to note that feedback control is not dependent on the feedforward;
should any component in the feedforward controller fail, the feedforward part can
be turned off, and the feedback controller will function properly. Usually, the lower
reliability does not prevent the use of feedforward.

Since the feedforward-feedback design involves more equipment, it costs
slightly more than the single-loop system. The increased costs include a field sen
sor and transmission to the control house (if the variable is not already available for
monitoring purposes), a controller (whose cost may be essentially zero if a digital
system with spare capacity is used), and costs for installation and documentation.
These costs are not usually significant compared to the benefits achieved through
a properly designed feedforward control strategy, except that expensive analyzers
for feedforward are often not economically justified.
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Feedforward control, where applicable, provides a simple method for substantial im
provement in control performance. The additional costs and slightly lower reliability
are not normally deterrents to implementing feedforward control.

15.7 B FURTHER FEEDFORWARD EXAMPLES
In this section the concept of feedforward control is consolidated, and a few new
features are presented through further examples.

EXAMPLE 15.1. Packed-bed chemical reactor
For the first example the packed-bed chemical reactor analyzed in Chapter 14
is considered again. The process with its feedback control strategy is shown in
Figure 15.10. The control objective is to maintain the outlet concentration close
to its set point by adjusting the preheat. Suppose that the feed composition is a
significant disturbance. The goal is to design a feedforward control strategy for
this process using the sensors and manipulated variables given. (The reader is
encouraged to design a control system before reading further.)

Since we are dealing with a feedforward control strategy, the key decision is
the selection of the feedforward variable. Therefore, the first step is to evaluate the
potential measured variables using the design criteria in Table 15.1. The results
of this evaluation are summarized in Table 15.3. Since all of the criteria must be
satisfied for a variable to be used for feedforward, only the reactor inlet concentra
tion, A2, is a satisfactory variable. The resulting control strategy is shown in Figure
15.11.

Signal combination. The feedforward controller adjustment must be imple
mented in a manner that does not interfere with feedback control. First, we assume
that the process behaves in (approximately) a linear manner, so that the feedfor
ward and feedback adjustments can be calculated independently and added.
Second, the correct location for combining the signals can be determined by
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FIGURE 15.10
Packed-bed chemical reactor with

feedback control.
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TABLE 15.3
Evaluation of potential feedforward variables

Criterion A 2 F 1 F 2 T I T 2 T 3

1. Single-loop control not satisfactory
2. Variable measured
3. Indicates key disturbance
4. Not influenced by MV
5. Suitable disturbance dynamics

Y Y Y Y Y
Y Y Y Y Y
N N N N N
Y N Y Y N
N/A N/A N/A N/A N/A

Feedforward controller
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FIGURE 15.11
Packed-bed chemical reactor with
feedforward-feedback control.

referring to the feedforward and feedback equations:
MVff(5) = Gds)DA2is) MVftis) = GC(SPA1 is) - CVA1 is)) (15.12)

The outputs of the two controllers can be combined when they both manipulate
the same variable, that is, if MVds) and MVft(5) represent the same manipulated
variable. This demonstrates that the feedforward controller output can be added
to the output of the feedback controller which is regulating the same controlled
variable. In this example, the feedforward controller output is added to the output
of the outlet analyzer controller, AC-1, as shown in Figure 15.11. The combined
signal is sent to the valve.
Solution. To complete this example, the feedforward controller tuning constants
are calculated from the following empirically determined disturbance and process
models:

A 1(5) _ 0.3Qg-42* /outlet mole/m3\
AS) ~ A2is) ~ i35s + 1) V inlet mole/m3 )

Gpis) =
A\is) _ -OAOSe-44* /outlet mole/m3\

\ % o p e n /

(15.13)

vis) i54s +1) \ % open
The resulting controller parameters are determined by applying equation (15.4):

Feedforward gain = -[0.3/(-0.108)] = 2.78 (% open/input g-mole/m3)
Feedforward lead t ime =zp =54 min
Feedforward lag t ime = zd =35 min
Feedforward dead time = 6d - 6P = 42 - 44 = -2 min < 0 (not possible)

Note that the disturbance dead time is smaller than the process dead time. As a
result, the feedforward controller requires a negative dead time for perfect com
pensation.

A negative dead time is not possible since it requires a prediction of future
disturbances; this situation is termed not physically realizable.

However, since the negative dead time is small compared to the process dynam
ics, we can set it equal to the smallest feasible number, which is zero. Based on



the example sensitivity of feedforward control performance to errors in this chapter
(Figure 15.7), a small error in the feedforward dead time should not significantly
degrade the performance. Note that a better way to resolve this problem would be
to relocate the inlet analyzer farther upstream; this preferred solution, if possible,
would provide an earlier warning and give a longer disturbance dead time.

Retaining cascade feedback. We started this example assuming that single-
loop feedback would be applied. We learned in the previous chapter (Example
14.1) that cascade control could provide excellent control performance for many
disturbances, but not for feed composition. Cascade and feedforward can be
applied simultaneously to a process to achieve the advantages of both as shown
in Figure 15.12. The general cascade and feedforward design rules apply to this
combination; a new design decision involves the proper choice of how to combine
the feedforward and feedback control signals, which is specified in the following.

For a feedforward controller designed to maintain a process output variable
X constant, the feedforward controller output signal is combined with the
output from the feedback controller that is controlling the same variable X.

For the reactor example, the feedforward controller is designed to maintain A2
unchanged; therefore, the feedforward signal is added to the output of the A2
feedback controller. The feedforward controller design obeys the general design
rule, equation (15.2), which gives the following result.

Gds) = - A\js)/A2js) = T3xpjs) = MVds)
A \ i s ) / T 3 s p i s ) A 2 i s ) D d s )

(15.14)

EXAMPLE 15.2. Multiple feedforward measurements
In Chapter 14 we learned that a single cascade controller could attenuate the
effects of several disturbances. Since feedforward must sense the disturbance to
be effective, a separate feedforward controller is required for each disturbance.
Assuming linearity, the resulting calculations from all feedforward controllers can
be added. An example of two feedforward controllers is shown in Figure 15.13a
for the stirred-tank heat exchanger. In this case, both the inlet temperature and
the inlet flow change significantly and independently. Two separate feedforward
controllers calculate individual adjustments for the heating oil flow. They are both
added to the feedback signal in the completed strategy.

Sometimes the effects of several measured disturbance variables can be
combined into a single feedforward controller. The combination relies on insight
into the underlying process models. In the case of the stirred-tank heat exchanger,
the following linearized model can be written:

dT
pCv— = pCpFiTitlat T) + KFM (15.15)

It is clear that the steady-state effects of the disturbances appear in the first term
on the right-hand side of the equation. This can be rearranged to yield

A F„ii = ££e.A[Fir Tm)} (15.16)
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FIGURE 15.12
Packed-bed chemical reactor with

combined feedforward and cascade
control.
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id) Stirred-tank heat exchanger with two feedforward controllers;
ib) stirred-tank heat exchanger with two disturbance variables
and one feedforward controller.

where T* — the outlet temperature filtered or averaged so that
this calculation does not give an improper response
to an unmeasured disturbance

Therefore, the steady-state flow change required to compensate for a disturbance
can be calculated directly and, assuming it is proportional to the heating valve
position, output as the feedforward signal. The controller is shown schematically
in Figure 15.13b.



EXAMPLE 15.3. Feedforward-only control
The derivation for the stirred-tank heat exchanger might lead one to propose a
feedforward-only controller derived by setting equation (15.15) to zero and solving
for Foi|. As mentioned several times already and demonstrated in Figure 15.8e,
feedforward-only control cannot eliminate steady-state offset. Thus, it should be
used only when feedback is not possible.
EglEM»MiM:S!:«
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EXAMPLE 15.4. Ratio control
One particularly simple form of feedforward control is widely used to maintain
flows at desired proportions. The process situation is shown in Figure 15.14a,
where one of the flows is controlled by another strategy; as far as this process is
concerned, it is uncontrolled or wild. The other stream can be manipulated with
a valve to achieve the desired composition of the blended stream. The feedfor
ward/feedback strategy measures the flow rate of the uncontrolled stream and
adjusts the flow of the manipulated stream to maintain the desired ratio. The feed
forward controller uses the measurement of the uncontrolled flow, multiplied by
a gain, and outputs to the set point of the feedback flow controller. Because of
the fast dynamics, no dead time or lead/lag is required. Note that the ratio control
provides feedforward-only compensation; if strict composition control is required,
a composition sensor can be placed in the mixed stream and used with a PID
controller to achieve zero steady-state offset by adjusting the ratio R.

An alternative approach is also used in practice. This approach achieves
the same goal, but it does not satisfy the criteria for a feedforward controller.
The ratio controller shown in Figure 15.14b uses the two flow measurements to
calculate the actual ratio and adjusts the valve to achieve the desired value. The
control calculation in this design could be a feedback PI controller with a calculated
controlled variable rather than a single measured variable. Again, this ratio design
does not guarantee zero steady-state offset of the composition.

EXAMPLE 15.5. Flow disturbances
As the material passes through the plant, the flow rate is varied to control inven
tories. As a result, the flow may not be as constant throughout the plant as it is at
the inlet. This situation is further explained in Chapter 18 on level control. Feed
forward control is very effective in attenuating disturbances resulting from flow
rate disturbances. An example of fired-heater control is given in Figure 15.15. The
temperature of the fluid in the coil at the outlet of the heater is to be controlled.
The flow rate sensor is a reliable, inexpensive feedforward measurement, and
the combined feedforward-feedback strategy is very effective. Similar flow rate
feedforward can be applied to other processes such as distillation and chemical
reactors.

Uncontrolled
(wild) flow

R * K F Y )

Manipulated flow

Uncontrolled
(wild) flow

-!&■

Blended flow

ia)

Blended flow

Manipulated flow
ib)

FIGURE 15.14
Flow ratio control: (a) steady-state

feedforward; ib) feedback.

EXAMPLE 15.6. Fired heaters.
Several types of feedforward control to improve the control performance of a fired
heater are possible. One approach, shown in Figure 15.16, measures the inlet
temperature. If this temperature varies significantly and tight outlet temperature
control is important, the feedforward strategy shown can be used to compensate
for the disturbance.
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FIGURE 15.15

Example of feed rate feedforward control applied
to a fired heater.

FIGURE 15.16

Example of inlet temperature
feedforward control applied to a fired
heater.

Another example of feedforward control is given in Figure 15.17 for a heater
with two fuels. In this case, one fuel is not controlled by the heater system; this
can occur when the fuel is a byproduct in another section of the plant and large
economic incentives exist for consuming the fuel (designated as A in the figure). To
prevent the variations in the byproduct fuel from upsetting the outlet temperature,
a feedforward controller adjusts the manipulated fuel flow (B) to maintain the near
fired (i.e., the sum of the fuel rates times their heats of combustion) at the desired
value. The feedforward controller usually needs no dynamic elements but must
consider the differences in heats of combustion in its calculation. Control designs
like the one in Figure 15.17 are widely used in petrochemical plants, which have
large fuel byproduct streams.

Also, the general principle demonstrated in the two-fuel furnace can be ap
plied to any process that has two potential manipulated variables of which one
is adjusted by another control strategy (i.e., a wild stream). Other examples in
clude (1) the use of two reboilers in distillation, with one (wild) reboiler duty varied
to maximize heat integration and the other manipulated to control product purity,
and (2) balancing electrical demand with varying (wild) in-plant generation and
manipulated purchases.

EXAMPLE 15.7. Distillation
Distillation columns can have slow dynamics with long dead times and analyzer
delays. Therefore, distillation is a good candidate for feedforward control when
product composition control is important. In addition, a distillation column has
two products, so a disturbance can affect two different controlled variables. The
feedforward controller in Figure 15.18a provides compensation for changes in the
feed flow rate by adjusting the reflux and reboiler flows. The feedforward controller
shown in Figure 15.18b provides compensation for feed composition. (Note that
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FIGURE 15.17

Example of feedforward compensation for a
wild fuel being consumed in a fired heater.
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i a ) i b )
FIGURE 15.18

Feedforward control in a two-product distillation tower: ia) from feed rate; ib) from feed composition.

the feedforward controllers for multivariable systems cannot be designed using
equation (15.2) for each controller; interaction must be considered. See question
21.17.) The disturbance models for this controller must be identified empirically.
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(tis + 1)(t2s + 1)
Kpiz3s - 1)

izlS + l)iz2s + \)
Gds) Kd izis + l)(r2

Kpiz3s -
s + \)

Gpis) izxs + \)iz2s + 1) -1)
Kd/Kp

a. Unstable controller. The design equation is repeated below and applied to
a process with an inverse response in the feedback dynamics. (Reasons for the
numerator dynamics were explained in Section 5.4, and related process examples
are presented in Appendix I.)

D i s t u r b a n c e : G d s ) - d

F e e d b a c k : G p i s ) =

Unstable controller: Gds) = -

ix*s -1)
In these equations, all r, > 0. The key result is instability of the feedforward con
troller, which is indicated by the positive pole (root of the denominator of the trans
fer function). This would lead to unacceptable performance. One corrective step,
which is applied below to the example, is to simply remove the unstable pole from
the controller.

Stable controller: Gds) = -Kd/Kp

This approach will yield a stable feedforward controller but might not give good
performance. A potentially better method is presented in Chapter 23 on model
predictive control.
b. Pure derivative controller. The design equation is repeated below and
applied to a process with feedback dynamics of higher order than disturbance
dynamics.

K d , _ „ u ^ , _ x K pDisturbance: Gds) = , Feedback: Gpis) =

Controller: Gds) = -

z i s + \ ' i z ^ + \ ) i z 2 s + \ )

Gds) Kd izxs + \)iz2s +1) Kdiz2s + \)
G p i s ) z x s + \ K p K p

In these equations, all r, > 0. The controller has a pure derivative, and if the
feedback process were of even higher order the controller would have second
or higher derivatives. It is good practice to have the order of the feedforward
controller denominator at least the same or higher than the numerator order. One
corrective step, which is applied below, is to add a filter to the controller.

Improved controller: Gds) = - K'<™ + °*„(%* +1)
While the controller above does not satisfy the original design rule, it is expected
to provide better performance for noisy disturbance measurements.
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Feedforward control is not generally required for
level control, where the outlet flow manipulations

should be smooth.
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FIGURE 15.20

Feedforward control is not generally required for
nearly linear processes with little dead time.

Feedforward Is Not Used Everywhere
Sometimes engineers have the impression that because feedforward is generally
a good idea, it should be applied in all process control strategies. This is not the
case. As strongly emphasized in the first design criterion, feedforward is applied
when feedback control does not provide satisfactory control performance. Thus,
feedforward is not used if tight control is not needed or if feedback control provides
good performance. An example of the first situation is given in Figure 15.19, where
the level can vary within limits without influencing the plant economics or safety;
thus, feedforward is not applied. An example of the second situation is given in
Figure 15.20, where tight control of the mixing process is possible with feedback-
only control because the process has almost no dead time.

15.8 m FEEDFORWARD CONTROL IS GENERAL
Feedforward control is a way to take corrective action as soon as information on
a disturbance is available. In the packed-bed reactor (Figure 15.12), the inlet ana
lyzer AC-2 provides an early warning of a disturbance. The feedforward controller
adjusts the inlet temperature without interfering with the feedback controller.

Feedforward control concepts are not limited to engineering control systems.
Social organizations also benefit from early response to events. In business, feed
forward may be termed "positive preactions"; whatever the name, the improved
performance can be dramatic. A hypothetical example of university decision mak
ing is given in Figure 15.21. The goal is to have needed faculty, staff, and buildings
available for all of the students attending the university. A major variable is the
number of students. Therefore, the total number of young people (e.g., 14 years
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Example of feedforward control applied to a
planning decision in a university.

old) in the population can be measured or estimated. Should this number increase
significantly, the facilities can be increased over several years so that the university
is able to accommodate the demand when it occurs.

15.9 m CONCLUSIONS
Feedforward control does not employ the feedback principle; it manipulates a sys
tem input based on the measured value of a different system input. This approach
to control requires new algorithms, with the proper algorithm depending on mod
els of the disturbance and feedback dynamics. As shown in Figure 15.8a through
e, improved performance is achieved without increased variation in the manipu
lated variable and without the requirement of highly accurate models. Based on
this performance improvement and simplicity of implementation, the engineer is
well advised to evaluate potential feedforward controls for important controlled
variables.

The first few times engineers evaluate feedforward, they must perform careful
studies like the one in Table 15.3, but after gaining some experience they will be
able to design feedforward control strategies quickly without explicitly writing the
criteria and table.

Feedforward control is not universally applicable; the design criteria in Table
15.1 can be used to determine whether feedforward is appropriate and, if so, to
select the best feedforward variable. If it is not immediately possible and improved
performance is required, the engineer should investigate the possibility of adding
the necessary sensor. However, feedforward control is effective only for the mea
sured disturbance(s); thus, additional enhancements, such as cascade and feedback
from the final controlled variable, should be used in conjunction with feedforward.
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QUESTIONS
15.1. id) In your own words, discuss the feedforward control design criteria.

Give process examples in which feedforward control is appropriate
and not appropriate.

ib) One of the design criteria for feedforward control requires that the
feedforward variable not be affected by the manipulated variable. Why
is this required? If the variable were influenced by the manipulated
variable, what control design would be appropriate?

ic) In a feedforward-feedback control strategy, which controller should be
tuned first? What would be the effect of reversing the order of tuning?
Clearly state any assumptions you have used.

id) Describe how the addition of feedforward control to an original
feedback-only system affects the resonant frequency and the amplitude
ratio (controlled to measured disturbance) at the resonant frequency.

ie) Discuss why the last design rule in Table 15.1 is valid when feed
forward is applied in conjunction with feedback. Is it also valid for
feedforward-only?

if) Review the factors in Table 13.3 and determine which factors are in
fluenced by feedforward control.

15.2. In this question, you will design control strategies for the system of stirred
tanks in Figure Q15.2. The measurements and manipulated variable are
shown in the figure; you may not alter them and need not use them all. The
following information will help you design the strategy.
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wfflMhm&mmmiwtemi\ tank tightly. The major disturbance is the temperature of one of
C H A P T E R 1 5 t h e f e e d s t r e a m s , T 2 .
Feedforward Control (2) The flow rates to the stirred tanks cannot be changed by your

control strategy and are essentially constant; F\ = 5 m3/min and
F2 = 5 m3/min.

(3) The volume of each tank is 10 m3.
(4) At the flow rates given, the steady-state gain for the heating coil

is l°C/% (change in first tank temperature per change in % valve
opening). The sensor, valve, and heating coil dynamics are negli
gible, and the heat losses are small but not negligible.

id) Decide whether a single-loop feedback control strategy is possible.
Explain your answer. If yes, draw the single-loop control system on
the process figure and define each control algorithm.

ib) Decide whether a cascade control strategy is possible, yes or no. Ex
plain your answer. If yes, draw the best cascade control system on the
process figure and define each controller algorithm.

(c) Decide whether a feedforward/feedback control strategy is possible,
yes or no. Explain your answer. If yes, draw the best feedforward/feed
back control system on the process figure and define each controller
algorithm.

id) Rank the strategies in id) through (c) that are possible according to their
control performance; that is, the ability to control the outlet temperature
T4. Explain the ranking.

ie) For the best strategy, calculate all parameters for the control algo
rithms: gains, integral times, leads, lags, dead times, and so forth.
(Hint: You must develop analytical models and transfer functions for
the relevant input-output relationships.)

15.3. The feedforward-feedback strategy has an additional sensor and controller.
How is it possible to add these and not violate the degrees of freedom of
the system? For the heat exchanger example in Section 15.2,
id) Derive all equations describing the process and the feedforward-

feedback controllers.
ib) Analyze the degrees of freedom to verify that the system is exactly

specified.
ic) Discuss how you would solve the equations in id) numerically for a

dynamic response (simulate the process with a digital control system).
15.4. Propose feedforward/feedback control designs for the following systems,

where possible. Draw the design on a sketch of the process and verify the
design using the feedforward design criteria. The processes, with [con
trolled/disturbance] variables, are
id) Example 14.1 [A1/T2]
ib) Figure 14.17 (T2/fuel flow)
ic) Figure 14.20 [tank temperature/fresh coolant temperature]
id) Figure Q13.2 [outlet concentration/CA]
ie) Example 7.2 [*a3/(*a)a]
if) Figure Q8.12 [outlet concentration (AC)/ flow of stream C]



15.5. Derive the transfer function in equation (15.6) based on the block diagram 507
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15.6. Verify that a feedforward-feedback control system has zero steady-state Questions
offset for a measured disturbance. What restrictions must you place on the
disturbance, feedback process, and control algorithms in your derivation?

15.7. The following transfer functions have been evaluated for the process in
Figure 15.15, with time in min:

7^(5) 0A0e-l*s Tmtis) 0Ae~Ux
l\nis) 3.5s +1 Ffue,(5) 4.2s+ 1

ia) Determine the continuous feedforward and feedback algorithms and
the values of all adjustable parameters.

ib) Determine the digital feedforward and feedback algorithms and the
values of all adjustable parameters, including the execution period.

15.8. ia) Describe how to program a digital feedforward-feedback controller
so that the automatic/manual status of each controller can be changed
independently.

ib) Describe how to initialize the feedforward controller.
ic) Derive the algorithm for an incremental (or velocity) form of the feed

forward algorithm that calculates the change in the manipulated vari
able at each execution.

id) Discuss the possibility of integral windup caused by feedforward con
trol without feedback.

15.9. In Example 15.2, the tank temperature was replaced with a "filtered" value,
T*. Explain why this was done. Can this analysis be generalized to an
additional criterion for feedforward control with calculated variables?

15.10. In the description of the control design for a packed-bed reactor in Example
15.1, the correct location for combining the feedforward and feedback
controllers is explained. Discuss the behavior of the control system for the
two improper locations, adding the feedforward to ia) the outlet of the T$
controller and ib) the outlet of the F2 controller. How would the control
system respond to a disturbance for each of the improper connections?

15.11. The feedforward control of a second-order process is analyzed in this ques
tion. The structures for the open-loop process models for two inputs to the
controlled variable are given in the following equations:

_ , . . C V i s ) K d - r i s + \ )Inverse response: G \ is) =

Overdamped: G2is) =

X\is) ix2s + 1)(t3j + 1)

C V j s ) _ K 2
X2is) ~ (t4j + \)ix5s + 1)

with all x > 0. Depending on other design factors, either X1 or X2 can serve
as the manipulated variable, with the other being the measured disturbance.
Answer the following questions about this system. Answer parts ia) to (c)
with X1 the manipulated variable and X2 the measured disturbance.
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CHAPTER 15 ib ) Der ive the feedforward cont ro l le r t ransfer func t ion for th is sys tem.
Feedforward Control Sketch the shape of the response of the manipulated and controlled vari

ables to a step change in the measured disturbance with feedforward-
only control.

ic) Based on the answers in ia) and ib), propose a modified feedforward
controller which provides acceptable performance. Substitute numer
ical values for the reactor process.

id) Answer the same questions in (a) through (c) for the modified process
system in which X2 is the manipulated variable and X1 is the measured
disturbance, opposite from the original situation.

ie) Can you use the results in parts ia) through id) to develop a general
conclusion on the effects of (positive) zeros on feedforward control
performance?

(Note: The system in parts ia) through (c) can be thought of as the series
chemical reactors in Example 1.2, but the solution to this problem is general
for processes with positive zeros.)

15.12. Given the processes in Figure Q15.12, place them in order of how much
each would benefit from feedforward control for a disturbance measured
by analyzer A. Explain your ranking.

15.13. The feedforward control from set point given in Figure Q15.13 has been
suggested.
ia) Derive the transfer function for the set point feedforward controller,

Gspis).
ib) Discuss this controller. Is it possible to implement, and how would it

affect the dynamic response of the controlled and manipulated vari
ables?

ic) Discuss the need for a set point feedforward if the feedback controller
uses a PID algorithm.

15.14. The feedforward controller was derived to provide perfect control. Using
the block diagram in Figure 7.4, derive the feedback controller that gives
perfect control. Are there any reasons why this controller is not practical?

15.15. ia) Verify that all designs in Section 15.7 satisfy the feedforward design
criteria.

ib) In the description of flow ratio control, it was not specified whether the
orifice AP measurements were used or their square roots were used.
Which is correct and why?

ic) Derive the analytical relationship in equation (15.5) for the output of
a lead/lag element when the input experiences a step change.

id) Explain the feedforward calculation for Figure 15.17. Give the equa
tions and the physical property data required.

15.16. Discuss one example of feedforward control in each of the following cat
egories: university, government, and business organizations.

CC
Stamp
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Adapting
Single-Loop

Control Systems
for Nonlinear

Processes
16.1 n INTRODUCTION
Linear control theory provides methods for the analysis and design of many suc
cessful control strategies. Control systems based on these linear methods are gener
ally successful in the process industries because (l) the control system maintains
the process in a small range of operating variables, (2) many processes are not
highly nonlinear, and (3) most control algorithms and designs are not sensitive to
reasonable (±20%) model errors due to nonlinearities. These three conditions are
satisfied for many processes, but they are not satisfied by all; therefore, the control
of nonlinear processes must be addressed.

It is possible that the response of a nonlinear system could give better perfor
mance than a linear system and, therefore, a nonlinear control calculation might
be better than any linear algorithm. However, there is no recognized, general non
linear control theory that has been widely applied in the process industries. (An
example of a nonlinear algorithm applied to level control is given in Chapter 18.)
Therefore, the goal of the approaches in this chapter is to attain the performance
achieved with a well-tuned linear controller. To reach this goal, the control methods
in this chapter attempt to achieve a system that has a linear closed-loop relation
ship. If an element in the control loop is nonlinear, the approach applied here is to
introduce a compensating nonlinearity, so that the overall closed-loop system be
haves approximately linearly. This compensating nonlinearity may be introduced
in the control algorithm or in physical equipment, such as a sensor or final element.

The next section begins the analysis by introducing a method for determining
when nonlinearities significantly affect a control system. This analysis is extended
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to evaluate the proper fixed set of tuning constants for a linear PID controller applied
to a nonlinear process. If a fixed set of tuning constants and linear instrumentation
are not satisfactory, improvements can be achieved by adapting either the control
calculation or the equipment responses. First, a common method for adapting the
controller tuning in real time to compensate for nonlinearities is presented. Then
the same concept is applied to introduce compensating nonlinearities in selected
instrumentation, such as the control valve, to improve performance.

16.2 01 ANALYZING A NONLINEAR PROCESS WITH LINEAR
FEEDBACK CONTROL
A relatively simple process is analyzed in this section so that analytical models
can be derived; the general approach is applicable to more complex processes.
The process is shown in Figure 16.1a, which is the three-tank mixer considered
in Examples 7.2 and 9.2. The outlet concentration of the last tank is controlled by
adjusting the addition of component A to the feed to the first reactor. The equations
describing the system are derived in Example 7.2 and summarized as follows:

^ b ( * a ) b + F A i x A ) A . , . . . . .* a o = „ , „ w i t h F A = K v v ( 1 6 . 1 )Pb + tA

*AO

db- XA\

% ~

L * A 2

"db"

(a)

*A3

Dis)- Gdis) h
SPis) GJs) -(+>

CVis)

CVm(5)
G M

Transfer Functions
Gcis) = Controller
Gvis) = Transmission, transducer, and valve
Gpis) = Process
Gsis) = Sensor, transducer, and transmission
Gdis) = Disturbance

FIGURE 16.1

Variables
CVis) = Controlled variable
CVm(s) = Measured value of controlled variable
Dis) = Disturbance
Eis) = Error
SPCs) = Set point

ib)

Mixing process: (a) schematic; ib) control system block diagram.



vt dxAj
dt

= iFA + FB)(xA(/_i) - xAi) for i = 1, 3 (16.2)

Note that the differential equations are nonlinear. We can linearize these equations,
express the variables as deviations from the initial steady state, and take the Laplace
transforms to yield the transfer function model:

Gpis)Gds)Gds) Gpis)Gcis)•*A3

SPis) 1 + Gpis)Gds)Gds)Gds) 1 + GolCO °6'3)
where the valve transfer function is a constant lumped into Gpis) and the sensor
Gsis) = 1.0.

Gods) = Gpis)Gds)Gds)Gds) « Gpis)Gcis)
K,

(™ + l)3 Gds)
(16.4)
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where Kp = Kv
FbsJxaa —xAb)s

L (Fas + Fb,)2
K„ = 0.0028

Vx =

(16.5)

(16.6)
Fbs + FAs

This linearized model clearly demonstrates how the gain and time constants
depend on the volumes, total flow, and compositions. We will consider the response
of the system for various values of one operating variable, the total flow rate
iFA + Fb), which has the greatest variability for the situation considered here. In
the scenario, the production rate changes periodically and remains nearly constant
for a long time (relative to the feedback dynamics) at each production rate. The
process dynamics are summarized in Table 16.1 for the range of flow variability
(i.e., production rates) expected. The variation in the process dynamics due to the
nonlinearity is not randomly distributed, because in this example the effect of an
increase in flow rate is to decrease the process gain and time constants concurrently.
This type of correlation is typical for nonlinear processes and demonstrates the
need for careful analysis of the dynamic responses at different operating conditions.

TABLE 16.1

Summary of process dynamics and tuning for the three-
tank mixing process*

Case Process parameters Control ler parameters

K, Kc T, Td

A 3 . 0 0 . 0 8 7 1 1 . 4 13.8 25.1 1.82
B 4 . 0 0 . 0 6 4 8 . 6 18.6 19.0 1.4
C 5 . 0 0 . 0 5 2 6 . 9 23.1 15.2 1.10
D 6 . 0 0 . 0 4 3 5 . 7 27.9 12.7 0.92
E 6 . 9 0 . 0 3 9 5 . 0 30.0 11.0 0.80

*For the combinations of process dynamics
margin for each case is 1.7.

and tuning in this table, the gain
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Naturally, other factors, such as incorrect data in fundamental models or noise
in empirical models, contribute to the modelling errors, but change in operating
conditions is often the dominant factor causing the difference between models and
true process behavior.

The values in Table 16.1 demonstrate that the changes in dynamic model parameters
due to nonlinearity can be highly correlated

The effects of nonlinearity on two important system characteristics, stability
and performance, are now investigated. As demonstrated in Chapter 10, the process
dynamics influence the stability of a closed-loop system, and to achieve a stable
control system the tuning parameters are adjusted to be compatible with the process
dynamics. The PID feedback controller tuning for this process has been determined
for five different flow rates that span the expected range of operation. (Note that
Case E in Table 16.1 is the same as Example 9.2.) The tuning was determined by
evaluating the process reaction curve, fitting an approximate first-order-with-dead-
time model, and using the Ciancone correlations. Similar trends would be obtained
for other tuning methods such as Ziegler-Nichols. It is important to recognize that
the tuning reported in Table 16.1 has a reasonable margin from the stability limit for
each case. In fact, the gain margin for all cases is about 1.7. The results in the table
clearly indicate that the values of "good" tuning constants change significantly,
over 50%, for the range of process operating conditions considered. This analysis
indicates that the nonlinearity is significant for the changes in flow considered in
this scenario.

Calculating the controller tuning for cases covering the range of dynamics occurring
in the process provides a basis for determining whether the controller tuning should
be adapted.

The simplest control design approach would be to use a single set of tuning
constants for all the operating conditions. The results in Table 16.1 provide the
basic information needed to decide whether to use this tuning approach. If the
tuning constants were not very different, it would be concluded that either the
nonlinearities are mild or the operating conditions do not change much from the
base case. For either situation, a constant set of tuning constants, which could be
taken as the average values, would yield good PID feedback control performance.

If the proper values of the tuning constants differ significantly, as they do
in Table 16.1, further analysis is necessary. Recall that the tuning for each case
was determined to give good dynamic response and a proper gain margin for the
nominal process model in that case. The single set of tuning constants to be used
for all process models in the table must provide acceptable (if not good) feedback
control performance for all cases. Since the process dynamics change, the stability
margin of the closed-loop system can change, and the closed-loop system can



become highly oscillatory or unstable for an improper choice of fixed tuning.
Since instability and severe oscillations are to be avoided, the overriding concern
is maintaining a reasonable stability margin for all expected process dynamics.

To ensure that the control system with varying process dynamics performs
acceptably over the expected range of operation, the worst-case dynamics must
be identified. This worst case gives the poorest control performance under the
feedback controller and is usually the closed-loop system closest to the stability
limit. The Bode plots of Gpis) for three of the cases in Table 16.1 are given in
Figure 16.2. The results show that Case A has the lowest critical frequency and
the highest amplitude ratio at its critical frequency. This result conforms to our
experience that processes with longer time constants are more difficult to control.
Thus, Case A would be selected as the most difficult process operation, or the
worst case, within the scenarios.

The Bode analysis of Gpis) is substantiated by the results in Table 16.1,
which indicate that Case A has the least aggressive feedback controller, because
the controller gain is smallest and integral time is largest. Applying the controller
tuning from Case A would result in a stable system for all cases, albeit with poor
performance for some cases. Using a more aggressive set of tuning constants, Case
E, for example, would lead to good performance in some cases, but the closed-loop
performance would be very poor, and perhaps unstable, for other cases.

Dynamic simulations of closed-loop systems with various tunings are shown
in Figures 16.3 and 16.4. The results in Figure 16.3a and b give the dynamic
responses of the closed-loop system, with controller tuning from Case A, for two
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Dynamic respones for the mixing system with tuning from Case A iKc = 13.8,
Ti = 25.1, and Td = 1.82). (a) Case A process dynamics, FB = 3, gain margin
= 1.7; ib) Case E process dynamics, FB = 6.9, gain margin = 4.5.

4.0

3.0

> 50

0

M-.U — i — i — i i i — i — r — i — r

_ i / \ 7
\ / ~

3.0 \ /
^ ^ V \

> 50 /

0 -

i i i i I I I I I

0

FIGURE 16.4

250 250
Time
ia)

Time
ib)

Dynamic respones for the mixing system with tuning from Case E (Kc = 30.0,
T) = 11.0, and Td = 0.80): (a) Case E process dynamics, FB = 6.9, gain margin
= 1.7; ib) Case A process dynamics, FB = 3.0, gain margin < 1.0, Indicating
instability.

different process dynamics. Note that the response, when controlling the plant
with dynamics for Case A (the most difficult plant to control), is well behaved.
The performance when controlling process E is rather poor, with a long time
required to return to set point, but at least the response is stable.

The results in Figure 16.4a and b give the closed-loop dynamic responses for
the controller tuning from Case E and the same two plant dynamics. Although
the performance for the process dynamics from Case E is good, the performance
for the process dynamics from Case A is unacceptable because the system is
unstable. Since excessive oscillations and instability are to be avoided at all cost,
the controller tuning used in Figure 16.4, based on the dynamics in Case E, is
deemed unacceptable.



When the feedback controller tuning constants are fixed and the process dynamics
change, the fixed set of tuning constants selected should have the proper gain margin
for the most difficult process dynamics in the range considered. This approach will
ensure stability, but it may not provide satisfactory performance. For the example,
the tuning from Case A is selected.
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This section has presented a manner for determining whether nonlinearities
significantly affect stability and control performance. The method is based on
the tuning and stability analysis of the system linearized about various operating
conditions. Also, a tuning selection criterion is given that is applicable when a
fixed set of tuning constants is used as the process dynamics vary. The goal of
this criterion is to provide the best possible control performance, with constant
tuning, while preventing instability or excessive oscillations. The resulting con
trol performance may be unacceptably poor, providing sluggish compensation for
some cases; therefore, the next sections present common methods for improving
performance, while preventing instability, by compensating for the nonlinearity.

16.3 Cl IMPROVING NONLINEAR PROCESS PERFORMANCE
THROUGH DETERMINISTIC CONTROL LOOP
CALCULATIONS
The approach described in the previous section can lead to poor control perfor
mance for two reasons. First, some process operating conditions lead to poor per
formance because of increased feedback dynamics (e.g., longer dead time and time
constants). Second, the fixed values for the feedback controller tuning constants
are too "conservative" for some process operations. Clearly, one set of tuning val
ues cannot prevent degradation in feedback control performance arising from the
changes in plant dynamics. However, modifying the tuning to be compatible with
the current process dynamics can maintain the feedback control performance close
to the best possible with the PID algorithm for whatever plant dynamics exist.

The approach for modifying the controller tuning constants through deter
ministic calculations can be applied to improve the control of some nonlinear
processes. The term "deterministic" is used to designate an unchanging relation
ship between the operating condition and the tuning constant values. The operating
condition is determined by measuring a process variable that is directly related to
the feedback dynamics. Then the control constants can be expressed as a function
of this measured variable, PV, as shown in the following equation:

MV = Kci?V) E +
1

/ 'Jo Eit')dt' + Td(PV)
dCV + / (16.7)T , i P V ) J n d t

The resulting controller is nonlinear. The stability analysis presented in Chapter
10 can be applied to this system assuming that the value of PV in equation (16.7)
changes slowly; that is, it has a much lower frequency than the closed-loop critical
frequency. When this condition is satisfied, the tuning can be considered constant
for the stability calculation.

This approach is demonstrated by applying it to the three-tank mixing system
introduced in the previous section. The correlations between the tuning constants
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and the measured variable that indicates the change in process dynamics—in this
example the flow—can be fitted by an equation or arranged in a lookup table.
Equations for the example are given below for the range of operation in Table 16.1
[3.1 < iFA + Fb) < 7.0] with the parameters determined by a least squares fit.

Kc = -5.64 + 7.368(FA + FB) - 0.3135(FA + FB)2
Ti = 50.37 - 10.626(Fi4 + FB) +0.7164(Fi4 + FB):
Td = 3.66 - 0.776(FA + FB) + 0.0525(FA + FB)2

(16.8)

The controller using tuning calculated by equations (16.8) can be applied to
the nonlinear mixing process. The resulting dynamic responses are essentially the
same as in Figure 16.3a and Figure 16.4a. The control performance is good for
the different flow rates because the tuning is modified to be compatible with the
process dynamics. Note that the performance in Figure 16.4a is better than in
Figure 16.3a, even though the controllers in both systems are well tuned, because
the feedback dynamics in Case E are faster. Comparison with Figure 16.3b and
Figure 16 Ab demonstrates the potential performance advantage of this approach
over maintaining the tuning constants at fixed values. The procedure introduced
in this example is summarized in Table 16.2.

The use of controller tuning modifications described in this section is often
referred to as gain scheduling, because early applications adjusted only the con
troller gain. With digital computers, all tuning constants can be easily adjusted
when required to achieve the desired control performance.

If adequate control performance is achieved through adapting only the con
troller gain and the controller gain should be proportional to feed flow, gain schedul
ing can be implemented as part of modified feedforward/feedback control design.
An example is given in Figure 16.5a for the feedforward and feedback control of
the simple mixing system. The model for the system is

Xm —
FAxA + FbXb

(16.9)
FA + FB

The flows and compositions for this mixing process are assumed to be the same

TABLE 16.2

Criteria for the deterministic modification of controller tuning

Deterministic modification of tuning is appropriate when

1. Constant controller tuning values do not provide satisfactory control performance
because of significant changes in operating conditions.

2. The nonlinearity can be predicted based on a process variable measured in real time.
3. The relationship between the measurement and the process dynamics can be

determined either from a fundamental model or from empirically developed models.
4. The changes in the process dynamics are at a frequency much lower than the

critical frequency of the control system.
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as the three-tank mixer. The steady-state equations describing the system are

Gpis) =
FbKxa)a - ixA)B] . K

iFA + FB)2
p

FB

Gcffis) = FB Gcfbis) = * < ( 1 + ^ )
(16.10)

with Kp and Kc constant. The stability margin is determined from the Bode analysis
by referring to GolC*), which follows for the example:

Gods) = Gpis)KcffKc (\ + ̂ M
(16.11)

To include the modification of the loop gain as indicated in equation (16.11),
the outputs of the feedforward and feedback controllers are multiplied, rather than
added as described in Chapter 15. Thus, as the feed flow increases, the effective
gain of the feedback controller iKcFB) increases to compensate for the decrease in
the process gain {Kp/Fb). Note that this design is an extension of the feedforward
design shown in Figure 15.14a to include feedback and therefore retains the good
disturbance response through feedforward control. This approach to controller gain
modification is a simplification of the general approach described in Table 16.2.

16.4 n IMPROVING NONLINEAR PROCESS PERFORMANCE
THROUGH CALCULATIONS OF THE MEASURED VARIABLE
In addition to the controller calculation, other elements in the control loop can also
be modified in response to nonlinearities. Relationships between the sensor signal
and the true process variable sometimes involve particularly simple nonlinearities
that can be addressed by programmed calculations during the input processing
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phase of the control loop. Some examples are temperature (polynomial fit of ther
mocouple) and flow orifice (square root, density correction on AP). In addition
to the linearization in the control loop, the availability of more accurate measured
values for use in control and process monitoring is another important benefit of
these calculations.

16.5 a IMPROVING NONLINEAR PROCESS PERFORMANCE
THROUGH FINAL ELEMENT SELECTION

Introducing a compensating nonlinearity in the control loop can be achieved by
selecting appropriate control equipment to compensate for nonlinearities. The final
control element, usually a valve, is the control loop element that is often modified in
the process industries, because the modifications involve little cost. Again, the ex
planation in this section assumes that the desired closed-loop relationship is linear;
if another relationship is required, the approach can be altered in a straightforward
manner.

Since the valve is normally very fast relative to other elements in the control
loop, only the gains of the elements are considered to vary. The linearized control
system is shown in the block diagram in Figure 16.1ft, and the loop gain for this
system depends on the product of the individual gains.

Gods) = Gpis)Gds)Gds)Gsis)
(16.12)= KpKvKcKsGpis)G*ds)G*ds)G*sis)

where the gains (£,) may be a function of operating conditions, and the dynamic
elements of the transfer functions [G*is) with G*(0) = 1.0] do not change sig
nificantly with operating conditions. The manipulated variable in the majority
of control loops is a valve stem position iv), also referred to as the valve lift,
which influences a flow rate. The feedback system behaves as though it is linear
if Gods) does not change as plant operating conditions change. Thus, linearity
can be achieved, even if the process gain iKp) changes, as long as the changes
due to nonlinearities in the individual gains cancel. In this section, a method is
described in which the valve nonlinearity is designed to cancel an undesirable
process nonlinearity, with the controller iKc) and sensor iKs) gains assumed to
be constant.

The final element selection is introduced through an example of flow control.
The relationship between the controller output and the flow is often desired to be
linear, so that the control system is linear. The relationship between the valve stem
position and the flow is given below (Foust et al., 1960; Hutchinson, 1976).

F = Fn C d v ) * P y
100 V p (16.13)

w h e r e F = fl o w
Fmax = maximum flow through system with valve fully open

Cdv) = inherent valve characteristic, which is a function of v
v = valve stem position (% open or closed)

APV = pressure difference across the valve
p = fluid density



This is simply the expression for the flow through a restriction, with the variable
v representing the valve stem position expressed in percent. The driving force for
the flow is the difference between the pressures immediately before and after the
valve, A Pv. The factor Cv is called the inherent valve characteristic and represents
the percentage of maximum flow at any given valve stem position at a constant
pressure drop, usually the design value. The Cv is a function of the valve design,
basically the size and shape of the opening and plug, which can be linear or any of
a selection of standard nonlinear relationships at the choice of the engineer. Three
common inherent valve characteristics are shown in Figure 16.6.

In the typical process design, the pressures just before and after the valve
change as the flow rate changes, as shown in Figure 16.7 (Quance, 1979). Typically,
the pressure at the pump outlet is not constant; it decreases as the flow through the
pump increases (Labanoff and Ross, 1985; Karassik and McGuire, 1998). Also,
the pressure drop from the valve to the pipe outlet increases as the flow increases.
For the example process in Figure 16.7, the pressure drop from the valve outlet to
the end of the pipe could be calculated from the energy balance on the fluid, with
losses determined from friction factor correlations (Foust et al., 1960):

2

P2 = Fou, + APe + J2 A/W + APpipe + APfit (16.14)
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where Pou\ = outlet pressure (constant in this example)
APe = pressure drop due to change in elevation

AFhx/(F) = pressure drop due to heat exchangers (/ = 1,2)
AFpipe(F) = pressure drop in the pipe due to skin friction

APfit(F) = pressure drop in elbows and expansions due to form friction
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FIGURE 16.6

Three standard control valve inherent characteristics.
(Reprinted by permission. Copyright ©1976, Instrument Society
of America. From Hutchinson, J., ed., ISA Handbook of Control

Valves, 2nd ed.)
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FIGURE 16.7

Relationship between pressures and flow for a typical system.
(Reprinted by permission. Copyright ©1979, Instrument Society
of America. From Quance, R., "Collecting Data for Control
Valve Sizing," In. Tech., 55.)

Note that the last three pressure drop terms are functions of the flow rate (F). Due
to the functional relationships for Pi and P2, the pressure drop across the valve
(AF„ = P\ - P2), decreases as the flow increases. This demonstrates that only
part of the total pressure drop from the pump to the outlet is due to the valve; a
considerable amount of the pressure drop is due to other frictional losses.

The goal of a linear system—a constant closed-loop relationship, GolCO—
is achieved when the relationship between the controller output and controlled
variable is linear. In the case of flow control, the controller output can be taken
to be the valve position, and the controlled variable is the measured flow rate.
Since the pressure drop across the valve shown in Figure 16.7 is not constant, the
relationship between the controller output and the valve opening must introduce
a compensating nonlinearity for the overall gain to be constant. The nonlinear
ity can be introduced at low cost by selecting the appropriate valve characteristic
Cv. The typical nonlinearity applied for situations similar to Figure 16.7 is the
equal-percentage characteristic curve shown in Figure 16.6. The use of an equal-
percentage valve in a process similar to that shown in Figure 16.7, in which the
pressure drop decreases with flow, usually results in an approximately linear rela
tionship between the valve stem position and flow. An experimental investigation
of the application of an equal-percentage valve for the process described in Figure
16.7 resulted in the desired linear relationship shown in Figure 16.8. Note that the
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valve is about 85 percent open at the design flow; this is a bit high, since most
designers specify that the valve be about 70 to 80 percent open at the design flow.
In all cases, the valve opening at design must be such that the required maximum
flow can be achieved when the valve is fully open.

The general method employed for linearizing the flow control loop is now
extended to a more complex process: a stirred-tank heat exchanger, shown in
Figure 16.9. The energy balance for this system was derived in Example 3.7 and
used in Example 8.5, and this example uses the same design parameters. The model
is repeated here:

VpCp^ = FpCpiTo-T)-
aFcb+l

F, +
aFl iT - Tcm)

^•Pc^pc

Fr = F„ C^ AP_
100V Oe

(16.15)

(16.16)

In this example the pressure drop across the valve is assumed constant so that the
analysis will highlight the effects of other process nonlinearities; however, if this
were not the case, the same approach could be used, with an appropriate model for
the coolant pressures included. This model can be used to evaluate the linearity of
the steady-state process by calculating the steady-state value of the temperature at
various coolant flow rates by setting dT/dt = 0. The results of this calculation are
given in Figure 16.10a. This plot clearly shows the nonlinearity in the process gain,
which changes by a factor of more than 5 over the range of operation considered.

The goal of compensation would be to achieve a linear relationship between
the controller output and the temperature. The proper linear relationship would be

, „ v A T 7 9 . 8 - 1 2 2 . 5 ° C „ ° C(*')ave = A^% 100-5% = ~0A5% (16.17)

u

mm
(rc)

x d -

FIGURE 16.9

Heat exchanger control system.
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which is the total change in temperature over the total change in valve position
over the controllable range. To maintain the loop gain at this value while the
process gain changes, the valve characteristic must change. From the value of the
desired average gain in equation (16.17) and the process gain, AT/AFC in Figure
16.10a, the value of the characteristic can be evaluated as Cv = iKp)x,c/Kp. The
results of this calculation are given in Figure 16.10ft. As expected, the plot of Cv
versus valve stem has a slope with small magnitude where the process has a gain
with large magnitude (i.e., at low coolant flows). Also, the figures show that the
process gain, and therefore the slope of Cv versus valve stem, is nearly constant
over the higher range of flows. The steady-state behavior of the system with the
linearizing Cv installed gives Figure 16.10c; the linear relationship between the
controller output and temperature indicates that a PID feedback controller with
constant tuning parameters would be adequate.

It is important to understand the approach just demonstrated through these
flow and heat exchanger examples: therefore, it is summarized in Table 16.3. The
correct application of the procedure in this table frequently, but not always, results
in an equal-percentage characteristic. An example of an exception occurs when the
pressure drop across the valve is constant and the objective is flow control; then
a linear valve characteristic is required to achieve a linear relationship between
the controller output and the flow. Another exception occurs when a nonlinear
relationship between the controller output and controlled variable is required in
selected situations. For example, a cooling medium flow may normally be small
or zero but need to be increased to a large value quickly upon demand. This
situation would benefit from a nonlinear relationship between the controller output
and the flow, which is provided by the "quick-opening" characteristic. Both of
these characteristics are shown in Figure 16.6, and many other characteristics are
commercially available (Hutchinson, 1976).

There are many physical designs of the flow patterns, orifice shape, and valve
plug shape that are used to achieve the desired relationship. The specific design
selected depends on many factors (Hutchinson, 1976), such as the desire to

0 50
Controller output

ic)
FIGURE 16.10

100

Summary of nonlinear process behavior
and compensating characteristic.

TABLE 16.3
Method for achieving a linear control system by selecting the
proper valve characteristic
Goal: A linear relationship [i.e., constant G0l(*)] between the controller output

and the controlled variable. The valve stem position is assumed
to be equal to the controller output.

1. Determine the relationship between the pressure drop and the flow for the
specific process system considered, Kpl.

2. Determine the relationship between the flow and controlled variable
(if not flow rate), Kp2.

3. Calculate the Cv based on the results in (1) and (2) so that CvKpXKp2 =
constant. This will ensure that the steady-state gain of the process, as
"seen" by the controller, is constant.

4. Select the commercial valve with the inherent characteristic, C„, closest
to the function determined in (3).



1. Have tight closing (i.e., no flow) when the controller output is 0% (or 100%
for a fail-open valve)

2. Prevent sticking or clogging when the fluid is viscous or is a slurry
3. Accurately control the flow over a specified range
4. Reduce the pressure loss due to the valve, to conserve energy

The reader is cautioned that the selection of the proper control valve requires
more information than is provided in this brief introduction. Details of typical
valves, along with pictures of the internal details, are available and should be
consulted (Hutchinson, 1976; Andrew and Williams, 1979,1980; Driskell, 1983).
Also, engineering standards for sizing calculations and selection are available for
many common situations (ISA, 1992).

Finally, it should be noted that a nonlinearity can be added to the controller
calculation in place of the nonlinear valve characteristic. Many commercial digital
controllers have the facility to introduce a nonlinearity after the control algorithm,
in the output processing phase, via a general polynomial. However, the use of the
valve characteristic is still the most common means in practice for compensating
for simple process gain nonlinearities.
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16.6 Q IMPROVING NONLINEAR PROCESS PERFORMANCE
THROUGH CASCADE DESIGN
Other particularly simple nonlinearities can be addressed through cascade design
that compensates for nonlinearities in the secondary, resulting in a (nearly) linear
primary control system. One example encountered often in the process industries
is maintaining two quantities in a desired proportion. An example of blending is
shown in Figure \6.5b, although the concept applies to other proportions, such
as reboiler to feed in a distillation tower or reactant ratio in a chemical reactor.
The feedback controller can adjust the set point of the ratio controller as shown in
Figure 16.5ft. This is really another example of feedforward and feedback being
combined as a product rather than a sum; thus, Figure 16.5a and b are alternative
solutions to the same control design problem.

A cascade can also provide compensation for nonlinearities in other con
trol designs. An example is shown in Figure 16.11, in which the relationship

&
& - * ■

r®-
&

H & - *

i a ) i b )
FIGURE 16.11

Example of cascade control applied to linearize the loop.
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between the level and the level controller output is desired to be linear. Following
the arguments in this section, the valve in Figure 16.11a would normally have
an equal-percentage characteristic so that the relationship between the controller
output and flow would be approximately linear. However, since the flow controller
in Figure 16.11ft is a fast loop, the relationship between the primary controller
output and the flow would be linear, regardless of how well the characteristic com
pensated for other nonlinearities. Thus, the level control system is linearized as a
result of the cascade design. Notice that the cascade strategy retains the advantages
of improved disturbance response explained in Chapter 14.

16.7 □ REAL-TIME IMPLEMENTATION ISSUES

Adaptive methods involving real-time calculations are relatively straightforward to
implement; however, a few special considerations should be included. Some of the
methods for adapting tuning are based on one or more measurements, and should a
measurement not represent the true process conditions because of a sensor failure,
the resulting tuning constants could be far from the proper values, leading to poor
or even unstable performance. Thus, the measurement(s) used in the updating cal
culations should be checked for validity before being used to calculate the tuning.
An example is checking the consistency of a flow measurement with associated
flow rates in the process to ensure that a realistic flow is being used to update
tuning. In addition, the value of the measured variable used in the correlations, as
in equations (16.8), should be limited to the range over which the correlation is
valid. This practice serves two purposes:

1. Error due to an unrecognized sensor failure is limited.
2. Extrapolation of a correlation beyond its region of applicability is prevented.

An issue that may not have been apparent in the previous sections is the ever-
present need for defining the desired control performance. The tuning correlations
must reflect the performance desired; thus, the tuning correlations selected must be
based on control objectives consistent with the performance desired in the plant.
As will be explained in Parts V and VI, tight control of one variable may degrade
the control performance of another, more important variable because of process
interaction. Thus, the performance goals of all control loops must be determined
considering the overall process performance, which may lead to loose tuning for
selected loops.

Also, it would be wise to provide the facility to fine-tune the controller tuning
constants while retaining the correlations. One simple method would be to pro
vide an adjustable parameter in equations (16.8). The engineer could adjust the
parameter to achieve improved performance at one operating condition, and the
parameter would be unchanged for other operating conditions.

16.8 m ADDITIONAL TOPICS IN CONTROL LOOP
ADAPTATION
All of the methods described in detail in this chapter are based on the assumption
that the change in process dynamics can be predicted. This assumption, which
leads to the compensating calculations and equipment designs, is not always valid.



For example, the effect of acid flow on pH (i.e., the shape of a pH curve) can
change substantially due to changes in the buffering agents present; the effect
of temperature on reactor conversion can depend on the activity of the catalyst.
Therefore, there are situations in which deterministic methods are not appropriate.
One response to this situation would be to detune the controller substantially and
accept the performance degradation. Better performance would be possible with
an adaptive method that could "learn" the process dynamics from the real-time
system behavior and retune the controller based on the updated knowledge of
process dynamics. Two general retuning approaches are used in this situation:
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1. Periodic adaptive tuning at the request of a person, which is applicable when
the dynamics change infrequently

2. Continuous adaptive retuning, which is applicable when the dynamics change
frequently

The analysis of these approaches requires more advanced mathematics than is
consistent with the level of this book; however, a few of the methods are introduced
in the following paragraphs.

Periodic Retuning Based on Model Identification
In this approach an empirical model identification method is implemented to de
termine the dynamic model of the process, Gpis)Gds)Gsis). The model fitting
could use one of the methods described in Chapter 6 or other statistically based
methods. Based on this model, the method can automatically introduce updated
tuning using an appropriate controller tuning method. Note that this method in
troduces perturbations in the manipulated variable, which will disturb the process,
but only when a person requests a retuning.

Periodic Retuning Based on Empirical Identification of the
Critical Conditions
The Bode stability criterion highlighted the importance of the feedback system at
the critical frequency. The feedback system's stability and controller tuning can be
based on the amplitude ratio at the critical frequency, | God<*>c) I• Thus, some meth
ods of adaptive tuning determine the critical conditions empirically. One possible
approach would be to automate the Ziegler-Nichols continuous cycling experi
ment described in Section 10.8, Interpretation IV; however, this approach would
introduce large, prolonged disturbances. A more successful approach uses this
principle with a relay in place of the controller to determine the same information,
with smaller disturbances to the plant (Astrom and Hagglund, 1984).

Continuous Retuning Based on Statistics
It is possible to identify the process dynamics and determine how to modify the
tuning without introducing external perturbations, as long as some disturbances
occur in the process. Approaches to formulating and solving this problem are given
in Astrom and Wittenmark (1989).
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Continuous Retuning Based on Rules
Fine tuning of closed-loop systems based on the response to set point changes was
discussed in Chapter 9. This concept can be applied to disturbance responses so
that external perturbations are not necessary; then the method can be automated to
achieve continuous retuning. In one commercial system the control performance is
defined by the engineer in terms of (1) controlled-variable damping and overshoot,
(2) expected noise levels, and (3) bounds on the controller tuning constants (Bristol,
1977; Kraus and Myron, 1984). The retuning method uses rules to adjust the tuning
constants to achieve the desired performance.

16.9 m CONCLUSIONS
Modification of an element in the closed-loop system may be needed to attain high-
performance feedback control when the feedback dynamics change. The three
major steps are given in Table 16.2 for evaluating deterministic approaches for
compensating for nonlinearities. The first step is to determine whether the process
dynamics change significantly over the range of operation. If a fundamental ana
lytical model is available, the linearized expression can be evaluated through the
range of operating variables to determine whether the gain, dead time, and time
constants change significantly. If no analytical model is available, several linear
models can be determined through empirical identification at various operating
conditions. The variability in the tuning and degradation in performance due to
the nonlinearities can be determined as explained in Section 16.2. Since control
objectives are different from plant to plant, it is not possible to give a generally
applicable threshhold for when the nonlinearity is "significant." However, since
modelling errors of ±20% are expected in identification, nonlinearities causing
model parameter variations of this magnitude or less would normally not be con
sidered significant.

The approaches presented in this chapter are summarized in Table 16.4. The
order of presentation is from simplest and most reliable to most complex and
challenging to implement. Generally, the engineer will apply the methods in the
order presented in the table, proceeding only to the method needed to achieve
acceptable performance.

If the variability is significant and it can be predicted based on real-time
measurements, an element can be introduced to linearize the control loop by com
pensating for the nonlinearity. The compensating element can be in any of the
three categories of the control calculation: input processing, control algorithm, or
output processing. It can also be included in the control equipment, specifically in
the final control element.

If the variability in dynamics is significant but cannot be predicted using
correlations, one approach is to detune the feedback controller so that it is stable
for all dynamics encountered. Naturally, this approach will result in a degradation
in performance. Another approach is to modify the tuning of the controller based
on some information of the real-time dynamic behavior of the system. Various
methods are available, and references are provided.

Finally, the limits of the adapting approach should be recognized. First, a great
strength of feedback control is that it does not require a highly accurate model.
Thus, reasonable model errors can be tolerated with little degradation in control
performance. Second, the adaptations require some time for the method to recog-



nize the change in process behavior and introduce the compensation to the tuning
(or other element of the loop). Thus, if the process dynamics are changing with
a frequency near the critical frequency of the feedback control loop, an adaptive
approach will not be able to introduce the compensation quickly enough. This
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TABLE 16.4

Summary of methods to compensate control systems for nonlinearities

Compensation for Additional effects on
Description nonlinearity Example control performance

Measurement Calculation to compensate Square root of orifice Improved accuracy for
for nonlinear flow meter process monitoring
sensor (Figure 12.5)

Final element Final element selected Valve characteristic to
to compensate for account for changes in
process nonlinearity pressure (Figures 16.6

and 16.7)
Cascade control Select secondary set Level-flow cascade Improved response to

point that has linear (Figure 16.11) secondary disturbances
relationship with primary

Detune Determine single set Three-tank mixing Poor performance
of tuning constants process (Table 16.1, can result
for the range of operating Case A tuning)
conditions

Gain schedule Calculate the controller
gain based on real-time
measurement
Multiply feedforward Figure 16.5 Feedforward
and feedback (where compensation for
this leads to proper measured disturbance
gain scheduling)

Controller Calculate tuning based Three-tank mixing
tuning on a process model process [equation

and real-time (16.8)]
measurement

Occasionally Empirically determine Relay method of Undesired variation
retune key model finding critical during (infrequent)

characteristics and conditions (Astrom and retuning
tune controller according Hagglund, 1984)
to preselected
performance criteria

Continuously Empirically determine On-line identification
retune key model

characteristics and tune
controller according to
preselected performance
criteria
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limitation also holds when an infrequent change in process dynamics is large and
abrupt: adaptation may not be able to detect the situation rapidly enough. Finally,
the reader is advised to establish the potential improvement using the first entries
in Table 16.4 before attempting the substantially more complex approaches in later
table entries.
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ADDITIONAL RESOURCES

Computer programs and exercises for several adaptive tuning methods have been
prepared by

Roffel, B., P. Vermeer, and P. Chin, Simulation and Implementation of Self-
Tuning Controllers, Prentice-Hall, Englewood Cliffs, NJ, 1989.

Adaptive tuning of PID and other feedback control algorithms are presented
at an advanced level in

Astrom, K., and T. Hagglund, Automatic Tuning of PID Controllers, ISA,
Research Triangle Park, NC, 1988.



Questions

Goodwin, G., and K. Sin, Adaptive Filtering, Prediction, and Control, Prentice- 531
Hall, Englewood Cliffs, NJ, 1984.

A particularly challenging situation occurs when the process gain changes
sign as operating conditions change. An industrial process where this occurs is
discussed in

Dumont, G., and Astrom, K., "Wood Chip Refiner Control," IEEE Cont. Sys.,
8, 38-43 (1988).

Some industrial examples of adaptive control are given in the following ref
erences.

Piovoso, M., and J. Williams, Self-Tuning Control ofpH, ISA Paper no. 0-
87664-826-x, 1984.

Vermeer, P., B. Roffel, and P. Chin, "An Industrial Application of an Adaptive
Algorithm for Overhead Composition Control," Proc. Auto. Cont. Conf,
St. Paul, MN, 1987.

Whately, M., and D. Pott, "Adaptive Gain Improves Reactor Control," Hydro.
Proc, 75-78 (May 1988).

QUESTIONS
16.1. Consider the three-tank mixing example process, but with the outlet con

centration of component A changed to 50 percent in all cases. Recalculate
the values in Table 16.1 for the same changes in the flow rate of stream B.
Compare and comment on the similarities and differences.

16.2. Answer each of the following questions, with a full explanation of your
answer.
id) Could closed-loop frequency response, as explained in Section 13.3, be

used to determine when feedback controller tuning should be adapted
for changes in operating conditions?

ib) Review all cascade examples in Section 14.7 and determine whether
each results in a (nearly) linear relationship between the secondary and
primary. Would the single-loop control (primary to valve) be signifi
cantly nonlinear?

ic) Review all of the feedforward-feedback control designs in Section 15.7
and for each, recommend how to combine the feedforward and feed
back signals (add, multiple, divide, other) to provide the best tuning
compensation for the measured disturbances.

id) The discussion and examples in this chapter involved feedback con
trol. Discuss whether there is any advantage to adapting the adjustable
parameters in a feedforward controller. If yes, discuss how this could
be evaluated and the proper values determined.

16.3. Recalculate the tuning in Table 16.1 using the Ziegler-Nichols closed-loop
tuning method. Compare the similarities and differences of the effect of
Fb on the tuning for the two tuning methods. Which tuning would you
recommend using?
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Nonlinear Processes 16.5. Based on the information in question 10.2, would you recommend auto

matic deterministic retuning of the feedback control system? If yes, deter
mine the measured variable and the tuning constants as a function of the
measured variable.

16.6. You have been given the task of developing a rule-based adaptive tuning
method for use with a PID controller. Also, the introduction of any per
turbations by the method has been prohibited. Develop a set of rules that
can be applied to normal operating data (with disturbances) to improve the
performance gradually by adjusting the controller tuning constants. Re
member to consider both the controlled and manipulated variables when
evaluating performance.

16.7. In some control designs, the location of the sensor can be changed; one
method for changing the effective sensor location is switching between
sample tap locations that feed an analyzer. In this question we consider
the dynamic system described in Example 5.2, Case 1. The original feed
back PI controller measured Y4 and adjusted the input to the system; the
modified feedback PI controller measures Y3 and adjusts the input to the
system. Calculate the tuning for both PI controllers and decide whether the
controller tuning should be adjusted when the sensor is switched.

16.8. The stirred-tank heat exchanger in Section 16.5 experiences changes in the
feed inlet temperature of 120 to 170°C and in the coolant inlet temperature
of 20 to 30°C. These temperature changes occur independently, and the feed
flow and temperature set point remain constant at their base-case values.
Discuss the need for adapting the feedback PI controller tuning constants
and, if necessary, provide correlations for the valve characteristic and tuning
as appropriate.

16.9. Design feedforward-feedback control for the chemical reactor in Example
15.1 for input disturbances in both feed composition, A2, and feed flow,
Fl. Pay particular attention to how the feedforward and feedback signals
should be combined. Is there a need for adapting the feedback tuning for
disturbances? Can this be achieved in combination with the feedforward
control? Is there a need to adapt the feedforward controller parameters?
Since you do not have fundamental models for this system, answer this
question based on your qualitative understanding of the behavior of the
process equipment.

16.10. The behavior of the heat exchanger in the recycle system in Example 5.3
varies due to fouling. Experience has shown that Gh2 changes within the
range of 0.20 to 0.32 about its nominal value of 0.30. Determine whether
this change is significant. If so, how could deterministic controller adapta
tion be implemented?

16.11. Sometimes process equipment has to be removed from service occasionally
for maintenance. Consider a multiple-tank mixing process that is basically



the mixing tank process in Example 7.2, but modified to have between two 533
and four tanks, depending on the equipment availability. Determine how w»««!^*iH^«M»si
the feedback controller tuning has to be modified for the situations of two, Questions
three, and four tanks in the feedback process. Also, compare the control
performance for these three situations.

16.12. Level control is to be added to the draining tank process in Example 3.6.
The controller adjusts the opening of a valve in the exit pipe at the base
of the tank, and essentially all of the pressure drop in the pipe and valve
occurs across the valve. Determine the valve characteristic that will yield
a linear relationship between the controller output and the level. The inlet
flow varies from 50 to 150 m3/h.

16.13. In some feedback control systems the manipulated variable can be changed,
usually by selecting the position of a switch at the controller output that
directs the signal to one of the possible manipulated variables. For the fol
lowing cases, determine whether the difference in feedback dynamics is
significant enough to require changing the tuning depending on the manip
ulated variable selected for the controller output.
ia) For a distillation column, the controlled variable is the light key in the

distillate, XD, and the two manipulated variables are the reflux flow,
FMr, and the vapor boilup, VMq. For dynamic models, refer to Figure
5.17.

ib) For a single, isothermal CSTR, the controlled variable is the effluent
reactant concentration, CA, and the two manipulated variables are the
inlet concentration, Cao, and the total feed flow rate, F. For dynamic
models, refer to Example 5.5.

ic) For an open-top liquid tank, the controlled variable is the liquid level,
and the two manipulated variables are the valves in the two outlet pipes.
The process is sketched in Figure Q1.9a.

16.14. Question 13.1 describes a process with feedback control and changes in
operating conditions, id) through if). For each change in operating con
ditions, determine whether it is necessary to adapt the feedback controller
tuning, and if so, how the adaptation could be implemented automatically.

16.15. Consider a series of three isothermal CSTRs, each with the physical design
parameters of the process in Example 3.5. The base case operating condi
tions are the same as the example: F = 0.085, Cao = 0.925, and k = 0.50.
The composition of reactant A in the third reactor is controlled by adjust
ing the feed composition, CAo- Determine id) the steady-state operating
conditions for this base case, ib) the linearized model for the system, and
(c) PID feedback tuning for this base case system. Then determine whether
the controller tuning must be adjusted if the feed flow rate changes from
0.085 to 0.20.
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Control

17.1 a INTRODUCTION
In all of the control methods considered to this point, the important variables have
been measured, a situation which is desirable and most often possible. However,
not all important variables can be measured in real time, that is, fast enough that
timely control actions can be based on their measurements. There are various
reasons for the lack of key measurements. First, some sensitive analyses have not
been sufficiently automated to provide accurate, reliable measurements without
human management of the procedure; thus, these measurements can be obtained
only infrequently from a laboratory. There are even some properties that cannot
be determined from intermediate material properties in a plant. Usually, these
properties relate to the final use of the material; for example, some qualities of
products such as soap, food products, or polymers depend on their application as
final products and cannot be measured until the products are formulated and used.
Second, even if the real-time measurement is possible, the cost of installing a sensor
in the plant may not be justified by the potential benefits derived from the additional
sensor, especially considering the alternative methods in this chapter. The cost is
not typically high for conventional sensors for measuring temperature, pressure,
flow, and level, but it may be prohibitive for an expensive analyzer with sample
system and ongoing maintenance. Third, the sensor may not provide information
in a timely manner. There are several reasons for slow feedback; for example, the
analyzer may have a very long dead time because it must be located far downstream.
Also, an analyzer may have a long processing time—one hour or longer—which
would delay the feedback information. Finally, there may be no directly measurable
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quantity; for example, the controlled variable may be the heat transferred in an
exchanger.

The lack of measurements of key variables in a timely manner certainly offers
challenges to achieving good control performance. However, unmeasured variables
can sometimes be inferred from available measurements.

To infer: to achieve a conclusion based on information.

Here, the conclusion would be an estimate of the unmeasured variable. Thus,
inferential control uses extra sensors to improve control performance. In this case,
the extra information is additional measured variables that, while not giving a
perfect indication of the key unmeasured variable, provide a valuable inference.
The selection and use of these additional inferential variables requires process
insight and adherence to the methods described in this chapter. Since inferential
control is widely applied with great success, the analysis and design of inferential
variables is important for engineers who design and operate plants, as well as for
control specialists.

Since the characterization of variables as inferential may initially seem some
what arbitrary, the general concept is explained here. All sensors depend on phys
ical principles that relate the process variable to the sensor output, and thus no
sensor "directly" measures the process variable. For example, a thermocouple
temperature sensor provides a millivolt signal that is related to temperature (and
the reference junction temperature), and an orifice flow sensor provides a pres
sure difference signal that is related to the flow (and fluid density). We normally
consider the standard sensors for temperature, pressure, flow, and level as direct
measurements, not inferential variables, because (1) they provide reasonably good
accuracy and reproducibility, (2) they do not usually require corrections (e.g.,
for reference junction temperature), and, most importantly, (3) the relationship
between the sensor signal and the process variable is not specific to a particu
lar process. For example, essentially the same relationship between the pressure
difference across an orifice and the flow through the orifice is used in thousands
of plants. In contrast, a relationship between a reactor temperature and conver
sion is clearly specific to a particular process and is considered an inferential
variable.

Since there is no generally accepted naming convention, we will refer to the
variable we would like to control as the "true" controlled variable, CV,(r). The
inferential variable, CV,(f), can be used because of a process-dependent relation
ship, which must be determined by the engineer. For example, a good inferential
variable in Figure 17.1 is closely related to the true variable so that controlling
CV/(f) will maintain CV,(f) close to its desired value. In most cases, the inferen
tial variable is not as accurate as an on-stream sensor of the true variable. Also,
the approximate relationship used for the inferential variable has a limited range,
beyond which the inferential variable might not be satisfactory. It is important to
remember that zero steady-state offset for the true variable is possible only when
it is measured, perhaps infrequently, and used in the control system to adjust the
set point of the inferential controller, SP/(.s).
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Figure 17.1 can be used to determine the relationship necessary for good
inferential control. First, the response of the true controlled variable to a disturbance
can be evaluated.

CVds) = Gdds)Dis) + Gptis)MVis)
n , xn^ Gptis)Gcis)Gdds)= Gdtis)Dis)- Dis)

(17.1)

\+Gpiis)Gcis)
A key goal of the control system is to maintain zero steady-state deviation in the
controlled variable. This can be evaluated by applying the final value theorem to
equation (17.1) with a step disturbance and PI feedback controller to give

iKptKdiKc)/Tilim CV(f) = lim CV(s) = Kdt AD -
t-*oo iKp iKJ /T,

AD = 0 (17.2)

Thus, the criterion for perfect steady-state inferential control in response to a distur
bance is that Kdt/Kpt = Kdi/KP[.

As the process relationships deviate from this criterion, the performance of the
inferential controller degrades. Thus, an important engineering decision is the
selection of a proper inferential measured or calculated variable.

17.2 n AN EXAMPLE OF INFERENTIAL CONTROL

Application to a flash separator demonstrates the typical analysis steps for inferen
tial control, along with a very common inferential variable. The process is shown
in Figure 17.2 where a stream of light hydrocarbons is heated, the pressure of
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Flash separator considered for inferential control of ethane
composition in the liquid from the drum.

TABLE 17.1

Base-case data for flash process in
mole percent

C o m p o n e n t F e e d L i q u i d V a p o r
Methane 10 1.3 19.8
Ethane 20 10.0 31.2
Propane 30 30.2 29.8
/-Butane 15 20.1 8.8
n-Butane 20 30.0 9.3
n-Pentane 5 8.4 1.1

the stream is lowered, and the liquid and vapor phases are separated in a drum.
The base-case compositions of all three streams are given in Table 17.1. The true
controlled variable is the ethane concentration in the drum liquid; however, an
analyzer is not available, perhaps because of cost. (Accurate on-stream analyzers
are commercially available for such a measurement.) The goal is to infer the con
centration of ethane in the liquid stream leaving the drum, using the sensors shown
in the figure. This goal may or may not be possible within the accuracy required;
therefore, an analysis of the system is performed.

From a knowledge of vapor-liquid equilibrium, we expect that the temperature
of the drum and the compositions will be related. In fact, the following model of
the flash shows the relationship.

FMfeed = FML+FMv
FMfeedZ/ = FMLX, + FMvYt

Yi = KtX,
(17.3)



where FM = molar flow
X, Y, Z = mole fractions for liquid, vapor, and feed

K-, = vaporization equilibrium constant depending on T, P
P = pressure
T = temperature

From equations (17.3) it can be seen that the liquid ethane composition is a function
of the feed composition and the temperature and pressure in the flash vessel.
(Further details on the flash calculation and the data used in this example can be
found in Smith and Van Ness, 1987.) Let us assume that the drum pressure is
controlled at essentially a constant value by adjusting a valve in the vapor line and
that the temperature can be maintained at its desired value by manipulating the
steam flow. If the feed had only two components, the temperature and pressure
would uniquely determine the liquid and vapor composition; however, the feed has
six components. Therefore, the pressure and temperature do not exactly define the
compositions in the two phases. The essential question to answer is how closely
the temperature is related to the liquid ethane composition, that is, how accurate
an inference of liquid ethane concentration is supplied by the temperature when
changes in the process operation occur.

The proposed inferential system is summarized by the following variables:
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True variable = xe = liquid composition of ethane to be controlled
at 0.10 ± 0.02 mole fraction

Inferential variable = T = temperature
Manipulated variable = heating medium flow
Disturbance = feed composition (as subsequently defined)
Inferential relationship: xe = aT + fi (17.4)

An analysis is performed to establish whether the relationship between the temper
ature and the liquid ethane concentration is satisfactory for inferential control. It is
not possible to develop a closed-form analytical model of this process; therefore,
the inferential model will be developed based on data representing the process.
This data could be developed from mathematical simulation or plant experimen
tation. In this case, where excellent data exists for the vapor-liquid equilibrium, a
simulation was performed to generate the relationship shown as the "base-case"
line in Figure 17.3. The first step in evaluating the potential inferential relation
ship involves determining whether the sensitivities are appropriate. Figure 17.3
shows that the slope is about —0.0027 mole fraction per °C, which means that
the expected errors in the temperature measurement and control, here estimated to
be ±0.5°C, will not introduce a significant error in the calculated estimate of the
ethane concentration.

Since the temperature has passed the first step, the analysis is extended to
the second step by including disturbances: unmeasured input operating vari
ables that are expected to change significantly. In this example, the feed com
position is the major disturbance. The question is whether the temperature re
mains a satisfactory inferential variable when the feed composition changes; to
answer this question, additional cases that characterize typical plant variability
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FIGURE 17.3

The relationship between the flash temperature and the
concentration of ethane in the liquid at the base-case pressure (1000
kPa). Changes in methane are compensated by changes in butane of
equal magnitude and opposite sign.

have to be included in the analysis. In this example, the expected feed composition
change from the upstream units involves offsetting differences in the methane and
butane, which can be up to 5 mole %. The relationships between temperature and
composition for the extremes of feed composition variation are shown in Figure
17.3. Clearly, holding the temperature constant is not equivalent to maintaining
the ethane concentration constant. For the expected changes in feed composition
and the expected accuracy in controlling the temperature, ±0.5°C, the range of
ethane liquid composition is from 0.091 to 0.117 mole fraction when the measured
temperature is maintained at the proper value for no model error and nominal feed
composition (25.5°C). Whether this accuracy is acceptable depends on the plant
requirements; for this example it satisfies the stated objectives of inferential control
(±0.02 maximum error). Since the accuracy with the inferential variable is accept
able, the temperature provides an acceptable steady-state inferential measure of
ethane concentration in the liquid stream, and the control strategy in Figure 17.2
could be appropriate. If it were not, perhaps due to a narrowing of the acceptable
ethane concentration variation, an on-stream analyzer would be required.

If the steady-state accuracy is satisfactory, the dynamics of the potential in
ferential control system must be evaluated. Good dynamic responses, as discussed
in Chapter 13, would have such characteristics as a fast response with a short dead
time. For this example, the temperature could be controlled by adjusting the heat
ing medium flow. Therefore, the dynamics seem favorable because the response
would be fast. This judgment is supported by the dynamic response of this system
presented in Chapter 24.

Recall that the temperature controller set point must be corrected based on a
measure of ethane concentration to achieve zero offset. The composition feedback
could involve the temperature set point being occasionally corrected by the oper
ator based on infrequent measurements in the laboratory performed on samples
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Flash inferential temperature controller reset in a cascade design by a downstream analyzer.

taken from the drum liquid. An alternative design, shown in Figure 17.4, involves
the temperature set point being adjusted by a downstream analyzer controller in
a cascade strategy. In this design, the analyzer is located downstream because
of cost; the single downstream analyzer can measure components for distillation
control as well as the flash drum control. Note that the cascade strategy adjusting
the inferential temperature would be advisable in Figure 17.4, because of the slow
dynamic response between the heating medium and the analyzer. With the infer
ential temperature controller, reasonably tight control of the ethane concentration
can be achieved without installing an additional on-stream analyzer at the outlet
of the flash drum.

Since the inferential set point is ultimately reset based on a measure of the
true controlled variable, the inferential measure need not be extremely accurate.
However, it should be reproducible; that is, the inferential sensor should provide
essentially the same signal for the same process conditions. Then the slower feed
back based on the true variable would correct for inaccuracies in the inferential
relationship and ultimately return the true controlled variable to its desired value.

The control example in this section, using temperature of a flash equilibrium to
infer composition, is a standard practice in many industries; in fact, it is so common
that the term inferential may seem exaggerated. However, it provides an excellent
initial example. The next section provides a summary of the general design method
for inferential control, which can be applied to more challenging cases.

17.3 B INFERENTIAL CONTROL DESIGN CRITERIA
The preceding example addressed all of the major design criteria, which are sum
marized in Table 17.2. First, an analysis of the process economics and expected
disturbances is performed to determine whether an inferential variable is appro
priate. If yes, the process must be analyzed to identify a measurable variable
with an acceptable relationship to the unmeasured, true controlled variable. It is
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C H A P T E R 1 7 — ; "
i n f e r e n t i a l C o n t r o l I n f e r e n t i a l c o n t r o l i s a p p r o p r i a t e w h e n

1. Measurement of the true controlled variable is not available in a timely
manner because
• An on-stream sensor is not possible.
• An on-stream sensor is too costly.
• Sensor has unfavorable dynamics (e.g., long dead time or analysis time)

or is located far downstream.
2. A measured inferential variable is available.
An inferential variable must satisfy the following criteria:
1. The inferential variable must have a good relationship to the true controlled

variable for changes in the potential manipulated variable.
2. The relationship in criterion 1 must be insensitive to changes in operating

conditions (i.e., unmeasured disturbances) over their expected ranges.
3. Dynamics must be favorable for use in feedback control.
Correction of inferential variable
1. By primary controller in automated cascade design
2. By plant operator manually, based on periodic information
3. When inferential variable is corrected frequently, the sensor for the inferential

variable must provide good reproducibility, not necessarily accuracy

especially important to ensure that the inferential variable is adequate for the ex
pected range of plant operating conditions. Usually, the initial selection is based
on a steady-state analysis, and the dynamic response is subsequently evaluated.

Two similar approaches are used for designing inferential controllers. Both
approaches are described in this chapter, along with industrial examples. One ap
proach determines the best inferential variables based on data (experimental or
simulation) from the process; this type will be referred to as the empirical ap
proach. The inferential temperature in the previous flash control is an example.
The other approach uses closed-form analytical models as a basis for inferen
tial relationships. An example of this approach, which will be referred to as the
analytical approach, is applied to a chemical reactor in Section 17.6. The ap
plication of either approach involves nearly the same steps to yield an inferen
tial model for control. The analysis steps for each method are summarized in
Table 17.3.

Application of the design criteria in Table 17.2 and the steps in Table 17.3 en
sures that a proper inferential variable is selected, if one exists. These approaches
are usually adequate, because inferential variables are employed to reduce, al
though not eliminate, large offsets due to disturbances. To reiterate, an inferential
strategy can achieve zero offset only when the true controlled variable is ultimately
measured and used to adjust the set point of the inferential controller.
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S t e p s r e q u i r e d t o d e s i g n a n i n f e r e n t i a l c o n t r o l l e r i w i P W f ^
Implementation Issues

S t e p E m p i r i c a l a p p r o a c h A n a l y t i c a l a p p r o a c h
1 Select one or a few measured variables Select one or a few measured variables

for evaluation based on process insight. for evaluation.
2 Develop a representative set of data that Derive the analytical model from

contains typical changes in the fundamentals,
manipulated and disturbance variables.

3 Develop a correlation between the The analytical model provides the
measured inferential and true controlled necessary correlations,
variables by fitting the model to the data
to determine the unknown parameters.

4 Evaluate the accuracy and reproducibility Same, although sensitivity information
of the correlation against process needs. can be obtained directly from the
This evaluation should consider realistic model.
levels of noise on the inferential variable.

5 Select the best of the inferential variables and evaluate the dynamic response for use
in feedback control.

6 If the best inferential variable is acceptable, design the control system including
ultimate feedback from the true variable.

7 If no measured variable has both acceptable accuracy and acceptable dynamics,
then inferential control is not possible. An on-stream sensor should be purchased
and installed, if available. If no sensor is available, then the control objectives
cannot be achieved unless other steps, such as reducing disturbances, can be
taken to reduce the variation in the true controlled variable.

17.4 a IMPLEMENTATION ISSUES

An inferential controller using a single measured variable is basically the same as
any other single-loop or cascade controller, and no special implementation consid
erations are necessary. If the correction from the true controlled variable is made
manually by the operator, a simple correlation is helpful in deciding the necessary
change in inferential controller set point. In the flash separator example, the slope
of the correlation in Figure 17.3 indicates that the temperature should be changed
+1°C for a change of —0.0027 mole fraction ethane. As an example of how the
person would use the correlation, if the laboratory analysis were 0.0040 mole
fraction below the desired ethane concentration, the operator would implement a
-1.5°C change in the temperature set point based on the correlation.

The situation changes when additional variables are used in the inferential
relationship. In the flash separator, the strategy in Figure 17.2 might not be adequate
if the drum pressure varied significantly, which can occur when the pressure is not
controlled at the drum but varies with downstream units. A simple manner for
considering this change would be to add an additional term, which would account
for changing pressure, to the inferential correlation used to calculate the ethane
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concentration. The enhanced inferential relationship would be

Xe = otT + yP + p' (17.5)

Again, this expanded relationship would be developed based on representative
data for the system over the expected range of pressures. The effect of pressure
for the base case feed concentration is shown in Figure 17.5, which would provide
information for an additional linear term that would be valid over a limited range. A
correlation using two measured variables in the inferential control strategy is shown
in Figure 17.6. This is often referred to as & pressure-corrected temperature, which
refers to the correction of the relationship between temperature and composition
to account for pressure changes.

The reliability of inferential controllers is the same as that of other similar sys
tems. Controllers using additional variables would be expected to have lower reli-

950 1000 1050
Pressure (kPa)

1150

FIGURE 17.5

The effect of pressure on ethane concentration in the
liquid from the flash process at the base case temperature
and feed composition.

Controlled variable = T- 0.051 (P - 1000)
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for changes in pressure.



ability. For example, the pressure-corrected temperature controller in Figure 17.6
uses two measurements, and its reliability would be lower than the temperature-
only design in Figure 17.2. Since sensors used in inferential control tend to have
high reliability (their purpose is to replace the expensive and less reliable sensors),
the slight loss in reliability is not usually a significant concern.
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17.5 Q INFERENTIAL CONTROL EXAMPLE: DISTILLATION
This example extends the concept of the flash separator to a distillation tower.
In operating a distillation tower, the product purities are achieved by adjusting
manipulated variables such as the reboiler heating medium and distillate product
flows. On-stream analyzers can be used successfully to control distillation; how
ever, each analyzer is expensive, and not all towers require such accurate control of
both product qualities. Therefore, an important question arises concerning which
tray temperature, if any, can be used to infer the product composition. An analysis
will be described here that, by following the general inferential design criteria,
provides an answer to this question. This example considers the distillation tower
in Figure 17.7, where the top product composition is to be controlled, but no ana
lyzer is available. The tower separates a feed that contains benzene, toluene, and
xylene. The top product contains benzene and toluene and 1 mole % xylene, and
the bottom product contains xylene and 2.4 mole % toluene. The temperature pro
file is given in Figure 17.8 for the base-case operation. The goal is to control the
inferred top composition by adjusting the distillate flow. The potential inferential
control strategy is summarized as follows:

True variable = xD = heavy key in distillate = 1 mole %
Inferential variable = T = tray temperature
Manipulated variable = distillate flow rate
Disturbances = reboiler duty, feed composition
Parameters = tray efficiency, thermodynamics
Inferential relationship: xd=<xT+P (17.6)

A procedure similar to the flash example is followed, except that several tray
temperatures are initially considered, with the goal of selecting the best single tem
perature. The trays considered are numbered 1,5,10, and 30 from the top; all trays
could be included in this analysis, but that would expand the number of graphs.
As we learned in Chapter 16, transformations of highly nonlinear relationships
can often improve the performance of linear control systems. In this example, the
log of the composition is controlled to linearize the feedback loop; this feature
is not required for inferential control but is a good practice in distillation control
(e.g., Koung and Harris, 1987) and is included in the control design. Potential
relationships between tray temperatures and overhead composition for changes
in operating conditions are evaluated in Figure 11.9a through c for changes in
the manipulated variable (distillate flow) and in the disturbances (reboiler duty
and feed composition). The distillation tower is too complex to use an analyti
cal model to determine the relationships. Therefore, the values in these figures
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Column design
Components: Benzene, toluene, xylene

Feed composition: 10,45,45 mole %

Tower design: 42 ideal trays
Feed at tray 21 from top
Pressure = 1000 kPa
Distillate/feed = 0.55
Reflux/distillate = 1.01

Base case compositions: Distillate 1 mole % xylene
Bottoms 2.4 mole % toluene

C%H-
FIGURE 17.7

Parameters for the distillation tower investigated for inferential tray
temperature control.

20
Tray number

FIGURE 17.8

Tray temperature profile for the base case distillation
tower.

were obtained by detailed steady-state simulations of the tray-by-tray model with
accurate thermodynamic data (Kresta, 1992).

For good inferential control, the selected tray temperature would have nearly
the same constant slope for all figures. Each of the candidate tray temperatures
is evaluated individually to determine whether it satisfies the design criteria. The
results in Figure 17.9a show the relationship as the manipulated variable changes,
and the results in Figure 11.9b and c show the relationship as disturbances occur.
All figures show clearly that the tray 1 temperature does not change significantly
even though the tower operation and top product purity change. Thus, the top
tray temperature would be a very poor inferential variable, because the sensor
errors and low-magnitude noise would invalidate any correlation drawn from these
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FIGURE 17.9

Relationship between tray temperature and distillate
composition; (a) for ±5% changes in the distillate flow with the

feed composition and reboiler duty constant; ib) for ±5%
changes in the reboiler duty with distillate flow and feed

composition constant; ic) for changes in feed composition with
distillate flow and reboiler flow constant.
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simulations; therefore, tray 1 will not be considered further. Additional analysis
of the figures reveals that tray 30 is not acceptable, because the slope changes
sign between Figure 17.9a and b. For this tray temperature, a temperature increase
would indicate an increase in top purity for some situations and a decrease in
top purity for other situations. This would not be a good inferential variable—a
result that might be expected, because the feed tray is between tray 30 and the
top product, which is usually not advisable in distillation tray temperature control.
Of the remaining trays, both trays 5 and 10 have reasonably linear responses,
with sensitivities much greater than the noise in the temperature sensors and not
changing greatly for the three figures. Thus, the temperatures for trays 5 and
10 satisfy the steady-state criteria based on this open-loop data. The preliminary
conclusion is that either tray 5 or 10 would be an acceptable inferential temperature.

To evaluate this preliminary conclusion, tray 7 was chosen as representative
of either tray 5 or 10 and was controlled by adjusting the distillate flow as shown
in Figure 17.10 for feed composition disturbances. The steady-state errors in top
product composition are plotted in Figure 17.11 for the case without an analyzer
resetting the inferential controller. This measure of performance is used to evaluate
the reduction in steady-state offset from perfect control that could be achieved with
inferential tray temperature control. As can be seen, the top composition remains
much closer to its desired value compared with the results without inferential
control (open-loop), indicating that, in this case, the tray 7 temperature is a good
single-tray inferential variable. Thus, inferential control offers the potential for
much improved control performance.

The dynamic response of the inferential controller should also be evaluated.
In this case, the tray temperature, being in the top section of the tower, introduces
only a few trays between the controlled and manipulated variables. The dynamic
response between the manipulated distillate flow and the controlled temperature
is expected to be fast. Thus, the selection would appear to be appropriate from a
dynamic viewpoint.

Analyzer controller
not required for

inferential control

—D&H*-1

C£r—
FIGURE 17.10

Control strategy for tray temperature inferential
control.
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Open-loop Tray 7 control

FIGURE 17.11

Steady-state offset for the distillation tower without control
(open-loop) and with tray 7 inferential control (without

analyzer feedback).

To achieve the zero offset performance at steady state shown in Figure 17.11,
the tray temperature must be adjusted to correct small errors in the inferential rela
tionship. This can be done by an operator, who would make manual changes to the
set point based on periodic laboratory analyses. Alternatively, the tray temperature
controller can be a secondary that is reset by an analyzer feedback controller. Such
an approach is shown in Figure 17.10.

The procedure just described does not always identify a good tray temperature,
because in some distillation towers no single tray temperature is a good inference of
product composition. An example of this situation occurs when the key components
have nearly the same volatility. The tray temperatures are not very different, so that
the temperature variation due to composition changes is within the measurement
accuracy of the sensor; in this situation the tray temperatures would not be expected
to correlate with product composition. This situation occurs in the separation of
propylene and propane by distillation, which demands a high-purity top product
with a relative volatility of about 1.1 (Finco et al., 1989). To provide good product
composition in these distillation towers, on-stream analyzers are usually provided.

The development of an empirical inferential model in this section followed
the same steps used for the flash separator. Inferential tray temperature controllers
designed using methods similar to the analysis in this section are widely applied
in the process industries; in fact, far more distillation tower product composition
controllers use tray temperature inference than use on-stream analyzers.

17.6 a INFERENTIAL CONTROL EXAMPLE: CHEMICAL
REACTOR
The inferential control examples for the flash and distillation processes demon
strated the empirical inferential method, in which the model is based on fitting
representative data. In this section the analytical method is demonstrated for a
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FIGURE 17.12

Packed-bed chemical
reactor considered for
inferential control.

process that can be represented by a simple closed-form model. The example
in this section is the packed-bed reactor with an exothermic reaction shown in
Figure 17.12. The goal is to control the moles reacted without an on-stream ana
lyzer. Simplified steady-state material and energy balances, assuming no heat loss,
for the packed-bed reactor with a single reaction occurring are

A - + B

AT = -AHnn

Ar=T4-T3

C/Un v A/irxn A ,-,
X A = A C a

pCP pcP (17.7)

where Ca = concentration of A, moles/volume
p = density, mass/volume

Cp = heat capacity, energy/(°C • mass)
AHnn = heat of reaction, energy/mole

XA = fraction of feed reacted = (Ca^ — CAout)/CAin = ACa/Cahi

A brief summary of the inferential system being evaluated is

True variable = ACa = moles of A reacted
Inferential variable = AT = temperature difference
Manipulated variable = heating medium flow
Disturbances = inlet concentration, feed flow rate
P a r a m e t e r s = P, C P * A H n n
Inferential relationship: ACA = aAT+fi (17.8)

To evaluate the inferential measurement, the design criteria are applied; they re
quire a good relationship between the true variable and the inferential variable
when the manipulated variable is changed and little modification to the relation
ship when disturbances occur. On the first issue, there is clearly a strong relation
ship between temperature difference and amount reacted, which could provide a
reliable inference as the inlet temperature changes. The success of this approach
depends on the temperature difference being much larger than the sensor error
and noise in the temperature sensors, as is often, but not always, the case. On the
second issue, the relationship is insensitive to changes in operating variables such
as feed rate and inlet composition as seen in equation (17.7). However, the rela
tionship is dependent on parameters such as heat capacities and heat of reaction;
if these parameters are relatively constant, they will not influence the accuracy of
the inferential measurement. Therefore, controlling temperature difference across
the reactor could provide good inferential control of amount reacted.

Notice that the analysis to this point is for steady-state conditions. As previ
ously mentioned, the control system dynamics must also be investigated. A typical
dynamic response of the inlet and outlet temperatures and the instantaneous tem
perature difference to a step increase in the heating medium valve position are
given in Figure 17.13. The inlet temperature responds quickly, while the outlet
temperature responds slowly, because of the time required to heat the catalyst.
Therefore, the instantaneous temperature difference is not a good inference of
reactor performance, even though the steady-state temperature difference is an
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Plot of key variables for packed-bed reactor
inferential control. Note the significant inverse

response of the instantaneous temperature difference.

551

Inferential Control
Example: Chemical

Reactor

acceptable inferential variable. The figure demonstrates the complex inverse re
sponse between the manipulated (valve position) and potential controlled (AT)
variables that results from this seemingly simple inferential control design. The
initial inverse response can be a large multiple of the final change, and a PID con
troller might not perform well for this response, depending on the extent of the
inverse response, as demonstrated in Example 13.8.

One method for using the available measurements is to wait for the process
to achieve steady state before calculating a correction in the heating medium flow.
This approach would result in very slow feedback and poor performance if frequent
disturbances occur. A better control design for this example would compensate the
temperatures used in the difference to account for the dynamics. One approach for
this is shown in Figure 17.14, in which the inlet temperature is passed through a
dynamic element that matches the outlet temperature response. The element TY-
2 in the control strategy has the dynamics of the transfer function T4(^)/T3(j).
Then, the two temperatures can be compared and used for control with a PID
control algorithm, which would not "see" the inverse response. Another approach
would be to use a predictive control algorithm in place of the PID; predictive
control, which employs a simple dynamic model in the control calculation and is
able to control processes with complex responses like the one in Figure 17.13, is
presented in Chapter 19.

If the goal in this example were to control the outlet concentration Caoiu rather
than the conversion, the analysis would have to be repeated for this different true
controlled variable. The relationship between outlet concentration and temperature
difference is unchanged as equations (17.7); however, a key operating variable that
might change significantly—inlet concentration—appears in the relationship, as
follows.

AT = — (CAin — Caoui)
pcP

(17.9)

Therefore, maintaining the temperature difference constant does not ensure con
stant outlet concentration when the inlet concentration changes. Further study

Note: TY-2 is a dynamic
model with dynamics of
T3 to T4, e.g.

l.Qg-fr
tt + 1 &

FIGURE 17.14

Design for packed-bed reactor
inferential temperature difference

control that does not have an inverse
response.
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would have to be performed to determine the typical variation in inlet concentration
and whether this variation would introduce unacceptable errors in the inferential
calculation of Caoui-

One more possibility can be explored in the reactor example. In chemical react
ing systems with multiple reactions, it is often important to control the selectivity
of feed to the more valuable product as well as controlling the total conversion.
Thus, we investigate here whether the temperature difference can be used to infer
selectivity. The steady-state energy balance follows for a reactor with two parallel
reactions in which the feed can react to either product B or product C.

A - >
A - >

AT =

B with moles reacted = f g
C with moles reacted = fc
j -AHB) r^B + ( -A / f cU fc

pCP

(17.10)

It can be seen from the equations that the selectivity is not uniquely determined
when the temperature difference is specified. A measured temperature difference
could be the result of many ratios of the products B and C. Therefore, the tem
perature difference is not a satisfactory inferential variable for selectivity in this
case. In fact, if the ratio of fe/fc changes significantly during plant operation and
the heats of reaction are different, the temperature difference is not even a good
inference of the total conversion of reactant A.

The development of an inferential model based on fundamental modelling
principles was demonstrated in this section.

When possible, the inferential control model should be based on fundamental mod
elling principles.

Flue gas

1
IFCJ--I

Feed-H—■£&}

Fuel gas
FIGURE 17.15

Fired heater process with basic
controls considered for
enhancement by inferential
control.

This method provides excellent insight into the variables included in the model
as well as the model structure. The model also provides insight into the accuracy
of the inferential estimate for changes in the operating variables and physical
properties.

17.7 ® INFERENTIAL CONTROL EXAMPLE: FIRED HEATER
As another example, inferential control can be combined with cascade control to
improve the performance of the fired heater shown in Figure 17.15. The outlet
temperature of the fluid in the coil is to be controlled tightly, and a primary sensor
is available for this purpose. As discussed in Chapter 14, this strategy benefits
from a cascade design with a secondary fuel flow controller that corrects for some
disturbances. However, the cascade does not correct completely for the effect of
changing fuel gas density. The upset occurs because the heat of combustion changes
as a result of changing fuel gas composition (density); thus, the heat transferred to
the coil is disturbed. An improvement to the cascade control design in Figure 17.15
involves an inferential variable as the secondary of the cascade that indicates the
heat released through combustion of the fuel gas. The best inferential variable of
the heating value depends on the gas composition; a good inferential measure for
a mixture of light hydrocarbons without hydrogen, which is a common industrial



fuel gas, is the mass flow rate of fuel (see question 17.7). To improve the response
to a composition disturbance, the secondary controller in the cascade design could
be altered to ensure that the mass flow, rather than the pressure difference across
the orifice, is maintained constant. The potential inferential system is summarized
as follows:
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True var iable = Q = actual rate of heat released via combustion
Inferential variable = Fm = mass flow rate of fuel
Manipulated variable = fuel valve position
D i s t u r b a n c e = fuel composition
Inferential relationship: Q = aFm+0 (17.11)

The mass flow can be calculated as the product of the volumetric flow rate and the
density according to the following equation:

Fm = K.
AP

p = KjpVAP (17.12)

where AP = pressure difference across the orifice
p = density of the fuel gas

The inferential calculation requires an additional measurement: the density
of the fuel gas at the stream conditions. This measure can be used so that the
secondary controller maintains the heat fired, rather than the AP, at the desired
value. The improved control strategy shown in Figure 17.16 provides superior

Flue gas

1
Feed-H $Q-

* - 0 ~

H^

4.m4k-cv~~

-®-
Fuel gas

FIGURE 17.16

Fired heater with inferential control for
better performance as fuel gas composition

changes.
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Inferential Control applications (API, 1977). The reader should be aware that the other combustion

inferential measurements and control calculations should be used for different
fuel compositions, such as when hydrogen or inert gases are present (Duckelow,
1981); thus, the control design that is satisfactory for this example is not generally
applicable for all combustion systems.

17.8 [l ADDITIONAL TOPICS IN INFERENTIAL CONTROL

Application of the method described in the previous sections often leads to an
adequate inferential model if one can be found. Several alternative approaches to
inferential control require advanced mathematics to cover completely; thus, only
the basic concepts are introduced here, along with references for further study.

Multiple Measurements
Often there are many measurements available for use in an empirical inferential
model. If the measurements have independent effects on the true controlled vari
able, the method explained in this chapter can be used. However, the measurements
may have correlated effects on the true controlled variable. In the correlated case,
caution must be used when fitting the model to the empirical model. For example,
an inferential model for the distillation example could be formulated using many
(even all) tray temperatures and flows as follows:

ixD)i =ot\T\+a2T2 + --'+ an+\FR + ctn+2FD H + amP (17.13)

where ixo)i = calculated estimate of the true controlled variable
Ti = temperature of ith tray
FR = reboiler heating medium flow rate
FD = distillate product flow rate
P = pressure

The coefficients a,- could be determined from plant data using linear regression
(e.g., Draper and Smith, 1981); however, the strong correlation among the in
put variables can lead to a model with poor predictive ability. Note that the tray
temperatures will be strongly correlated among themselves, since adjacent tray
temperatures tend to increase or decrease as the product purity changes. The diffi
culty arises because the large number of parameters enables the model to fit much
of the "noise" in the data. More advanced statistical model building and diagnostic
methods based on multivariate statistics are recommended when correlated inputs
are used (Kresta et al., 1994; Mejdell and Skogestad, 1991).

Plant Conditions
It is important to recognize that the empirical model represents correlation between
the inputs (inferential variables) and output (true variable) in a base-case set of data
used in model building. This empirical model should be used only within the range
of plant operating conditions used for building the model. Operating conditions



could be feed rates, feed composi t ions, product qual i ty specificat ions, or contro l 555
strategies. The empirical inferential model could give poor predictions when used i^toiMirfjMMyagWfcKi
outside the base-case conditions and should be reestimated when plant operations, Conclusions
including control structure, change (Kresta et al., 1994).

Kalman Filter
A powerful method exists when a fundamental dynamic model is available. The
Kalman filter provides a method for using measured variables to update the funda
mental model and provide a dynamic estimate of the unmeasured true controlled
variable (Grewal and Andrews, 1993). This method requires mathematics beyond
the general level in this book; considerable engineering effort; and, when applied,
more intensive real-time computing. It should be considered when a dynamic in
ferential variable is required.

17.9 m CONCLUSIONS
The importance of inferential control cannot be exaggerated. Many variables are
difficult or impossible to measure on-stream for use in automatic, real-time control.
To counter this shortcoming, inferential control is widely applied in the process
industries. It may seem surprising that most of the analysis in this chapter involved
steady-state relationships. This situation results from two causes. First, the ma
jor benefits for inferential control often result from a substantial reduction of the
steady-state offset of the true controlled variable from its desired value. To achieve
this goal, the inferential variable with the most accurate steady-state relationship is
desired, even if the dynamics of the inferential controller are not the best. This situ
ation is demonstrated in the chemical reactor example, where the inverse response
dynamics are not desirable.

Another reason for the emphasis on steady-state analysis is the lack of a gen
erally accepted design method for dynamic inferential control based on empirical
models. Some initial developments in this area are noted by Kresta (1992). Note
that the Kalman filter also addresses dynamic control of unmeasured variables
when fundamental models exist.

When engineers first encounter inferential strategies, they often believe that
the designs were based on trial-and-error methods or perhaps developed through
years of observing process behavior. To the contrary; the evaluation of inferential
variables follows the procedure presented in this chapter. However, the insight
required for selecting the proper measurements and process relationships cannot
be condensed into a simple procedure. This is a critical step, because inferential
relationships can be developed over time using plant data only if the design engi
neer has provided the appropriate sensors. An additional challenge is to determine
the proper candidates from among the numerous existing sensors—a decision re
quiring process knowledge, tied to the understanding of the final application with
noisy sensors and process disturbances. Engineers should view this situation as an
opportunity to apply their technical and problem-solving skills to this important
aspect of process monitoring and control, recalling that "engineering insight" usu
ally comes from application of fundamental principles, quantitative analysis, and
hard work.
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ADDITIONAL RESOURCES
For additional examples of selecting a single tray temperature for distillation con
trol, see the following:

Luyben, W., "Profile Position Control of Distillation Columns with Sharp
Temperature Profiles," AIChE J., 18,1,238-240 (1972).

Tolliver, T., and L. McCune, "Finding the Optimum Temperature Control
Trays for Distillation Columns," In. Tech., 75-80 (September 1980).

Experimental design is a crucial step in collecting data for model structure
selection and parameter estimation. Only the most rudimentary data was used in
the examples in this chapter; experimental design is covered in

Box, G., S. Hunter, and J. Hunter, Statistics for Experimenters, Wiley, New
York, 1987.

QUESTIONS
17.1. (a) Discuss the inferential design criteria in your own words.

ib) Why are cases with changes in disturbance and manipulated variables
included when selecting an inferential variable?
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id) Discuss how specifications on product quality and economic values
for energy and product quality would be used when evaluating an
inferential variable.

ie) Complete the block diagram in Figure 17.1 for closed-loop, feedback
control of the true controlled variable, CV,(.s), using cascade control.
Give the required modes for both controllers in the cascade to ensure
that there would be zero steady-state offset in the true variable for a
steplike disturbance.

17.2. When the inferential controller is a secondary in an automated cascade
design, the primary controller can be thought of as correcting the inferential
model.
ia) Given the following model for the control strategy in Figure 17.5,

explain how the primary controller corrects the inference; that is, which
parameter(s) are essentially modified through the feedback.

xe = otT + ft
ib) How does this feedback affect the stability of the secondary loop?

17.3. The measured variables used directly or in calculations for inferential vari
ables described in this chapter have been outputs (causes) from the process.
It would be possible to measure inputs, both manipulated variables and dis
turbances, and build an inferential model using process input variables.
id) Describe the similarities between inferential control using input vari

ables and other enhancements covered in Part IV.
ib) Discuss the differences between using process output and input vari

ables for inferential control and when each would be preferred.

17.4. An analyzer feedback control system that adjusts the reboiler heating
medium flow, as in Figure Q14.6, is subject to disturbances in heating
medium temperature. Design an inferential controller, implemented as a
cascade secondary, that would improve control performance for the distur
bances noted. State the assumptions you have made in the design.

17.5. Consider the following questions for the flash process in Section 17.2.
id) How well would the temperature inferential controller perform if the

feed had only two components: ethane and propane?
ib) For the original feed composition and operating conditions in Ta

ble 17.1, how well would the temperature perform as an inference
of the ratio of n-butane to n-propane in the liquid phase?

17.6. The series of two chemical reactors in Example 3.3 are considered in this
question. The reaction is A -» B, and because of the cost of sensors, the
measurements available are the feed flow, tank temperature, and second-
tank composition of component A. Evaluate the use of these measurements
for inferential control of the composition of component B in the second
tank, which should be maintained within ±0.05 mole/m3.



558 17.7. Collect data on the heats of combustion for light hydrocarbons (Cl to C4),
]MmmmmmMmmmm\ hydrogen, and carbon monoxide.
CHAPTER 17 id) In Section 17.7, the proposal was made that the mass flow is an accept-
inferentlai Control a^Q inferential variable for the rate of heat release upon combustion

for a stream of light hydrocarbons only. Evaluate this statement for
significant changes in the stream composition.

ib) Reconsider (a) when significant hydrogen has been added to the stream.
Is mass flow an acceptable inference? If not, what measured or calcu
lated flow quantity is an acceptable inferential variable?

(c) Reconsider ib) with significant carbon monoxide.

17.8. Implementing an inferential controller using several measured variables
should involve special care.
id) Provide a detailed description of the calculations required to imple

ment the digital inferential controller using temperature and pressure
shown in Figure 17.7. You should consider initialization, calculation
of the controlled variable, the feedback controller, and reset windup
protection.

ib) Assume that it is possible to check the validity of all measured sig
nals used in id)', this might be achieved by ensuring that the signal is
within the allowable range. Add the logic used to respond to an invalid
measurement for pressure and temperature. (Hint: The logic should be
different for the two measurements.)

ic) Discuss the use of filtering the measured variables in inferential control.
17.9. A criterion for perfect steady-state inferential control in response to a dis

turbance is given in Section 17.1. Extend this approach to determine the
criterion for perfect steady-state inferential control in response to a step
change in the inferential controller set point. How would you determine
which of these criteria is important for a potential application?

17.10. The concentration of component B (Cb) in the reactor system in question
5.12 is to be controlled. It cannot be measured, but the feed concentration
of component A (Cao). reactor volume, and inlet flow can be measured.
Propose an inferential variable for this system and discuss its strengths and
weaknesses.

17.11. Derive the model used for the inferential control of the fixed-bed reactor,
equation (17.7).
ia) Discuss how you would evaluate (1) the required accuracy (or repro

ducibility) for the temperature sensors, (2) the effects of heat transfer
to the surroundings, and (3) the sensitivity of the inferential variable
to changes in the feed flow rate. How would the results differ if a new,
more active catalyst were used in the reactor?

ib) Suggest a modification to the control system design in Figure 17.15,
employing an enhancement presented in Part IV, that would provide
better performance for disturbances in T2.

17.12. For the inferential control system with closed-loop analyzer feedback in
Figure 17.5:
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propane product be controlled by adjusting variables in the final dis
t i l l a t i o n c o l u m n ? I f y e s , w h i c h v a r i a b l e s ? Q u e s t i o n s

ib) The same analyzer could measure the amount of butane in the propane
product. Could this variable be controlled by adjusting a manipulated
variable in the distillation column? If yes, which variables(s)?

17.13. The concentration of component A (Ca) is to be controlled in the non
isothermal CSTR in Section 3.6. It is not measured, but the following
measurements are available: F, Cao. To, T, V, Fc, Tcm, and rcout. Pro
pose an inferential variable for this system and discuss its strengths and
weaknesses.
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18.1 a INTRODUCTION
Level control is extremely important for the successful operation of most chem
ical plants, because it is through the proper control of flows and levels that the
desired production rates and inventories are achieved. Since some level processes
are non-self-regulatory (i.e., unstable), automatic control is required to prevent
the levels from overflowing or emptying completely when flow disturbances oc
cur. Furthermore, the performance of some processes, such as chemical reactors,
depends critically on the residence time in the vessel, which in turn depends on
the level. In addition, the study of level control is helpful at this point because it
emphasizes the importance of control objectives in controller design and tuning.
Contrary to the situation with most control loops, the behavior of the manipulated
variable—a flow in or out of the vessel—often is of as much importance as is
the controlled variable itself! Thus, we have to modify some of the approaches
developed in previous chapters to achieve the desired dynamic performance. As
should be expected, these modifications are based on the principles of dynamic
modelling and control system stability and performance.

In this chapter we will first review the types of inventory processes and their
process dynamics. Liquid levels are used throughout this chapter, but the results
are also applicable to the control of inventories of solids and gases, although the
process equipment and sensors must be modified. As we will see, level is one of the
few industrially important processes for which the closed-loop dynamic response
can be determined analytically. Based on this analysis, the dynamic performances



562

CHAPTER 18
Level and Inventory
Control

of standard feedback controllers are evaluated, and the tuning rules and feedback
controller algorithms to meet new objectives are developed. Finally, some ad
ditional application issues, such as selecting manipulated variables for levels in
series, are discussed.

-AO

u
do

v c A

18.2 ® REASONS FOR INVENTORIES IN PLANTS
There are many good reasons to include inventories in plants. First, inventories
are provided to enable plant operation to continue when some flows temporarily
decrease, perhaps to zero. Some examples of periodic fluctuations in selected
flows are feed material delivery, product shipping, and individual unit shutdown
for maintenance. Inventories to account for these discontinuous flows can be quite
large—on the order of hours or days of processing—so that plant operation can be
maintained for periods when one or a few flows are zero. For example, a petroleum
refinery which processes 700 m3/h of crude oil and receives deliveries every three
days requires over 50,000 m3 of inventory and usually has much more, to store
different crude oils separately and to account for delays in feed delivery.

Another important use of inventories is to ensure liquid flow to a pump. If the
vessel were to empty, liquid flow would be interrupted to the pump. Many pumps
cannot automatically resume flow after the flow has stopped; even worse, many
pumps can be damaged if they remain in operation without flow. Therefore, a liquid
inventory is required at all times. For most units, an inventory with a holdup time
ixn = maximum volume divided by normal flow rate) of 5 to 10 min can attenuate
normal flow variations.

Finally, inventories can be placed between a disturbance source and a sensitive
unit to attenuate variation in stream properties and flow rate in input flows, so that
the disturbance magnitude to the sensitive unit is significantly decreased. Vessel
sizing to reduce disturbances, using frequency response principles introduced in
Parts II and IH, is demonstrated in the following example.

EXAMPLE 18.1.
The concentration of a feed stream to a stirred tank, CAo. experiences significant
variation due to upstream process operation. The liquid flow rate is 2 m3/min, and
the variation can be closely approximated as a sine wave with an amplitude of 20
g/m3 and a period of 6 min/cycle. Analysis has determined that the disturbance
cannot be reduced further in the upstream unit. The downstream chemical reactor
can tolerate inlet concentration variation CA of no more than 2.0 g/m3. Determine
the size of a well-mixed vessel to be placed before the reactor. Assume that the
vessel volume is controlled at a constant value.

We begin by deriving the component material balance on the liquid in the
stirred tank, as given below.

V^ = FiCA0-CA)
For this example, the volume (V) and the flow rate (F) are constant; therefore, the
equation is linear. We can express the balance in deviation variables from an initial
steady state to give

- a \r' — v r' — r'
'P^A0 'A0 where K„ = 1 and z = —d t n r ™ n u r F

By taking the Laplace transform, we can determine the transfer function model
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For this system, the time constant z is equal to V/F. The amplitude ratio is

K i J < o ) \ 1AR =
|CA0(»| V^2r2 + 1

The value for the time constant and the volume can be calculated from these
relationships:

co = 2 /̂period = (6.28 rad/cycle)/(6 min/cycle) = 1.047 rad/min

AR = 2/20 = 0.1

1 - 1 = 9.50 min
o)V AR2

V = zF = (9.5 min)(2 m3/min) = 19 m3
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In spite of the many helpful aspects of inventories, there are several reasons
to minimize or eliminate them. First is the cost of the vessels themselves, along
with the land or building space and maintenance. Second is the cost of material
inventory, which is money invested in feedstock rather than distributed as profit.
Third is the potential quality degradation from storing material. Finally, and often
most important, is safety; the net effect of any accident can be much worse when
a large inventory of flammable or hazardous material is involved.

Thus, only the minimum inventory is provided in a plant to achieve the desired
dynamic operation.

As is apparent by now, control objectives play a major role in the design and tuning
of feedback strategies. Levels are normally controlled by adjusting a flow in or
out of the vessel. (The selection is discussed later in the chapter.) Assume that the
level in Figure 18.1 is to be controlled by adjusting the flow out and that the flow
in experiences flow rate disturbances. Analysis of the entire process is required
to determine the control objectives, and two distinct situations commonly occur.
The first, referred to as tight level control, is where the level is very important
and variation in the manipulated flow is not of great importance; for example,
this situation occurs when the vessel is a chemical reactor, with the manipulated
flow going to a storage tank. The second situation, referred to as averaging level
control, occurs when variation in the level is not important, as long as the value
remains within specified limits, but the manipulated flow should not experience
rapid variations with a significant magnitude. This situation occurs in controlling
the level of a storage drum upstream of a critical unit. These two different control
objectives are summarized in Table 18.1 with their common designations, tight
and averaging level control.

out

FIGURE 18.1

Typical level control system.
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TABLE 18.1
Comparison of tight and averaging level control
Variable Tight level control Averaging level control
Controlled variable: level Fluctuations should be reduced

to a small magnitude

Manipulated variable: flow Fluctuations required to
achieve desired level
performance are accepted

Fluctuations within specified
limits, e.g., 20 to 80%,
are allowed
Fluctuations are to be
minimized, consistent with
maintaining the level within limits

18.3 ® LEVEL PROCESSES AND CONTROLLERS
The level processes must be understood before controller algorithms can be se
lected. Plant vessels are built in many different shapes, such as vertical and hor
izontal drums and spherical and cylindrical tanks. To simplify the mathematical
analysis, only cylindrical tanks with straight sides are considered in this chapter,
but all results can be extended to more complex designs, although many vessels
do not significantly deviate from these assumptions in their normal range of oper
ation. Most of the level processes can be characterized by one of the four process
designs shown in Figure 18.2. Each of these processes is briefly described here,
and models are derived for the industrially important designs.

ia)

\

—C&H-
ib)

ic)
FIGURE 18.2
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Various common level processes.
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The overflow process in Figure 18.2a is seldom used in chemical plants be
cause of its inflexibility in changing the level; however, it is used for large flows
where gravity can be used as the driving force (e.g., in wastewater treatment plants).
The gravity flow process in Figure 18.2& is not used frequently in process plants
either, because it also requires a plant to flow downhill. Therefore, the process
designs in Figure 18.2a and b will not be considered further in this chapter.

The level with flow out via a pump shown in Figure 18.2c is a very common
design. The flow out depends on the valve position v and the pressure drop; here,
the valve characteristic is assumed linear, so that Cv = K. When a pump supplies
the driving force for flow, the pump outlet pressure is relatively constant; thus, the
flow is independent of the level.

d L
ATt f \ r \ f c \

Foui = Kiv\ P \ - P i with P\ & constant

(18.1)

(18.2)

565

Level Processes and
Controllers

The flow from a high-pressure to a much lower-pressure system in Figure
18.20* also involves a nearly constant pressure drop, since the effect of the head of
liquid is very small. Thus, it is independent of the liquid level.

dL
A—r- = F[n — ^outd t

P \ ~ P 2 g
F o u t = K i v ) . - w i t h P, = P 3 + p L ± -

V P 8 c
P3

(18.3)

(18.4)

The models derived in equations (18.1) to (18.4) demonstrate that the levels in Figure
18.2c and d are non-self-regulating, because the derivative of the level (the flows in
and out) is not significantly influenced by the liquid level.

The responses of such levels without control to two common input flow distur
bances are given in Figure 18.3a and b. As is apparent, the level without control can

Level

Flow in

Level

Flow in = i — i =

Time
ib)

FIGURE 18.3

Response of a non-self-regulating level without control: (a) to sine flow variation; ib) to a pulseflow variation.
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exceed its limits for all disturbances, depending on magnitude, and will definitely
exceed limits for a step change.

Based on the open-loop responses, one would conclude that feedback control
is essential. The process has no dead time and a phase lag of only 90°, indicating
that feedback control would be straightforward for tight level control. This is
actually the case in many systems, since the sensor and valve dynamics are usually
negligible. The characteristics of several common level feedback control systems
are now considered. The derivations involve the flow as the manipulated variable
in a cascade structure as shown in Figure 18.1, which is essentially the same as
manipulating the valve for the levels under consideration.

We begin by considering proportional-only feedback control. For the non-
self-regulating process, the following derivation provides the transfer function for
the closed-loop system.

AdJL = F! _ F>d t m out (18.5)

with V — L — Ls and F' = F — Fs. Substituting the control equation (F ,̂ =
KdLsp — L) — —KCV), with Kc < 0 for negative feedback, A the constant
cross-sectional area, and Ls = Ls?, and taking the Laplace transform yields the
following transfer function:

Lis)
Fmis)

Vi -Kc)
A

S + \
(18.6)

i-Kc)
Note that the closed-loop system is first-order, clearly self-regulating. As a result,
the response of the level and the outlet flow to a step change in the inlet flow would
be overdamped. As expected, the level is not necessarily controlled to its set point;
the steady-state offset for a step flow disturbance (AFjn) can be determined from
the final value theorem to be AFm/i—Kc).

Next, proportional-integral control is considered. The process model in equa
tion (18.5) is unchanged, and the controller equation becomes

F'mx = -Kc^L' + jJ\'dt^ (18.7)

Substituting this expression into equation (18.5) and taking the Laplace transform
yields the transfer function for the closed-loop system.

Ljs) = [j-Kc)\S
FUs) x2s2 + 2xi-s + l

with X =
AT,

i-Kc)
and 1 Td-Kc)^ = 2V~X-

(18.8)

(18.9)

By applying the final value theorem, it can be shown that the system is self-
regulating with zero offset for a step disturbance. The response is now second-
order and can be either overdamped or underdamped, depending on the value of
the damping coefficient £. As shown in equation (18.9), the damping coefficient
depends on controller parameters Kc and 7/ and the vessel area.



Important qualitative features of the dynamic response and the steady-state offset
for the level control system depend on the process design and controller algorithm
and its tuning.

Before we determine how to match these factors to the control objectives, a mod
ification to the linear PI controller is considered.
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18.4 n A NONLINEAR PROPORTIONAL-INTEGRAL
CONTROLLER
Looking ahead to the application of averaging level control, we anticipate the
need for an algorithm that makes small flow adjustments for small level deviations
from set point and large adjusts for large deviations. Thus, a nonlinear algorithm
seems appropriate. Many nonlinear modifications have been proposed; only one
of the more common is discussed in this section (Shunta and Feherari, 1976).
The algorithm is given as follows, and the relationship of the proportional mode
between the level and manipulated flow is shown in Figure 18.4.

™ = -K<(L' + T,f0L'd') (18.10)

with
K c - \ K C

s
KCL

when
when

< L
> LMB J

O r =
KCL
Kcs

Along with the integral time and gain, KcL, the algorithm has two additional
tuning parameters: the "break" point between the large- and small-controller-gain
regions, L'B, and the ratio of the large and small gains, r^. Note that if the ratio
is 1, the controller in equation (18.10) simplifies to a linear algorithm. If the ratio
is infinity, the nonlinear controller takes no action for small deviations; that is,
it has a "dead band" for an error ±L'B. The integral mode ensures that the level
ultimately reaches its set point, whereas an infinite value for 7/ would result in a
proportional-only controller with steady-state offset.

18.5 n MATCHING CONTROLLER TUNING
TO PERFORMANCE OBJECTIVES
The two sets of control objectives in Table 18.1 require different approaches, and
each is presented separately in this section. The approach for determining the tuning
constants for this simple process is to specify some key characteristics of the closed-
loop transient response to a step flow disturbance and then to calculate tuning
constants that achieve the specified characteristics. As with all tuning calculations,
the resulting constants should be considered initial estimates, which can be fine-
tuned based on plant performance.

Tight Level Control
We will begin by considering the case of tight level control, where the performance
of the level is of greatest importance. As mentioned, the control problem is not

K.

Controller
gain

cL

K.cS

- L \ L \

Error,
- L'

ia)

Controller
proportional

term

ib)
FIGURE 18.4

Graphical display of the nonlinear
PI control algorithm for level

control.
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difficult, because of the lack of dead time (or inverse response) in the process.
As a result, a linear controller is adequate. The key variables used to character
ize the system are the level process design and the maximum step disturbance in
the uncontrolled flow. The desired transient response can be characterized by the
maximum allowable level deviation in response to the disturbance and the damp
ing coefficient £. A good starting value for the damping coefficient is 1.0, but the
method presented here can be used for any other damping coefficient. The follow
ing expression gives the dynamic response of a level under PI control to a step flow
disturbance when the damping coefficient is 1.0. With the step inlet flow, AFm/s,
the expression for the level in equation (18.8) can be determined by inverting the
Laplace transform using entry 6 in Table 4.1.

L' = AFt ■t(-Kc)/2A (18.11)

1&—-

The time when the maximum occurs can be determined by differentiating
equation (18.11) and setting the result equal to zero, which gives a unique value
of /max = 2A/i—Kc) because the system is not underdamped. This time can be
substituted into equation (18.11) to determine the maximum level deviation for a
step input.

ALmax = 0.736 AF„
i-Kc) (18.12)

The tuning constants Kc and 7} can be calculated from equations (18.9) and
(18.12) using specified values for the control performance: the magnitude of the
disturbance, AFmax, and desired values for £(= 1.0) and ALmax.

An alternative tuning approach, using specifications for the maximum level
deviation and maximum rate of change for the manipulated flow, is given by
Cheung and Luyben (1979). Their approach requires a trial-and-error solution,
for which they have prepared graphical correlations.

EXAMPLE 18.2.
The level in a vessel with a volume of 20 m3, a cross-sectional area of 10 m2, and a
normal flow of 2 m3/min is to be controlled tightly with a PI controller. The expected
maximum step change in the uncontrolled flow rate, based on plant experience, is
0.2 m3/min (i.e., 10% of normal). Tight level control requires a small level deviation,
so that the maximum allowable change in the level is selected to be 0.05 m (i.e.,
±2.5% of the range). Estimate the tuning constants for PI and P-only controllers.

Solution. The damping coefficient is selected to be 1.0. Using equations (18.9)
and (18.12), the tuning constants for PI control are

Kc = -0.736 A Fn
Qtsmax

-0.736(0.2 m3/min) _ _ m3/min
0.05 m m

4 ? A ( 4 ) ( l 2 ) 1 0 m 2 .
i / = - — t t t = — — — = I j . o m mi-Kc) 2 94 m3/min

and, for P-only control,

Kc = -AF„
ALr

m

0.20 A m3/min= -4.0—-0 . 0 5 m
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FIGURE 18.5

PI level control for Examples 18.2 and 183: (a) tight, ib) linear averaging.

The dynamic response for the level under tight PI control subject to the step dis
turbance is given in Figure 18.5a.

Linear Averaging Level Control
Averaging level control can be achieved with either a linear or a nonlinear con
troller. Both are discussed here, with the linear given first. Before presenting tuning
methods, it is worth noting that averaging level control is improved by providing a
large inventory (i.e., vessel volume). Thus, the performance of the averaging level
system depends on the process, algorithm, and tuning—which is naturally true for
all control systems.
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The approach for the linear controller tuning is the same as for the tight control,
except that the value for the allowable deviation would be much larger, to provide
as much attenuation in the manipulated variable as possible.
EXAMPLE 18.3.
Calculate the tuning constants for Example 18.2 for a linear averaging level con
troller. All physical parameters are the same (A = 10 m2, F = 2 m3/min), and
AFmax = 0.2 m3/min; however, the maximum level change is selected to be 0.8 m,
which is ±40% of the level range, to allow inlet flow variations to be attenuated.

Solution. The same equations as in Example 18.2 are used. For PI control,
-0.736 A Fmax

Kr = ALr

T, =

- 0 . 7 3 6 ( 0 . 2 m 3 / m i n ) m 3 / m i n— = —0.1 o4

4£2A
i-Kc)

0.8 m
(4)(12)10 m2

m3/min

m

= 217 min
0.184 m

and, for P-only control,

Kc =
- A F „
ALr

= -0.25 m3/min
m

A dynamic response for the level under averaging PI control subject to the
step disturbance is given in Figure 18.5b. The slower response of the flow out is
obvious, and the maximum rate of change of the manipulated flow is about 1/15
the value for the tight level control response, which was achieved with the same
vessel and control algorithm through modified tuning.

C&I—*-

Nonlinear Averaging Level Control

The nonlinear controller has two additional parameters to specify. With proper val
ues for these parameters, the nonlinear controller can provide better performance
(i.e., make smaller manipulations) when the system experiences frequent, small
flow disturbances. The value of L'B is selected to be smaller than the maximum
level deviation but to be larger than most level variations experienced in normal
operation. The value for the gain ratio is selected to provide small corrections for
the small deviations; a value of 20 is usually a good starting point. To simplify the
calculations for the initial estimates, the proportional gain is calculated so that the
proportional term alone can correct for the largest expected flow disturbance. The
proportional term can be calculated as follows by conforming to Figure \SAb:

AFmax = —KcsL'B — Kcd^Emax — LB) = I h ALmax — L'B J (—Kcl)

(18.13)
Then the integral time is calculated so that the damping coefficient is 1.0 for the
small-gain region, which ensures that the damping coefficient is greater than one
in the large-gain region.

EXAMPLE 18.4.
Calculate the tuning constants for the averaging level control objective and pro
cess in Example 18.3 with a nonlinear averaging controller.



Solution. The nonlinear controller requires two additional parameters. The guide
lines suggest that rK = 20, and we select L'B to be relatively large, to provide small
outlet flow variations for most inlet flow oscillations. Thus, L'B = 0.7 m, which is
±35% of the level range. For the PI controller,

A - 10 m2 F = 2 m3/ min AFmax = 0.2 m3/ min

KcL =

n a B

- A F „
B - l _ A 7 1 >

rK

- 0 . 2 m 3 / m i n m 3 / m i n= —1.48
B

0.7m

T , =

*«'%' ~°'m
4?A

+ 0.1 m

m3/min

m

m
(4)(l2)10m2

i-KcL/rK) = 0.074 m3/min
= 540 min
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Now that we have tuned the linear and nonlinear controllers, it is worthwhile
comparing their performance for a periodic input disturbance, because plants often
experience such variation. The responses to sine disturbances are given in Figure
18.6a through c forthe tunings determined in Examples 18.2 through 18.4, with the
input flow disturbance a sine with magnitude 0.2 m3/min and period of 80 min. The
results in Figure 18.6a demonstrate the performance of the tight level controller,
which maintains the level close to its set point but has a large maximum rate of
change in the output flow, 1.8 x 10~2 (m3/min)/min. Recall that it is not possible
to achieve tight level control with small flow manipulations simultaneously.

A linear PI controller provides excellent performance when tight level control is
required. The alternative design, using a proportional-only controller with a high
controller gain, is also acceptable.

The performance for averaging level control demonstrates that both linear
and nonlinear approaches provide flow attenuation; in other words, the manipu
lated flow varies substantially less than the inlet flow. The response for the linear
averaging PI controller is given in Figure \S.6b, which demonstrates the smaller
variability in the manipulated flow [the maximum rate of change is 0.40 x 10~2
(m3/min)/min], and a larger variability in level. The response for the nonlinear av
eraging PI controller is given in Figure 18.6c, which demonstrates the even smaller
variability in the manipulated flow (the maximum rate of change is 0.16 x 10~2
(m3/min)/min) and a yet larger variability in level. Note that the nonlinear av
eraging level controller reduced the maximum rate of change of the manipulated
flow by an order of magnitude when compared with the tight controller for the
same inventory volume.

The nonlinear level controller is preferred for averaging control when the flow vari
ations and vessel volume are such that the level remains within ±L'B for most of the
time.
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The level algorithms and tuning in this section have provided the flexibil
ity to use the existing inventory to the greatest advantage. However, acceptable
performance for averaging level control requires sufficient inventory; therefore,
determining the proper inventory is addressed in the next section.

18.6 n DETERMINING INVENTORY SIZE

Naturally, the control performance is influenced by the vessel holdup time, so that
an important task of the engineer is to determine inventory sizes when designing
or modifying the plant. Given the flow rate disturbance, the performance spec
ification, and the controller tuning method, the holdup time can be determined

Time Time Time

2.3

* 2o
E

1.7

AAAAAA; J2
500

Time Time Time

500

FIGURE 18.6

500

Level control for an input sine flow disturbance: (a) tight PI control with tuning from Example 18.2; ib) linear averaging
control with tuning from Example 183; ic) nonlinear averaging control with tuning from Example 18.4.



using the results from previous sections. For a step disturbance, the calculations
would involve the relationships already derived and used in tuning calculations
to determine the volume required to maintain the level within ±ALmax and the
maximum rate of change of the manipulated variable at or below a specified value.
It is assumed that the damping coefficient should be 1.0, although the approach
can be adapted for other values.

The calculation of the inventory size can be performed in a noniterative manner
by using the analytical expression of the manipulated flow to a step change in the
in flow. First, the transfer function relating the flows in and out is derived using
equation (18.8) and the PI controller transfer function:

Fowjs) _ Lis) Foutjs)
Fmis) " Fids) Lis)

T,

x2s2 + 2$xs + \

(18.14)

' - * ( ■♦ £ ) '
T, s + \

x2s2+2i-xs + ]
Then the step input is substituted (Fm(s) = AFm/s) and the inverse Laplace
transform is determined from entry 8 in Table 4.1 to give

F'i*) = AFit \ + n ^ t - \ \ e - ^ ] ( 1 8 . 1 5 )

The derivative of the flow rate can then be taken to give
dF(out = AFir K: 7 7 - t / + ;m (18.16)d t | _ \ T * T -

It is clear from this result (noting that 7/ > x for the tuning selected) that the
maximum rate of change occurs at t = 0. Setting t = 0 and substituting the value
of t from equation (18.9) gives

dF0ilt
dt ■ m

i-Kc) (18.17)

The value of the controller gain from equation (18.12) can be substituted to give
dF(out

dt
0.736(AFin): (18.18)

m a x M & L m a x )
The product AiALmax) represents the allowable variability in the inventory

above (or below) the set point. If the level is allowed to vary ±40%, A(ALmax) =
0.40 V. Thus, the final expression for the inventory volume for linear averaging
level control with conventional tuning is

V = 1.84(AFmax)2
dF(out

dt

(18.19)

EXAMPLE 18.5.
A flow into a vessel has a base value of 2.0 and a maximum step disturbance of 0.20
m3/min. The flow out should have a rate of change that does not exceed 1.0 x 10~3
(m3/min)/min, and the level can vary within ±40% of its middle value. Determine
the inventory size to satisfy this requirement when the flow out is manipulated by
a PI controller.
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Solution. Equation (18.19) can be used directly to calculate the volume to be
1.84(0.20 m3/min)2V = = 73.6 m3
1 x 10-3 m3/min2

The area and height can be selected to satisfy this volume (e.g., A = 36.8 m2
and L = 2m). The tuning for this controller can then be calculated for AL^ = 0.8
mtobe

Kr = 0.736 AF„
ALr

(0.736)(0.20 m3/min) _ m3/min

T, = 4£A

0.8 m

4(1)(36.8 m2)

m

= 800 min
-Kc 0.184(m3/min)/m

The result of this example is a level process and tuning that (just) satisfy the
objective on the outlet flow behavior for the specified input step disturbance.

1 8 . 7 □ I M P L E M E N TAT I O N I S S U E S

Level control is generally quite straightforward to implement. Many different sen
sors can be used to determine the inventory in a vessel. The most common is the
pressure difference measurement, which is shown in Figure 18.1. Assuming a con
stant liquid density, the difference in pressure is proportional to the level in the
vessel between the two measuring points, called taps. Note that the lower tap is
usually placed somewhat above the bottom of the vessel, to prevent plugging from
a small accumulation of solid contaminants. The level displayed to the operating
personnel could be expressed in units of length; however, this would require the
people to remember the maximum level in each individual vessel. Therefore, the
level is normally displayed as a percentage of the measurement range.

Many other types of level sensors are possible (e.g., Blickley, 1990; Cho, 1982;
and Cheremisinoff, 1981). An example is a float that remains at the interface and
indicates the level by its physical position as transmitted by a connecting rod.
Levels of materials that do not rest evenly in the vessel, such as granular solids,
or of very corrosive materials can be measured by sound waves directed at the
material from above a vessel. For some accurate measurements, the entire vessel
and contents can be weighed.

Level control often uses cascade principles by resetting a flow controller,
as shown in Figure 18.1. Usually, this is not to improve the dynamic response
to disturbances but to make the operation easier for the operator when the cas
cade is opened. Level control can be implemented with either linear or nonlinear
proportional-only or proportional-integral control algorithms. Both are available
as preprogrammed options in most digital controllers.

18.8 m VESSELS IN SERIES
In many chemical plants, units are arranged in series as shown in Figure 18.7. Plants
do not usually have many simple tanks in series, but units such as reactors, flash
drums, and distillation towers are generally in series and have liquid inventories.
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Two possible control designs for levels in series.

The behavior of these systems is investigated here by considering the simpler, but
representative, system of tanks. We will consider two important questions:

1. How can the throughput and levels be controlled?
2. How does a series of levels respond dynamically?

We can answer the first question by analyzing the degrees of freedom in the
system. For simplicity, proportional-only controllers are considered, but the results
are equally valid for other controller algorithms. The system in Figure 18.8 can be
modelled according to the following equations:

For each level in = 1 to 3):
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dL'
dt n - \ (18.20)
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Response to step of input flow of
three series level controllers:
ia) P-only; ib) PI (individual £'s =
1.0); ic) PI level (individual $'s =
0.5).

and one of either of these controller equations for each level:
F ' n = - K c L ' n o r F ' n _ x = - K c L ' n ( 1 8 . 2 1 )

Note that there are six equations and seven variables (three levels and four flows).
Thus, one flow rate can be set independently. This result should not be surprising,
since level control requires the inlet and outlet flows to be equal at steady state.

Another question to answer is which flow should be set to determine the flow
rate. The degrees-of-freedom analysis cannot provide further insight, because any
flow is acceptable; thus, this detailed design decision requires more information on
the control objectives and process equipment. If no constraints are encountered in
the plant, the inlet or feed rate is often set independently, as shown in Figure 18.8a.
If the production rate should be held constant, the outlet flow is set independently,
as shown in Figure 18.86. If an intermediate flow should be constant, as is the
case if a constraint like pump capacity or heat exchanger duty is encountered in an
intermediate unit, the intermediate flow can be set independently. An interesting
control strategy that controls all levels and maximizes the flow rate is given by
Shinskey(1981).

Now that the control structure has been determined, the second question about
dynamic response can be addressed (Cheung and Luyben, 1979). Based on equa
tion (18.14), the series of three identical level systems shown in Figure 18.8a can
be combined in the following overall transfer function:

Fiis)
- f e

7/j + l
)

(18.22)Fois) \x2s2 + 2xt=s + \
Since the poles of the individual level control systems are the poles of the series
system, if each individual system is overdamped, the overall system is overdamped.
However, if the systems are underdamped, the overall system will be underdamped.
Dynamic responses of the manipulated flows are given in Figure 18.9a through c
for the system with different damping coefficients in response to a step change in
the inlet flow Fo.

The flow adjustments are monotonic for the proportional-only controllers, but
the adjustments result in overshoot for all proportional-integral controllers, even
those that are critically (or over) damped.

It is important to note that for a step response (1) the manipulated flow for PI control
always overshoots its final value and (2) the magnitude of the oscillations increases
in series systems when each element in the series is underdamped!

A relatively small oscillation at the first level can be magnified, leading to very
poor performance, by other downstream levels in the series. Thus, a series process
structure of inventories heightens the importance of careful algorithm selection
and tuning for each level controller.

18.9 m CONCLUSIONS
The key features of inventory control are the range of control objectives and the
need to match the control algorithm with the relevant objective. Feedback control
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Analysis of plant requirements indicates that averaging control is appropriate
for many level systems. The linear P-only and PI algorithms can achieve averag
ing control with proper tuning. Improved averaging control can be achieved using
a nonlinear PI algorithm when most flow disturbances are of the magnitude and
frequency to allow moderate flow manipulations and have the level remain within
an acceptable range. This modification is especially advantageous when the sys
tem experiences high-frequency disturbances. One should never lose sight of the
fact that the performance of averaging level control improves with a large vessel
inventory, which must be provided when the process is being designed.

We can derive analytical expressions for the time-domain behavior of level.
processes and can determine proper tuning rules to achieve specified behavior
based on these expressions. The approach used for levels would have been valu
able for all feedback systems because of its excellent specification of closed-loop
performance. Unfortunately, the approach would not be successful for more com
plex processes, for which analytical models for closed-loop response cannot be
developed. Thus, this excellent approach is limited to a few simple processes.

Smooth overall operation often requires that all flows in the series system
have little oscillation. We have seen how levels in series can potentially increase
oscillations and have derived models for predicting the responses. These results
demonstrate the importance of ensuring that level systems not have small damping
coefficients.

Since controlling flows and inventories is an essential aspect of designing
controls for multiple units, the material covered in this chapter provides an essential
foundation for the control design topics in Part VI.

REFERENCES

Blickley, G., "Level Measured Many Ways," Cont. Eng., 37, 35-44 (August
1990).

Cheung, T. F., and W. Luyben, "Liquid-Level Control in Single Tanks and Cas
cades of Tanks with Proportional-Only and Proportional-Integral Feed
back Controllers," IEC Fund., 18,1, 15-21 (1979).

Shinskey, F, Controlling Multivariable Processes, Instrument Society of Amer
ica, Research Triangle Park, NC, 1981.

Shunta, J., and W. Feherari, "Non-Linear Control of Liquid Level," Instr.
Techn., 43-48 (January 1976).

ADDITIONAL RESOURCES
In addition to the general references cited in Chapter 1, the following books provide
specialized information on level sensors and control.

Cheremisinoff, N., Process Level Instrumentation and Control, Marcel Dekker,
New York, 1981.

Cho, C, Measurement and Control of Liquid Level, Instrument Society of
America, Research Triangle Park, NC, 1982.



578

CHAPTER 18
Level and Inventory
Control

Many other linear and nonlinear controllers similar in purpose to the algorithm
presented in Section 18.4 are in use. For a review of the performance of several,
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Level control gives the engineer opportunity to match key closed-loop performance
measures to the analytical solution to the transient response. This approach enables
the engineer to tailor the performance to a wide range of control objectives.



Q U E S T I O N S 5 7 9
18.1. Two tanks in series are placed upstream of a chemical reactor that is sensi

tive to feed concentration disturbances. Each tank has a holdup of 19 m3, Questions
which is controlled approximately constant, and the design feed rate is 2
m3/min. If the concentration of the inlet to the first tank has a concentration
variation that can be approximated as 20 sin (1.050, what is the variation
in the feed concentration to the reactor?

18.2. Two tanks are placed in series to attenuate flow rate disturbances. Each has
a holdup time of xh minutes and is controlled by a linear PI controller. If
the inlet flow variation is A sin(art)> what is the minimum variation in the
flow rate leaving the second tank?

18.3. It was stated that the controller algorithm introduced in Section 18.4 is
nonlinear. Using the definition of linearity (see Section 3.4), prove that the
algorithm is nonlinear.

18.4. (a) Demonstrate that a proportional-only controller for a single level with
a holdup time of 5 min and no instrumentation dynamics can have an
arbitrarily large controller gain and remain stable.

ib) If the system in (a) has sensor dynamics of a first-order system with a
time constant of 10 sec and valve dynamics of a first-order system with
a time constant of 3 sec, what is the ultimate gain of the proportional-
only controller? What would be a good choice for the controller gain?

18.5. Averaging level control implements relatively detuned feedback control.
Since the integral mode is the "slow" mode, it might seem as though it
should be used for control. To investigate why level controllers are pre
dominantly proportional controllers, carry out the following development.
Derive the transfer function for a level process under integral-only feedback
control. Determine the dynamic response of the level for a step change in
the uncontrolled flow. Is this good control performance?

18.6. The derivative mode does not seem to be used in level control. State whether
you agree with this decision and why.

18.7. For each of the systems in Figure Q18.7, the flow in (Fjn) can change
independently of the inventory in the vessel. Each is described briefly:
(a) A heat exchanger in which the liquid in the vessel boils and the duty

is proportional to the heat transfer area
ib) An open tank containing a liquid with a constant flow out
ic) A gas-filled system with a moving roof and a constant mass on the

roof; the gas exits through a partially open restriction
id) A gas-filled system with constant volume; the gas exits through a par

tially open restriction
(i) For all systems without feedback control iKc = 0), assume that

the material balance was initially at steady state, and derive the
response to a step change in the inlet flow rate. Is each system
self-regulatory or not?
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(ii) Determine the proper variable to measure to determine the inven
tory in each system, and describe how it should be controlled, i.e.,
what should be manipulated?

18.8. The closed-loop dynamic responses for the manipulated flow of a level
process under PI control experience overshoot of their final steady-state
values in response to a step in flow disturbance.
(a) Describe why this occurs and determine steps to prevent this overshoot.
ib) In Chapter 5, criteria were derived for transfer function's numerator

zero that would lead to an overshoot of the output in response to an
input step change. Verify that the criteria are met for £ = 1.

18.9. The value of the small controller gain in the nonlinear level control was
recommended to be about 1/20 of the large gain. Describe the performance
of the nonlinear level control system with Kcs = 0 to
id) A large step change in the uncontrolled flow
ib) A sine of small amplitude in the uncontrolled flow
ic) Based on these results, would you support the general recommenda

tion of a zero value for the small controller gain? Under what special
circumstances would this be advisable?

18.10. In Section 18.7, control of levels in series was discussed. Sketch on Figure
18.7 the control design when the flow leaving the second vessel is set
(constant) by flow control.

18.11. Feedforward control was not considered in this chapter. Discuss whether
feedforward control would improve (1) tight level control and (2) averaging
level control.

18.12. The system of vessels in series (e.g., Figure 18.7a) experiences periodic
changes to the operating conditions of upstream units, during which the



feed composition from upstream units changes substantially. The amount
of mixed material produced during these infrequent and planned changes
is to be minimized. What steps would you suggest to minimize the mixing
without changing the equipment given in the figure?

18.13. The system of units with a recycle solvent stream is shown in Figure Q18.13.
Solvent is added to the main process stream before the stirred-tank reactor
and is separated in the flash drum. The solvent is collected, purified in the
fixed-bed chemical reactor, and stored. The solvent is heated prior to being
mixed with the feed. The feed flow rate is determined elsewhere and can
be considered uncontrollable for this question. Also, the maximum purge
and makeup flows are 1/10 of the normal solvent flow rate, and the material
sent to purge cannot be recycled to the process.
(a) Design a control system that (1) ensures solvent addition at the desired

ratio in the feed flow and (2) maintains all inventories in acceptable
ranges. You may add sensors but make no other changes to the process
equipment.

ib) Discuss the data and computations required to determine the size of
the tanks, especially the middle solvent storage tank.
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18.15. Verify the derivation of equations (18.8), (18.9), and (18.11) for the closed-
loop response to a step disturbance for a level under PI control.

18.16. For both averaging and tight level control, sketch three examples of pro
cesses that should have this type of control and explain why.

18.17. Proposed steps for digital implementation of the nonlinear proportional-
integral controller are given below. Discuss whether this implementation
satisfies the algorithm described in the chapter, and if not, prescribe mod
ifications.

(1) Read measurement Ln and operator entry Lspn-
(2) Retrieve parameters Kcs, Kcl, L'b, and Tj.
(3) Retrieve stored value; S*.
(4) Set Kc = KcL.
(5) If |LSp - Ln\ < VB, then set Kc = KcS-
(6) SetMV„ = KdiLsPn - Ln) + 1/7/[5* + Af(LSP/J - Ln)]}.
(7) Store Ln and E?=o(aO(^sp/ - Ln) = S*.
(8) Wait At, then go to step 1.

18.18. Develop a method for determining the size of an inventory for averaging
control based on the response of the system to a sine flow rate disturbance
using frequency response principles.
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19.1 D INTRODUCTION
Most modifications to single-loop feedback control presented in this part of the
book have used additional measurements to improve control performance. In con
trast, the emphasis in this chapter will be on an alternative to the proportional-
integral-derivative (PID) feedback algorithm. The PID controller was introduced
in Chapter 8 by explaining the features associated with each mode and by demon
strating that the combined modes could provide reasonable control performance.
In subsequent chapters the applications of PID in feedback, cascade, and combined
feedforward/feedback have indicated that the adoption of PID as the standard algo
rithm in the 1940s was an appropriate choice. Perhaps the most remarkable feature
of the PID is the success of this single algorithm in so many different applications.

However, the development of the PID lacked a fundamental structure from
which the algorithm could be derived, limitations could be identified, and enhance
ments could be developed. In this chapter a general development is presented that
gives great insight into the roles of both the control algorithm and the process in
the behavior of feedback systems. This development also provides a method for
tailoring the feedback control algorithm to each specific application. Because a
model of the process is an integral part of the control algorithm, the controller
equation structure depends on the process model, in contrast to the PID controller,
which has only one equation structure.

Although the control algorithm is different, the feedback concept is unchanged,
and the selection criteria for manipulated and controlled variables are the same as
explained in Chapters 1 and 7. In fact, the algorithms presented in this chapter
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could be used as replacements for the PID controller in nearly all applications so
far discussed. Generally, the PID controller is considered the standard algorithm; an
alternative algorithm is selected only when the alternative provides better control
performance.

The derivation of control algorithms is based on the predictive control structure
introduced in the next section. Many methods are possible for deriving practical
control algorithms to be implemented within the predictive structure, and two of
these—internal model controller (IMC) and Smith predictor—are explained in
detail, along with guidance on implementation issues. Finally, some applications
are presented in which predictive controllers offer potential improvements over
PID. In addition to introducing some very useful single-loop control methods,
this chapter offers an opportunity for another perspective on the fundamentals of
feedback control and an introduction to the predictive control structure shown to
be well suited to multivariable control in Chapter 23.

19.2 m THE MODEL PREDICTIVE CONTROL STRUCTURE
The predictive control structure is based on a very natural manner of interpret
ing feedback control. Before the general predictive structure is developed, it is
worthwhile to consider the typical thought process used by a human operator im
plementing feedback control manually. Assume that the three-tank mixing process
in Figure 19.1a is initially at steady state, and the goal is to reduce the outlet con
centration by adjusting the flow of component A. First, the operator estimates the
amount of change in the valve position (controller output) required to achieve the
desired steady-state change in the controlled variable. This estimate requires an
estimate of the steady-state model of the process (i.e., Kp). The operator can then
estimate the proper adjustment in the valve position to be Av = iAxA)i/Kp.

Next, the operator would decide whether to implement this entire adjustment
in one step or to introduce the change in several smaller steps. If the decision
were to introduce the entire adjustment in one step, the dynamic response might
look like the initial transient in Figure 19.lb. The person waits until steady state
is achieved to observe the response and determine whether the estimate was cor
rect. In this example, the concentration change was too large in magnitude, as is
shown by a difference between the actual and predicted changes in the concen
tration. As a result of this error, the operator would have to make another change
in the valve position. A clever operator might conclude that the assumed gain is
incorrect and modify the estimate of Kp; however, the operator in this example
applies a more straightforward approach, in which the next correction is based
on the same value of the process gain; that is, Av = iAxp,)2/Kp, where (AjtAh
is the difference between the predicted and actual Ajca- Several iterations of the
procedure result in the transient response achieving steady state, as given in Fig
ure 19.1.

The approach used by the operator has three important characteristics:

1. It uses a model of the process to determine the proper adjustment to the
manipulated variable, because the future behavior of the controlled variable
can be predicted from the values of the manipulated variable.
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2. The important feedback information is the difference between the predicted
model response and the actual process response. If this difference were zero,
the control would be perfect, and no further correction would be needed.

3. This feedback approach can result in the controlled variable approaching its
set point after several iterations, even with modest model errors.

These characteristics provide the basis for the predictive control structure.
A continuous version of the approach just described can be automated with the

general predictive control structure given in Figure 19.2. Three transfer functions
represent the true process with the final element and sensor, Gpis)\ the controller,
Gcpis)', and a dynamic model of the process, Gmis). To avoid confusion, the term
predictive control algorithm will be used to denote the calculation represented by
GCpis), which is used for the controller in the block diagram in Figure 19.2. The
term predictive control system will be used to denote all calculations in the control
system, which includes the predictive control algorithm, the predictive model, and
two differences. All calculations in the predictive control system must be executed
every time a value of the final element is determined.

The feedback signal Em is the difference between the measured and predicted
controlled variable values. The variable Em is equal to the effect of the disturbance,
Gdis)Dis), if the model is perfect [if Gmis) = Gpis)]; thus, the structure high
lights the disturbance for feedback correction. However, the model is essentially
never exact, so that the feedback signal includes the effect of the disturbance and
the model error, or mismatch. The feedback signal can be considered as a model
correction; it is used to correct the set point so as to provide a better target value,
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Emis)

Tpis), to the predictive control algorithm. The controller calculates the value of
the manipulated variable based on the corrected target.

The following closed-loop transfer functions for responses to set point and
disturbances can be derived through standard block diagram algebra.

Gcds)Gds)G'pis)CVis)
SPis)

CVis)
Dis)

1 + GGpis)[Gds)Gfpis)Gsis) - Gmis)]

Gcpis)Gpis)
l+Ge?is)[Gpis)-Gmis)]

[1 - Gcds)Gmjs)]Gds)
1 + Gcds)[Gds)G'pis)Gds) - Gmis)]

[I - Gcds)Gmis)]Gds)

(19.1)

(19.2)

l + Gepis)[Gpis)-Gmis)]
In all further transfer functions in this chapter, the dynamics of the sensor are

considered negligible, and the overall model of the final element and process is
taken to be Gpis). A linear dynamic process model, Gmis), can be determined
using fundamental (Chapters 3 through 5) or empirical (Chapter 6) modelling
methods. The controller algorithm, Gcpis), for the predictive structure is as yet
unknown and will be determined to give good dynamic performance.

A few properties of the predictive structure are now determined that establish
important general features of its performance and give guidance for designing the
controller, Gcp(.s). Normally, a very important control performance objective is
to ensure that the controlled variable returns to its set point in steady state. This
objective can be evaluated from the closed-loop transfer functions by applying
the final value theorem and determining whether the final value of the controlled
variable, expressed as a deviation variable from the initial set point, reaches the
set point. The application of the final value theorem for this purpose is performed
for the following conditions:

1. The input is steplike, in that it reaches a steady state after a transient, SPis) =
ASP/5 and Dis) = AD/s.



2. The process without control reaches a steady state after a steplike input,
GpiO) = KP and GmiO) = Km.

3. The closed-loop system is stable, which can be achieved via tuning.

Note that the use of the steady-state gain of the process, GpiO), limits the results to
stable processes without control.
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In fact, the results in this chapter are limited to these stable processes. Under
these conditions, application of the final value theorem yields

ASP Gcp(0)Gp(0)
limCV(0 = limsCV(s) = .y' - > « > * - o s \ + G c d O ) [ G p i O ) - G m i O ) ]

= ASP if and only if Gcp(0) = G~l (0)

AD [I - Gcd0)Gmi0)]Gd0)Urn CVit) = Mm sCVis) = s' - > « > * - o s l + G c p ( 0 ) [ G p ( 0 ) - G w ( 0 ) ]
- !

(19.3)

(19.4)
= 0 if and only if Gcp(0) = G"' (0)

Therefore, the predictive control system will satisfy both of the foregoing equa
tions, thus providing zero steady-state offset for a steplike input, if

Gcp(0) = G"1(0) or K^ = \/K{ (19.5)
Equation (19.5) requires that the steady-state gain of the controller algorithm must
be the inverse of the steady-state gain of the dynamic model used in the predictive
system. This important requirement can be easily achieved, because the engineer
has perfect knowledge of the model, although certainly not of the process Gpis)
itself.

A stable predictive system does not require a perfect model; it must only satisfy
equation (19.5) to return the controlled variable to the set point at steady state.

To gain further insight into the predictive structure, the next control perfor
mance objective considered is perfect control. Here, the term perfect control is
taken to mean that the controlled variable never deviates from the set point. As we
have seen, this performance is not possible with feedback control and might not
generally be desired because of other control performance considerations. How
ever, it is considered here to provide insight into the predictive system and to give
further guidance on control algorithm design. The closed-loop transfer functions
in equations (19.1) with CVis)/Dis) = 0 and (19.2) with CV(s)/SP(s) = 1 pro
vide the basis for the following condition, required for the controlled variable to
be equal to the set point at all times during the transient response:

- lGcds) = G~lis) (19.6)
Thus, perfect control performance would be achieved if the controller could be set
equal to the inverse of the dynamic model in the predictive system. This might seem
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to be a simple requirement, since any model, even a constant, could be used for the
model, and the controller would be easily evaluated as the inverse. However, block
diagram algebra can be applied to derive the following condition for the behavior
of the manipulated variable under perfect control:

M V i s ) - G d s ) G c d s )
Dis) \ + Gcpis)[Gpis)-Gmis)]

-Gdjs)Gepis) = Gds)
1 + Gcp(s)Gp(s) - 1 Gpis)

(19.7)

This shows that the perfect control system must invert the true process in some
manner. The following are four reasons why an exact inverse of the process is not
possible:

1. Dead time. In most physical processes, the feedback transfer function includes
dead time in the numerator. The application of equations (19.6) and (19.7) to
a typical process model with dead time gives, when the model is factored into
two terms with gmis) all polynomial terms in s,

,-9s - \ J sGmis) = gmis)e-*5 Gcp(s) = [Gmis)Vl = [*„(*)]-V (19.8)
The perfect controller in this situation would have to include the ability to
use future information in determining the current manipulated-variable value,
as indicated by the predictive element e0s. As discussed in Section 4.3, such
noncausal models are not physically realizable—such behavior cannot occur
(except in science fiction).

2. Numerator dynamics. As demonstrated in Section 5.4 on parallel process
structures, some process models have dynamic elements in the numerators of
the feedback transfer functions. Application of equation (19.6) to an example
gives

Gmis) = K
T2S + 1

(TU + D2
- 1Gcds) = [G,ds)rl =

l ins +1)2 _ mv(j)~ Tpis)

(19.9)
K T2S + \

For all values of t2 the controlled-variable behavior would be stable, because
the product Gcp(s)Gm(s) = 1. However, the controller algorithm alone would
be stable only for x2 > 0 and would be unstable for t2 < 0. (This is termed a
right-half-plane zero in Gm is), leading to a right-half-plane (unstable) pole in
Gcpis).) An unstable controller would be expected to cause the manipulated
variable to behave in an unstable manner, as is demonstrated in Example
19.2. Thus, the controller in equation (19.9) would not be able to achieve the
"perfect" performance when r2 < 0.

3. Constraints. The manipulated variable must observe constraints. These could
be physical constraints, such as a valve, which is limited to 0 to 100% open,
or more limiting constraints, such as the fuel to a furnace, which must be
above a minimum limit greater than zero to maintain a stable flame. There is
no guarantee that the controller defined in equation (19.6), which was derived
using linear equations that did not consider constraints, would observe the
constraints. Thus, in some cases, values of the manipulated variable that are
required to achieve perfect control performance would not be possible. In



such cases, the resulting control performance would not be perfect, and the
controlled variable would deviate from its set point.

4. Model mismatch. The model used in the predictive system will almost certainly
be different from the true process. If this difference is large, the closed-loop
system could be unstable, a situation that precludes acceptable control perfor
mance. (Recall that the final value theorem assumes stability of the system.)
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Thus, the predictive control system clearly shows that dead times, certain numerator
process dynamics (right-half-plane zeros), constraints, and model mismatches all
prevent perfect feedback control performance.

These results are not new; they were discussed in Part III and summarized in
Table 13.3. However, this development reinforces the importance of the process
in determining the achievable feedback control performance. It also provides a
unified approach to developing these conclusions.

EXAMPLE 19.1.
Feedback control was introduced using the classical (PID) structure. Determine
the relationship between the controllers in the classical structure Gds) and the
predictive system Gcpis).
Solution. Block diagram algebra can be applied to reduce the predictive con
troller and model into one transfer function, which gives

MVis)
SP(.y) - CVis)

= Gds) = Gcds)
\-Gds)Gcpis) (19.10)

Therefore, there is an equivalence between the classical and predictive structures,
and a control system can be represented by either block diagram, as long as the
proper controller transfer function is used. It is important to note that the conversion
of a predictive system into a classical system does not necessarily result in a PID
controller in the classical system; thus, the behavior of the two closed-loop systems
could, and in general would, differ. In this chapter, the predictive controllers will
be represented by the block diagram in Figure 19.2 to show the use of an explicit
model in the control system clearly; also, there are advantages in performing the
calculations in this manner, as will become clear in later sections.

EXAMPLE 19.2.
When the predictive model is perfect [i.e., Gds) = Gpis)], what else is required
for the closed-loop system to be stable?

Solution. We would like both the controlled and manipulated variables to be
stable (referred to as internal stability by Morari and Zafiriou, 1989), which requires
that the following transfer functions be stable:

C V ( 5 ) = G c d s ) G p i s ) ( 1 9 . 1 1 )
SP(5)

CVjs)
Dis)

= Gds) (19.12)
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MVjs)
SPis)

= G„is) (19.13)

Thus, the product of the controller and the process, the disturbance, and the
controller itself must be stable for the entire control system to behave in a stable
manner. Clearly, the manipulated variable would be stable only if the controller is
stable. [Recall that the controller could be unstable, while the product Gepis)Gpis)
is stable.] Also, the final value theorem in equations (19.3) and (19.4) involves
the terms Gpi0) and Gcp(0), the transfer functions evaluated at s = 0, which were
taken to be constant values. This result is valid only when the transfer functions
are stable; if they are unstable, the final value theorem is not applicable.

So far, the predictive concept has been introduced, the block diagram structure
presented, and the closed-loop transfer function derived. The starting points for
the predictive control algorithm design are the requirement for zero steady-state
offset in equation (19.5) and the definition of the perfect controller in equation
(19.6). Since the perfect controller is not possible even if it were desirable, a
manner for deriving an approximate inverse of the model is required, with an
approximate inverse being a Gcp is) that does not exactly satisfy equation (19.6) but
contains the important features for control performance. Many methods exist for
developing an approximate inverse, and each would result in a different controller
algorithm giving different control performance. In the next sections, two methods
for designing single-loop predictive control algorithms are presented. They have
been selected because they involve straightforward mathematics, are simple to
implement in a digital computer, yield good control performance in many cases,
and have been applied industrially.

19.3 m THE IMC CONTROLLER
The system in Figure 19.2 has been described by several investigators, who have
used different terminology for what is now generally referred to as the predictive
structure. The publications by Brosilow (1979) and Garcia and Morari (1982),
in which they introduced the terms inferential control and internal model control,
respectively, sparked considerable interest in the chemical engineering community.
The controller design approach presented in this section follows the developments
of these publications, which is generally referred to as the IMC method.

Since an exact inverse is not possible, the IMC approach segregates and elimi
nates the aspects of the model transfer function that make calculation of a realizable
inverse impossible. The first step is to separate the model into the product of the
two factors

Gmis) = G+(j)G-(s) (19.14)
where Gj(s) = the noninvertible part has an inverse that is not causal or is

unstable. The inverse of this term includes predictions ie9s)
and unstable poles (1/(1 + rs), with r < 0) appearing in
Gcpis). The steady-state gain of this term must be 1.0.

G~is) — the invertible part has an inverse that is causal and stable,
leading to a realizable, stable controller. The steady-state gain
of this term is the gain of the process model Km.



The IMC controller eliminates all elements in the process model Gm is) mat lead to
an unrealizable controller by taking the inverse of only the invertible factor to give

G c p i s ) = [ G - i s ) ] - 1 ( 1 9 . 1 5 )
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This design equation ensures that the controller is realizable and that the system is
internally stable (at least with a perfect model), but it does not explicitly guarantee
that the behavior of the control system is acceptable. However, the performance of
such controllers, as modified shortly, will be seen to be acceptable in many cases.
Before we proceed, this procedure is applied to two examples.

EXAMPLE 19.3.
Apply the IMC procedure to design a controller for the three-tank mixing process.
Solution. The IMC controller design requires a transfer function model of the
process. The linearized third-order model derived in Example 7.2 will be used. In
this case,

K m 0 . 0 3 9Gds) = its + l)3 i5s + l)3
Thus, the model can be inverted directly to give

irms +1)3

= G»is) G+(j) = 1.0

- lGcPis) = [G;(*)]- = K„
j5s + \?

0.039
This controller in the predictive structure in Figure 9.2 could theoretically provide
good control of the controlled variable. However, there are several drawbacks with
this design. First, the controller involves first, second, and third derivatives of the
feedback signal. These derivatives cannot be calculated exactly, although they
can be estimated numerically. Second, the appearance of high-order derivatives
of a noisy signal could lead to unacceptably high variation and large overshoot
in the manipulated variable. Finally, these high derivatives could lead to extreme
sensitivity to model errors. Therefore, this controller would not be used without
modification.

mmm
EXAMPLE 19.4.
Design an IMC controller for the process in Example 19.3, using the alternative
first-order-with-dead-time approximate model for the process that was determined
using the process reaction curve in Example 6.4 and as repeated here.

_ Kme-9mS _ 0.039g-5-5'm(,s) " rms + 1 ~ 10.55 -I-1

This model must be factored into invertible and noninvertible parts:

r-m = K~ = °039mW zms + \ 10.5* +1

G+is) = e~6mS = e~5-5s
The invertible part is then employed in deriving the controller:

Gcds) = [G~is)} - i

zms + 1 10.5s -I-1
Kn 0.039

lA0

"db* lAI
1

f r - r̂ lA2m
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This controller is a proportional-derivative algorithm, which still might be too ag
gressive but will be modified to give acceptable performance in Example 19.6.

I

As discussed in Section 4.3, all realistic processes are modelled by transfer
functions having a denominator order greater than the numerator order. Thus, the
controller according to equation (19.15), which is the inverse of the process model,
will have a numerator order greater than the denominator order. This results in first-
or higher-order derivatives in the controller, which generally lead to unacceptable
manipulated-variable behavior and, thus, poor performance and poor robustness
when model errors occur.

Achieving good control performance requires modifications that modulate
the manipulated-variable behavior and increase the robustness of the system. The
IMC design method provides one feature to account for both of these concerns:
filtering the feedback signal. The filter can be placed before the controller, as
shown in Figure 19.3, so that the closed-loop transfer functions for the controlled
and manipulated variables become

CVjs)
SPis)

MVJS)
SPis)

CVjs)
Dis)

MVis)

G/is)Gepis)Gpis)
\+Gfis)Gcpis)[Gpis)-Gmis)]

Gfis)Gcpjs)
\ + Gfis)Gcpis)[Gpis) - G,ds)}

Gds)[\-Gfis)Gcpis)Gmjs)]
1 + Gfis)Gcpis)[Gpis) - Gmis)]

-Gds)Gcpjs)Gfjs)
Dis) 1 + Gfis)Gcpis)[Gpis) - Gmis)]

(19.16)

(19.17)

(19.18)

(19.19)

Now, four desirable properties of the filter are determined as a basis for se
lecting the filter algorithm. First, the steady-state value of the filter needs to be

Dis)

SPis) +TJs)K j "
- n Gfis) G^s)'cp

MVis)

FIGURE 19.3

Predictive structure with single filter.

Gds)

GDis)

Gmis)

F-mis)

+ i eve*)

o



determined. Application of the final value theorem to the closed-loop transfer
function in equation (19.16) with the requirement of zero steady-state offset yields

lim CV(0/-▶oo
r ASP 1= l i m s { -
s^Q s I 1

GfiO)GcpiO)GpiO)

= ASP
+ G/(0)Gcp(0)[Gp(0)-Gm(0)]

onlyifGcp(0) = [G/(0)Gw(0)]-1
(19.20)

By convention, the controller gain is required to be the inverse of the process
model; therefore, the steady-state gain of the filter must be unity; that is, G/(0) =
Kf= 1.0.

Second, a desired effect of the filter on the manipulated-variable behavior must
be decided. Generally, the filter should reduce unnecessary high-frequency fluc
tuations due to noise. Since Gfis) appears in the numerator of equations (19.17)
and (19.19), the magnitude of the filter magnitude should decrease with increasing
frequency. The filter with the proper amplitude ratio attenuates the effects of high-
frequency variation in the controlled variable (and set point) on the variation in the
manipulated variable while it transmits the lower-frequency variation essentially
unchanged. The term introduced in Chapter 12 for this behavior was low-pass
filter.

Third, the filter influences the controlled-variable performance. Its appear
ance in the numerators of equations (19.16) and (19.18) indicates that filters with
monotonically decreasing amplitude with increasing frequency degrade the per
formance of the controlled variable: filters lead to larger deviations from set point
during transients. Thus, too much damping through the filter is not desirable.

Fourth, the effect of the filter on stability can be interpreted by analyzing the
closed-loop transfer function, which has Gods) = Gfis)Gcpis)[Gpis) — Gmis)]
for the predictive system. Clearly, the system is always stable if the model is perfect
(and the controller is stable). However, the model is essentially never perfect, and
the filter is required to ensure stability for a reasonable range of model error.
Recalling that stability is improved as the magnitude of GodJ<*>c) is decreased, a
filter that has decreasing magnitude as frequency increases will reduce the effects
of model mismatch on \GodJoJc)\ and stabilize the closed-loop system.

In summary, filters with a steady-state gain of 1.0 and decreasing magnitudes
as frequencies increase satisfy the general requirements of increased robustness and
noise attenuation. Many potential filter transfer functions satisfy the requirements
just developed.
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In the single-loop IMC design, it is conventional to use the following filter equation
to improve robustness and manipulated-variable behavior.

Gfis) 4—1"Lr/s + iJ (19.21)

In this equation, the exponent N is selected to be large enough that the product
Gfis)Gcpis) has a denominator polynomial in s of order at least as high as its
numerator polynomial. For further examples in this chapter, the model Gmis) will
be first-order with dead time and the filter will be a first-order system (A/ = 1),
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but this is not always the case for other process models. The filter time constant
can be adjusted to satisfy the performance specifications. Increasing the filter time
constant modulates the manipulated-variable fluctuations and increases robustness
at the expense of larger deviations of the controlled variable from its set point during
the transient response.

EXAMPLE 19.5.
The filter location in Figure 19.3 influences the behavior of the control system for
both disturbance and set point responses. Develop an alternative structure to
separate these effects, so that the disturbance and set point responses can be
influenced independently.

To achieve robustness, one filter must be located within the feedback loop. A
design is shown in Figure 19.4, which has one filter, GfFis), in the feedback path
and a second filter, GfSis), for set point. The advantage of this design is the ability
to modify the set point and disturbance responses independently. This design is
sometimes referred to as a two-degree-of-freedom controller.

The predictive control system is difficult to implement in analog computing
equipment because of the dead time in the model G,„is), but it is straightfor
ward with digital computers, regardless of the model structure. The simple models
considered in this chapter can be expressed in discrete form by methods already
introduced in Chapters 6 and 15 and in Appendix F. The IMC system in Figure
19.3 with a single filter will be considered, and the dynamic model will be assumed
to be first-order with dead time. Thus, the predictive control system equations in
continuous form are

—0msCVmis) _ „ ,,_Kme
MVis) ~ Um{s) ~ UTT (19.22)

G~is) =
Kn

TmS + l (19.23)

SP(J)
Gffr)

+
_ a

Us)

Dis)

Gcpis)

Gds)

MVis)

Gpis)
+ icv(*)

Gds)

GfFis)
Emis)

FIGURE 19.4

Two-degree-of-freedom predictive controller.

v +
0



MV(j )
Tpis)

= Gfis)Gcpis) = 1 TmS + \
Km xfs + 1 (19.24)

with CVmis) the predicted value of the controlled variable, that is, the output
from the model Gmis). The dynamic model can be simulated in discrete form, as
explained in Appendix F.

(CVOT)„ = [e-At^]iCVm)n-x + Km[\ - r^]MVfl_r_, (19.25)
with At the digital controller execution period and the dead time modelled as
r = 9m/At, an integer value.

Note that the product of Gfis)Gcpis) can be implemented as one algorithm
in this case: a lead-lag transfer function, which was expressed in discrete form in
Section 15.5.

MV„ =
1L
At

- A t
MV„_, +

tin
~At + 1

- A t
+ 1 <Jp)n ~ ^-

At
^ + 1

LAr
iTp),,-)

(19.26)
with Tp the target—that is, the set point as corrected by the feedback signal; the
difference between the measured and predicted values of the controlled variable.

In summary, the predictive control system execution at step n involves the
following:
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1. Calculate the predicted controlled variable, equation (19.25).
2. Calculate the difference between the measured and model-predicted controlled

variables, (£m)„ = CVn - (CVm)„.
3. Correct the set point with the feedback signal, iTp)„ = SP,, - (2?m )„.
4. Calculate the manipulated-variable value, equation (19.26).

EXAMPLE 19.6.
Simulate the dynamic response of the linearized three-tank mixing process in Ex
ample 19.4, operating at the base-case inlet flow rate, under IMC feedback control.

The true process Gpis) is taken as the linear, third-order system, and the
controller and dynamic model Gds) will be based on the approximate first-order-
with-dead-time model. This structural mismatch, which is typical of realistic appli
cations, precludes perfect control; thus, the results of this exercise give a realistic
evaluation of the performance of IMC controllers.

The controller with filter and model transfer functions are

GPis) =
0.039 Gds) = 0.039e-5.55

GfisWcpis) =
1 10.5* + 1

(55 +1)3 — 10.5*+ 1 '* ' H- ' 0.039 T/5 + 1
The controller calculations can be converted to discrete form with At - 0.10 to
give

(CVm)„ = [C-01/,05](CVm)„_1 +0.039[1 -e-01/10-5]MVfl_55_,
= 0.9905(CVm)„_, +0.000388 MV„_56

MV„ =
1L
0.1

£ ♦ >
MV„_, +

rio.5
"5T

0.039
+ 1

0.1 +1
iTp)„ 0.039

r 1Q.5
0.1 iTp)n-x

VA0

&
l A l

& "

1
VA2

5T^
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In this example, the closed-loop simulation is performed using the foregoing
equations for the controller (based on an approximate model) and the linearized
third-order model for the plant; thus, significant model mismatch exists between
the process and the model. The results are given in Figure 19.5a for a feed com
position disturbance of magnitude of 0.80%A and in Figure 19.5b for a set point
change, each for three values of the filter time constant. As the filter time constant
increases, the aggressiveness of the controller decreases, as indicated by the
slower response of the manipulated variable and slower return to the set point.
It is noteworthy that the disturbance response appears acceptable, albeit slow,
for all values of the filter tuning, while the set point response experiences extreme
manipulated-variable variability for the lowest filter value. This comparison demon
strates the disadvantage for a single filter and the potential for improvement by
using separate filters, as shown in Figure 19.4, to influence the disturbance and
set point responses separately.

*A0

t̂ r <A1

1

?" hzfcf"
lA2

1
*A3

0

Based on the results in Example 19.6 and our previous experience with the PID
controller, we would expect that the performance of predictive control depends on a
proper choice of all parameters in the system. In general, all parameters appearing
in the IMC model and the control algorithm could be tuned, but it is common
practice to use the best estimates for the dynamic model. Thus, only the filter time
constant, if, is considered available for tuning.

The considerations for controller tuning were thoroughly discussed in Chapter
9. Clearly, no one value or correlation will suit all situations, but a few studies
have been performed to provide initial tuning values, which are applicable to
many situations and can be fine-tuned based on empirical experience. One tuning
guideline, due to Brosilow (1979), suggests that the filter time constant be related
to the likely model error, t/ = 0.25(60), with 80 the maximum likely error in
the estimated dead time; Morari and Zafiriou (1989) recommend that a thorough
robust tuning analysis be performed.

The method for tuning discussed in Chapter 9 and summarized in Appendix
E for PID controllers, which minimized the IAE of the noisy controlled variable
subject to limitations on variations in the manipulated variable over a range of
model mismatch, has been applied to the IMC design as well (Ciancone et al.,
1993). The results for a first-order-with-dead-time process model are given in
Figure 19.6 for good performance for a step disturbance. The filter tuning constant
has a large value for small fraction dead times, although one might initially expect
the opposite correlation because systems that are easier to control require more
filtering. The reason for these results is the need to moderate the high-frequency
variation in the manipulated variable. Thus, the ratio of process time constant to
filter time constant in the lead-lag element in the controller should not be too
large; these results indicate that a reasonable ratio is around 2. A smaller filter
time constant would be allowable for stability and give good controlled-variable
performance, but the variability in the manipulated variable would be unacceptabJy
large for many applications.

EXAMPLE 19.7.
Calculate the filter tuning constant for the IMC controller applied to the three-tank
mixing process.
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(a) Disturbance responses and ib) set point responses for Example 19.6. The
values of the filter time constant rf are 10 min (case A), 6.1 min (case B), and

2.0 min (case C).
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0.20
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70

Fraction dead time, —_0 + T
FIGURE 19.6

Tuning correlation for single-loop IMC disturbance response
on a first-order-with-dead-time process.

Applying the correlations noted for Brosilow's approach, and assuming that
the likely dead time error is 35%, gives

xf = (0.35)(5.5)(.25) = 0.48 min
The Ciancone correlation in Figure 19.6 gives

0/(0 + r) = 5.5/(5.5 + 10.5) = 0.34
r//(0 + T) = 0.38

r/ = (0.38)(16) = 6.1 min
The dynamic response using tuning values based on Figure 19.6 is case B in

Figure 19.5a and b. The controlled-variable IAE for the IMC disturbance response
is 9.1, which is slightly larger than the value obtained under PID control for the
same disturbance in Example 9.2.

VA0

&r lAl

% " i±r lA2

i*r$

EXAMPLE 19.8.
Evaluate the robustness for the IMC controllers implemented in Example 19.7.

Assuming that the system closely approximates a continuous system, the
analysis could be performed using methods introduced in Chapter 10. However,
root locus is not applicable, because the characteristic equation involves expo
nentials in *. Also, the Bode method is not generally applicable because the Bode
plots for predictive systems do not always conform to the requirements noted in
Table 10.1 (i.e., monotonically decreasing amplitude and phase behavior after the
critical frequency). The stability could be determined using the Nyquist method
applied to G0ds) = G/(*)Gcp(*)[(Gp(*) - Gds)]; however, this method has not
been stressed in this book.

Therefore, the robustness of this example will be evaluated by simulating
cases with a fixed value of the filter time constant and different operating condi
tions. The range of process operations for the three-tank process is the same as



considered in Section 16.2, where the flow rate has its base-case value in case E;
is decreased by about 30% in case C; and is decreased by about 55% in case A.
The parameters for the process model of the true process are given below.
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Case Kp
FB (%A/% open)

T/(min)
(i = 1,3 for third-order system)

A 3 . 0 0 . 0 8 7
C 5 . 0 0 . 0 5 2
E (basis for tuning) 6.9 0.039

11.4
6.9
5.0

In this example, the controller parameters are fixed at values appropriate for the
base-case approximate first-order-with-dead-time empirical model, as determined
in Example 19.6; thus, the model gain was 0.039, the model time constant was
10.5, and the model dead time was 5.5. The filter time constant was determined
to be 6.1 min in Example 19.7.

The results are presented in Figure 19.7. The performance is acceptable for
the base case and +30% change in process behavior. For the largest model
error, the system has very poor performance and appears on the limit of stability.
These results are similar to the behavior of PID controllers; for reasonable model
errors (previously estimated to be around ±25%), the PID performance usually
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FIGURE 19.7

Dynamic response of three-tank system with IMC control at various
operating conditions for Example 19.8 (t> = 6.1 min).
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does not degrade significantly. However, as the errors become large, the PID
performance degrades substantially and can become unstable. As we see, some
characteristics of closed-loop feedback systems do not depend strongly on the
control calculation.

In conclusion, the IMC controller is based on the general predictive control
structure. The controller design method adheres to criteria that ensure zero offset for
steplike disturbances, and it employs a factorization approach to obtain a realizable
approximate inverse that gives good feedback control performance. An adjustable
filter (tuning parameter) was introduced to enable the engineer to moderate the
feedback action to maintain good performance of the controller and manipulated
variables in the presence of measurement noise and model error.

19.4 a THE SMITH PREDICTOR

The control design by O. Smith (1957) preceded much of the general analysis
of predictive systems; in fact, it predated the application of digital computers to
process control, so that widespread implementation of Smith's results was delayed
until real-time digital control computers became commercially available. Smith's
approach, shown in Figure 19.8, relies on the general predictive structure in which
the controller is calculated by the elements in the dashed box; these elements
perform the function of the predictive control algorithm, Gcp(5), in Figure 19.2.

Smith reasoned that "eliminating the dead time" from the control loop would
be beneficial, which is certainly true but not possible via a feedback controller;
only physical changes in the process can affect the feedback dead time. Therefore,
Smith suggested that controlling a model of the process, without the dead time (or
other noninvertible element), would provide a better calculation of the manipu-

SPis)

Emis)
FIGURE 19.8
Block diagram of Smith predictor. Gc is a proportional-integral controller.



lated variable to be implemented in the true process. He retained the conventional
PI control algorithm; thus, the system in Figure 19.8 consists of a feedback PI
algorithm Gds) that controls a simulated process, G~is), which is easier to con
trol than the real process. G~is) has the same meaning here as for IMC control
in equation (19.14), and the absence of dead time or inverse response (right-half-
plane zero) in the model G~(s) allows much more aggressive control of the model
than of the true plant.

The calculated manipulated variable resulting from controlling the model is
implemented in the true process, which could yield good control as long as the
model were perfect. Naturally, the model will not be perfect, and some form of
feedback is required to achieve zero steady-state offset. Smith recognized the
value of the predictive structure and, as shown in Figure 19.8, proposed correcting
the model with the difference between the measured and the predicted controlled
variables. Note that the prediction is determined using the complete linear dynamic
model Gmis), including any noninvertible dynamics. The feedback signal E„,is)
can be interpreted as a correction to the model G~fs).

The closed-loop transfer function of the system in Figure 19.8 is

C V ( £ ) = G d s ) G p j s )
SPis) \+GcG^is) + Gds)[Gpis)-G,ds)]

If the model were perfect, the characteristic equation would not contain a dead time,
because Gmis) and Gpis) would cancel. Thus, for the case with a perfect model,
the characteristic equation involves only the expression 1 + Gcis)G~is), which
is easier to control and allows a more aggressive adjustment of the manipulated
variable. Naturally, the true process is never known exactly, and the actual behavior
and stability depend on all terms without cancellation. Application of the final value
theorem to equation (19.27), for a step change in the set point and a PI algorithm
for the controller, gives

A S P G d s ) G p i s )
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lim CV(0 = lim.s
t - K X > S - * 0 s 1 + GcG~is) + Gds)[Gpis) - Gmis)]

For a stable process, Gp(0) = Kp and GOT(0) = Km = G~(0) = K~,

(19.28)

lim CV(0 = lim ASP/ -▶o o s - * 0

= ASP
M1*̂ )*-"̂ 1*̂ )̂ '-*"*i +

The Smith Predictor

(19.29)

Thus, zero steady-state offset for a step input with Smith predictor control does not
require a perfect model; it requires only that the steady-state gains for the two models
be identical iKm = K~) and that the controller algorithm Gcis) have an integral
mode.

Again, the performance and robustness of the Smith predictor control system de
pend on the controller tuning. The reader is cautioned that the PI controller in the
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Smith predictor should not be tuned using correlations from Part IH, which were
developed for the conventional control structure, using G~(s) for the feedback
dynamics. The purpose of the PI controller is to calculate an approximate inverse
rapidly, as demonstrated by the following:

M V i s ) G d s ) ^ 1
Gcp SPis)-Emis) \ + Gds)G„is) G^is) for "large" Gds)

(19.30)
Thus, the inverse would be approximated by a tightly tuned controller. A proper
tuning procedure should consider the behavior of the controlled and manipulated
variables as well as robustness for the model mismatch expected to be encountered.
The proper tuning can be related to the IMC tuning by recognizing the equivalence
of the IMC and Smith predictor for application to a process with first-order-with-
dead-time feedback dynamics:

Gds)Smith predictor: MVQy)
Tpis) l + G7ds)Gds)

* ( ■ ♦ * )
(19.31)

1 +

IMC controller: 1 TmS + 1

Kn
+ rms

MVjs)
Tpis) ~ Km xfs + 1

These two expressions can be shown to be equal when

Ke =
TfKn

Ti = t„

(19.32)

(19.33)

Thus, the tuning correlations in Figure 19.6 along with equations (19.33) can be
used to estimate initial tuning for the Smith predictor with a first-order-with-dead-
time process model. Alternative guidelines are provided by Laughlin and Morari
(1987).

The Smith predictor is easily programmed in a digital system. The digital form
of the PI controller was presented in Chapter 11, and for a first-order-with-dead-
time model, the digital models are programmed using equation (19.25) for Gmis)
and the same equation with no dead time, T = 0, for G~is).
EXAMPLE 19.9.
Apply the Smith predictor to the same process as considered in Example 19.7,
the three-tank mixing process.

Again, the approximate first-order-with-dead-time model will be used as given
in Example 19.7. The PI tuning can be estimated using Figure 19.6 and equations
(19.33) to give

0/(0 + r) = 0.34 t//(0 + r) = 0.38 xf = 6.1 min

Kc = T/ixfKm) = 10.5/[(6.1)(.039)] = 44.1(% open)/(%A) Tt = x = 10.5 min

The models Gmis) and G~is) can be converted to digital approximations, as
demonstrated in Example 19.8, and the PI controller can be programmed digitally,
as shown in Chapter 11. The dynamic response of the control system, with the con
troller implemented as a digital algorithm, is essentially identical to the response
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FIGURE 19.9

Dynamic response for three-tank system under Smith predictor
control for Example 19.9 with Kc = 88% open/% A.

for the IMC controller shown in Figure 19.5, case B, so that plot is not repeated. The
controller can be fine-tuned using the same approach as described in Section 9.5.
For example, the controlled-variable performance for the base-case model can be
improved by increasing the controller gain to 88% open/%A, as shown in Figure
19.9, which gives an IAE of 6.8. Since this tuning is more aggressive than the cor
relations in Figure 19.6, it is less robust and would not normally be used initially,
but it could be reached through fine tuning if empirical experience indicated that
the actual model errors and noise were smaller than anticipated in deriving the
initial tuning correlation.

In conclusion, the Smith predictor conforms to the general principles of the
predictive control structure. It employs a unique method for calculating an ap
proximate model inverse: by controlling a model consisting of the invertible part
of the model. This structure can achieve zero steady-state offset for steplike dis
turbances by conforming to easily achieved criteria. Again, the Smith predictor
system is simple to implement in digital control and generally yields good control
performance. The tuning of the PI controller must be appropriate for the predictive
structure and can be adjusted to make the Smith predictor control more or less ag
gressive to provide the desired controlled- and manipulated-variable performance
for the expected range of model mismatch.
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It is important to remember that predictive controllers employ the same feedback
principles as classical structures and involve basically the same tasks to design,
implement, and operate. The engineering tasks include selecting the feedback mea
surement, selecting the manipulated variable, determining an appropriate model
structure with parameters, selecting an algorithm, and establishing the tuning con
stants. In operating the system, process personnel must decide on the status of
the controller—automatic or manual—and enter the set point value. Thus, predic
tive controllers can be presented to plant operating personnel in exactly the same
manner as classical PID controllers, so that displays and faceplates need not be
altered.

One programming detail is important for proper implementation: the variable
used as the input to the model G,ds). This variable should have the value of the
actual process input variable and must observe any limitations that exist in the
plant, such as the valve being limited to 0 to 100% open. If this guideline is not
observed, the control system will be subject to the undesirable integral (reset)
windup, described in Chapter 12. When a limitation is reached in the manipulated
variable, the controlled variable cannot be returned to its set point, regardless of
the control algorithm used. In this situation, the magnitude of the controller output
must not increase without limit (the symptom of integral windup). The behavior
of the controller output can be determined by applying the final value theorem
to the Laplace transform of the controller output, MVis), for the IMC control
system in Figure 19.10. This is done in the following paragraphs for incorrect and
correct implementations for a step disturbance; in both, MV(s) is the output of the
controller.

Incorrect (windup occurs): The IMC model input is the signal before any
limitation, MVis), which can differ from the true value of the input variable to
the process, MV*(.s). The closed-loop transfer function for this system, when the

Dis)

Tpis)
SPis)

Gfis) GJs)'cp

MVis)
Incorrect

±

Gds)

Gpis)

MV*(s)
Correct

GJs)

+1 CV( * )

+ 0

Emis)
FIGURE 19.10

Predictive control structure with correct (solid) and incorrect (dashed)
inputs to the model.
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Clearly, this implementation suffers from integral windup. This undesirable be
havior results because of the requirements that Kf = 1.0 and Kcp = K~l for
zero steady-state offset in the normal, unconstrained situation. The cause of reset
windup could also be interpreted as the model Gm is) ceasing to represent the causal
relationship between the calculated controller output and the measured controlled
variable, which is properly zero when the limitation occurs.

Correct (windup prevented): The IMC model input is the true value of the
variable in the process, MV*(.y), which is affected by the process limitations. When
the manipulated variable reaches a limit, it is constant, and the system behaves like
an open-loop system.

limMV(0 = limsMV(.s)/ -▶o o s ^ - 0

= Jims I -Gfis)Gcpis)Gds)— 1 (19.35)

This approach achieves the proper behavior because the model Gm is) represents a
causal relationship that is valid for all situations. When the values of the predicted
and the measured controlled variables reach essentially constant values, the feed
back signal is constant except for disturbances, which vary over a limited range
of values. The feedback signal in the correct implementation results in a value of
the controller output that is limited to proportional responses to disturbances, as
is proper to prevent integral windup.

With proper design and care for implementation details, digital implemen
tation of predictive controllers is straightforward; in fact, the algorithms can be
preprogrammed so that engineers need only select from a set of possible model
structures and enter values for the model parameters and tuning constants. Thus, a
predictive controller should not require more effort to implement than a standard
PID algorithm.

1 9 . 6 □ A L G O R I T H M S E L E C T I O N G U I D E L I N E S

To this point, single-loop predictive control has been introduced, the IMC and
Smith predictor control algorithms have been presented, and tuning and program
ming guidelines have been provided. These controllers can be used in place of
any PID controller; however, since the PID is the standard algorithm selected, a
predictive control system is normally selected only when it performs better than a
PID algorithm. In this section four applications are discussed in which predictive
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control offers potential advantages; the IMC controller will be used in all examples,
but similar results can be obtained with a Smith predictor.

Long Dead Times
The Smith predictor is often referred to as a dead time compensator because
Smith's original goal was to improve the performance of feedback control systems
with long dead times in the feedback processes. When the model is perfect in
Figure 19.3, the predictive system behaves like a feedforward controller; thus, the
control action in this ideal situation can be as aggressive as required for the desired
performance, without concern for stability. Even with modest model errors, the
predictive system has the potential for improved performance when applied to
processes with large fraction dead times. Selection of the proper algorithm (PID or
predictive) depends on the particular situation; the advantages of predictive control
are greater as the model is more accurate, the noise is small, and the feedback
fraction dead time is large, usually greater than about 0.70.

Inverse Response
As explained in Section 13.5, an inverse response in the feedback process degrades
the performance of a feedback controller in a manner similar to dead time. The PID
algorithm has particular difficulty, because its error signal—the difference between
the set point and the measured variable—initially increases in magnitude in spite
of a proper initial feedback adjustment to the manipulated variable. The predictive
controller has been reported to perform well, because its feedback signal—the
difference between the predicted and the measured values—does not experience
an inverse response (Iionya and Altpeter, 1962; Shunta, 1984).

Cascade Control
One of the design criteria presented in Chapter 14 for cascade control is that
the secondary control loop must be much faster than the primary loop. There
are situations in which a cascade is desirable for disturbance response, but the
dynamic response of the secondary is not substantially faster than the primary. An
example is a distillation composition controller that acts as a primary by resetting
a tray temperature controller set point (e.g., Fuentes and Luyben, 1983). If the
appropriate cascade criterion is not satisfied, significant fluctuation of the relatively
slow secondary controlled variable causes a transient disturbance in the primary. If
a PID control algorithm is used as the primary controller, unacceptable oscillations
can occur.

A predictive control system for the primary in a cascade offers a distinct
advantage, because the feedback signal is the sum of the model error in the primary,
along with primary disturbances (Bartman, 1981). Secondary disturbances, which
cause deviations in the secondary measurement, appear in both the measured and
predicted primary variable at about the same time and magnitude (if the modei
is reasonably accurate). As a result, the secondary disturbances have little or no
effect on the feedback signal, Emis). This behavior is achieved when the model
input is the measured secondary variable, as shown in Figure 19.11. Therefore, the
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Cascade control with a primary predictive controller.

dynamic behavior of some cascade systems can potentially be better (i.e., much
less oscillatory) when the primary is a predictive control system.
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Feedforward
As described in Chapter 15, a feedforward-feedback control system can perform
quite well when the process dynamics allow a complete compensation of the dis
turbance by the feedforward controller. This criterion is satisfied when the distur
bance dead time is longer than the feedback process dead time (i.e., 9j > 6P).
When this criterion is not satisfied, the feedforward controller changes the manip
ulated variable enough to compensate fully for the disturbance when the steady
state is achieved; however, the initial effect of the disturbance appears in the mea
sured controlled variable prior to the effect of the manipulated variable. A PID
feedback controller cannot recognize that the feedforward compensation has been
introduced and makes an unnecessary additional change to the manipulated vari
able.

The essential deficiency in the conventional feedforward-feedback design is
the feedback PID controller, which cannot determine that the proper manipulation
has been entered by the feedforward controller. This deficiency can be overcome
through the use of a predictive control system for feedback, as shown in Figure
19.12. In this design, the predictive model includes relationships for the manipu
lated and measured disturbance variables, and the value of the manipulated vari
able used in the model includes the changes from both feedforward and feedback
controllers. Again, the feedback signal is the difference between the measured
and predicted controlled variables. As long as the models GdmCs) and Gmis) are
reasonably accurate, the feedback signal, Em is), does not change during the tran
sient resulting from imperfect feedforward dynamics. In the situation of "slow"
feedforward control (0</ < 6P), the model predictive feedback will not introduce
additional adjustments to the manipulated variable.
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Feedforward with predictive feedback control.

The guidelines in this section indicate applications in which predictive control
is likely to perform better than single-loop PID controllers. In many other appli
cations, PID and predictive control systems give equivalent performance, and the
usual selection is PID.

19.7 ® ADDITIONAL TOPICS IN SINGLE-LOOP MODEL
PREDICTIVE CONTROL
The presentation in this chapter provides only an overview of predictive control,
which is still a developing topic. A few important additional issues are introduced
briefly in this section with reference to the IMC control system.

Digital Implementation
The procedure used here was to perform the design assuming that all variables were
continuous, allowing Laplace transform methods, and subsequently, to convert the
resulting model and controller to discrete form. A more general approach is to
convert the models to the discrete form before performing the controller design,
which enables more general model structures to be used. This approach requires
the use of z-transforms (Appendix L; Ogata, 1987) and is presented in Appendix L
and in Morari and Zafiriou (1989).

Controller Design
The method for calculating the controller was based on the goal of perfect control
(zero deviation of the controlled variable from its set point). Since this goal is not
possible, the controller design method factored the model and used only the in
vertible part, Gcpis) = [G~is)]~l. This approach leads to a realizable controller,
but there is no guarantee that it is the "best" in any sense. Alternative controller



algorithm design methods are based on other goals. For example, the controller 609
could be designed to minimize the integral of the error squared, ISE, of the con- u^\-H^Mfa^^^k'^\
trolled variable during the disturbance response. This approach is presented by Conclusions
Newton et al. (1957) and applied to IMC control by Morari and Zafiriou (1989).
Naturally, a tunable filter remains in the design to achieve the desired robustness
and manipulated-variable behavior.

Filter Design
The filter described in this chapter improves the robustness of the predictive system
at the expense of increased deviation of the controlled variable from its set point.
Alternative filter designs can be selected to improve the response of the system
to a specific disturbance. For example, the response of predictive systems to dis
turbances, as described in this chapter, can be somewhat slow, but the disturbance
response can be improved by designing a filter that infers the disturbance variable
Dis) from the feedback signal Emis). When there is no model error, this calcu
lation requires that the filter be related to the inverse of the disturbance transfer
function. While this concept is theoretically sound, it can lead to aggressive con
trollers that are tailored to a specific disturbance and may not respond well to other
disturbance types. Again, some of these ideas are in Morari and Zafiriou (1989).

Robustness and Tuning
A vast literature is developing in methods for designing controllers using knowl
edge of the likely model errors, or mismatch. The key aspect of the design methods
is to provide not only stability, but also the best performance possible, over the
likely model errors. If the mismatch characterization is simple, like the gain margin
used in Ziegler-Nichols, the methods are easily applied, but they can yield con
servative feedback performance. This approach was promoted by the discussions
and methods in Doyle and Stein (1981).

PID Tuning
The IMC controller can be expressed as an equivalent classical controller design,
and this equivalence can be used to express PID tuning as a function of only one
parameter: the IMC filter t/. Results have been developed by Rivera et al. (1986)
and are summarized here for the "improved PI" tuning:

2 r + 0 „ , 6
T, = r + -

2 r f 2
The recommendation is that Xf > max (1.70,0.2r) (Morari and Zafiriou, 1989).

K P K C = - ^ — T , = r + - ( 1 9 . 3 6 )

19.8 0 CONCLUSIONS
In this chapter, an alternative feedback control structure and algorithm were intro
duced for processes that are open-loop stable. This predictive structure employs an
explicit model of the process in the control calculations. In addition, the controller
Gcpis) is designed to be an approximation of the process model inverse. Since the
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feedback signal is the disturbance [when Gm is) is a perfect model], the predictive
controller functions somewhat like a feedforward controller and potentially can
implement more aggressive adjustments to the manipulated variables.

Analysis of the predictive control structure provides a unified viewpoint for
evaluating the effects of dynamic elements in the feedback process on control
performance. In particular, the importance of dead time, inverse response (right-
half-plane zeros), constraints, and model error are clearly identified.

Recall that the controller cannot eliminate dead time or inverse response from the
feedback process. Substantial improvement in single-loop control performance re
quires process changes to reduce these unfavorable dynamic characteristics.

The predictive structure has the feature of removing process elements that are
difficult to control from the calculation of the feedback adjustment, when the model
is perfect. In this situation, the feedback signal Em does not depend on the controller
output MV, because it is affected only by disturbances. In single-loop control,
predictive control offers potential for improved performance in feedback processes
with large fraction dead times, inverse responses, or both. Also, predictive control
can be employed in cascade control with similar secondary and primary dynamics
and in feedforward-feedback control with a disturbance dead time less than the
feedback dead time.

In addition to providing useful single-loop control algorithms, the material in
this chapter provides a general manner for analyzing feedback systems. Specif
ically, the predictive structure is the basis for the powerful multivariable control
algorithm presented in Chapter 23.
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ADDITIONAL RESOURCES
The results in this chapter are limited to stable processes, which eliminates unstable
processes such as the chemical reactors in Appendix C and non-self-regulating
levels. The approach can be extended, as described in Morari and Zafiriou (1989).

QUESTIONS
19.1. For the following processes, design IMC and Smith predictor model pre

dictive controllers. Specify all parameters and give all equations for digital
implementation. Simulate each for a set point change.
id) The process in question 6.1, controlling temperature by adjusting the

valve.
ib) The process in question 6.2, controlling temperature by adjusting the

valve.
(c) The nonisothermal chemical reactor in Example 13.12, controlling the

reactor concentration, Ca, by manipulating (i) the pure A feed valve
(va) or (ii) the coolant flow valve (i>c).

id) The chemical reactors in Example 3.3, controlling outlet composition
Ca2 by adjusting the inlet composition Cao- Use an approximate first-
order-with-dead-time model for Gmis) and in designing Gcp(s).

19.2. The three-tank mixing process with IMC control was investigated in Exam
ple 19.8 for various flow rates. Using the deterministic-calculation approach
introduced in Section 16.3, determine a method for maintaining good IMC
control performance as the measured flow rate changes over the range in
Table 16.1.

19.3. The following process models have been identified for processes that con
form to the block diagram in Figure 19.11. For each process, determine
whether cascade control or single-loop control is appropriate, assuming
that D2is) is a significant disturbance. For cascades, decide whether the
performance might be improved by using an IMC controller as the primary.
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19.4. (a) Verify the equalities given in equations (19.31) to (19.33), re
lating the IMC and Smith predictor approximate inverses for
G-is) = Km/i\+xs).

ib) Verify the relationship in equation (19.10) relating the model predictive
and classical controllers.

ic) In Figures 19.10 to 19.12, which of the transfer functions represent
control calculations and which represent process behavior?

id) Determine the criteria for zero steady-state offset with model predictive
control of a stable process with an impulse input change.

19.5. Describe a proper method for providing anti-reset windup for the Smith
predictor. Include a block diagram and apply the final value theorem to
prove that your design is adequate.

19.6. Perform the following analysis for the stirred-tank heat exchanger in Ex
ample 8.5 under IMC feedback control. To simplify the analysis, assume a
perfect model when determining the analytical solution and that Gjis) =
Gpis).
id) Analyze the degrees of freedom.
ib) Derive the linearized model for the process and controller.
(c) Determine the analytical solution for the controlled variable for a step

set point change. Assume that Xf = t.
id) Determine the analytical solution for the manipulated variable for a

step set point change. Assume that Xf = x.
ie) Recalculate the results in (c) and id) for Xf = £t, with ft = 0.5 and

0.1. Sketch the shape of the dynamic responses of the controlled and
manipulated variables for these three values of tf.

if) Select the best value of Xf for the heat exchanger, not necessarily one
of the values considered in previous parts of this question.

19.7. The selection of the manipulated and controlled variables is discussed in
Chapter 7. Discuss how these criteria should be modified for feedback
control using model predictive control.

19.8. A mixing process with the structure in Figure 13.4 and with the following
feedback and disturbance transfer functions is to be controlled with an IMC
controller. The controlled variable is to be maintained within ±0.37 of the
set point for a unit step disturbance. What value of the IMC controller filter
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19.9. The chemical reactor process described in Examples 1.2 and 13.8 has a

feedback system with the outlet concentration controlled by adjusting the
solvent flow rate. Design IMC and Smith predictor model predictive con
trollers for feedback control. Program one of them and compare the control
performance with that achieved with PI feedback in Example 13.8. Discuss
the relative performances and steps required to substantially improve the
control performance.

19.10. Draw a block diagram for the Smith predictor control system. In each block
that involves controller calculations, show the equations solved in the digital
implementation. Assume that an adequate process model is first-order with
dead time.

19.11. The results of the tuning study given in Figure 19.6 show that the IMC
filter factor decreases as the fraction dead time increases. Since the filter
was introduced to make the feedback adjustments less aggressive and more
robust, one might expect larger filter values to be necessary at large frac
tion dead times. Discuss the effects of the filter and reconcile the tuning
correlations with the robustness expectations just stated. (Hint: Consider
all control performance criteria and process conditions involved in deter
mining the tuning correlations. They are described in Table 9.1.)

19.12. Analyze the control performance for IMC (or Smith predictor) feedback
control of the three-tank mixing process using closed-loop frequency re
sponse. The process is modelled in Example 7.2.
ia) Derive the expression used for this calculation assuming that the con

troller uses the first-order-with-dead-time approximation in Example
19.5 and Xf = 6.1. (Do not solve for the real and imaginary parts
analytically.)

ib) Use a computer program to evaluate the magnitude of the transfer func
tion over a range of frequencies; that is, determine \CVijco)\/\Dijoj) \.

ic) Compare the results in ib) with the equivalent results in Figure 13.16
(curve a) for PI control, discussing similarities and differences.

19.13. A method for analyzing the stability of the model predictive control sys
tems should be available. Perform the following analysis for the three-tank
mixing process under IMC control for two cases: Xf = 0 and T/ = 6.1.
Use the continuous transfer functions from Example 19.6.
id) Determine the expression for Gods) that could be used to analyze

stability.
ib) Determine the magnitude and phase angle of Godja)) for various

values of frequency, including several decades around the critical fre
quency. Present the results in Bode plots.

(c) Evaluate the Bode plot for the assumptions required for use in Bode
stability analysis.
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first-order disturbance dynamics (e.g., the process in Figure 13.4). The sys
tem is to be controlled with an IMC system and is subject to an unmeasured
step disturbance. Assume the model predictive control calculations can be
designed with perfect models. Answer the following questions for two
cases: (1) zero feedback dead time and (2) nonzero feedback dead time.
id) Define the best, physically possible feedback control performance. For

this question alone, control performance is determined completely by
the ISE of the controlled variable.

ib) Determine the transient response of the manipulated variable that
would result in the behavior of the controlled variable determined in
ia).

ic) Derive the IMC controller and filter Gfis)Gcpis) that would give the
performance defined in ia) and ib) using the feedback measurement
only.

19.15. Using the IMC tuning rules for a PI controller in equation (19.36) and
Figure 19.6, develop graphs of KPKC and 77/(0 + r) versus the fraction
feedback dead time, 0/(0 + x). Compare these graphs with Figure 19.9.



Multiloop
Control: Effects

of Interaction
20.1 u INTRODUCTION
Multivariable control occurs in nearly all processes, because production rate (flow),
inventory (level and pressure), process environment (temperature), and product
quality are normally controlled simultaneously. The multiloop approach, using
multiple single-loop controllers, was the first approach used for multivariable con
trol in the process industries. Through decades of research and experience, many
successful multiloop strategies have been developed and continue to be used.

One advantage of multiloop control is the use of simple algorithms, which is
especially important when the control calculations are implemented with analog
computing equipment. A second advantage is the ease of understanding by plant
operating personnel, which results from the simplicity of the control structure.
Since each controller uses only one measured controlled variable and adjusts only
one manipulated variable, the actions of the controllers are relatively easy to mon
itor. A third advantage is that standard control designs have been developed for
the common unit operations, such as furnaces, boilers, compressors, and simple
distillation towers. This does not mean that a single control design functions well
for all unit operations of the same type. However, several general structures are in
common use, and selection among alternatives can be based on analysis and expe
rience. Considering these advantages, one could conclude that multiloop designs
will continue to be used extensively, although not exclusively.

An example of multiloop control of a flash process is given in Figure 20.1.
Let us consider the behavior of the system when the feed flow rate increases. An
initial effect is an increase in the amount of vapor entering the drum, although the
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FIGURE 20.1

Example of a multiloop control system.

percentage feed vaporized decreases because of a slight decrease in inlet tempera
ture. The pressure in the drum increases because of the additional vapor; therefore,
the pressure controller PC-1 takes action by increasing the percent opening of the
valve in the vapor line. Another effect is a decrease in the temperature after the
heat exchanger, which is sensed by TC-3. This feedback controller increases the
steam flow to the exchanger, which returns the temperature to its set point and
causes even more feed to be vaporized. This additional vapor causes the pressure
to increase, and the pressure controller has to respond to this change as well. The
increase in feed rate and changes in percent vaporized introduce changes in the
liquid rate into the liquid inventory in the drum. The level controller increases the
opening of the valve in the liquid product line to maintain the level near its set point.

Two important features of this system become clear when observing its dy
namic behavior:

1. The single-loop controllers are completely independent algorithms that do not
communicate directly among themselves.

2. The manipulations made by one controller can influence other controlled vari
ables; that is, there can be interaction through the process among the individual
control loops.

The interaction is the key effect addressed in this chapter, where we will demon
strate that several single-loop controllers on a process should not generally be
analyzed as though each were a single-loop system.

We shall use the following definition of interaction.

A multivariable process is said to have interaction whenprocess input (manipulated)
variables affect more than Onê  process output (controlled) variable.

This definition is consistent with the use of the word in the vernacular and will



serve us in the study of multivariable systems. However, the definition does not
distinguish between various important properties that will be introduced in this
chapter. Thus, careful attention must be paid to the effects of various types of
interaction on control stability and performance.

In this chapter the basic principles of multiloop control are presented, with
the goal of understanding multivariable systems. As with single-loop control, we
start with the process by reviewing modelling approaches for multivariable pro
cesses and developing models for two sample systems, which will be used in later
examples. Then the concept of interaction is discussed to highlight its effects on
system behavior, and a quantitative measure of interaction is introduced. Finally,
some approaches for tuning multiloop controllers are presented. All of the con
cepts developed in this chapter are employed in the next chapter, which addresses
the performance of multiloop control systems.
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20.2 n MODELLING AND TRANSFER FUNCTIONS

Process models for multivariable control can be derived from fundamental prin
ciples or can be estimated based on empirical data. Regardless of the modelling
method used, the analysis, design, and tuning of multiloop controllers will be
based on linear input-output models employing block diagram manipulation, sta
bility analysis, and frequency response. The following two examples demonstrate
the modelling approaches applied to blending and distillation, and the resulting
models will be employed in several subsequent examples.

EXAMPLE 20.1.
Blending is an important unit operation and is employed in a wide variety of indus
tries, as in the production of gasoline (Stadnicki and Lawler, 1985) and cement
(Sakr et al., 1988). Typically, the controlled variables in a blending process are
production rate and blended product composition. The blending process in Fig
ure 20.2 is modelled with the following assumptions:

1. The inlet concentrations are constant.
2. Mixing where the flows merge is perfect.
3. The densities of the solvent and component A are equal.

The overall and component A material balances at the point of mixing are
Fm = FA + FS

FmXm = FAXA + F$Xs
(20.1)

(20.2)

<5>
Solvent

Pure A

c%—-

<2>
c^h

D̂
©

FIGURE 20.2

Example blending process.

where Fm — flow rate of mixed liquid (mass/time)
XA = mass fraction of component A in pure A = 1.0
Xs = mass fraction of component A in solvent = 0.0
Xm = mass fraction of component A in the mixed liquid

Equation (20.2) can be linearized about the steady state to give

K i t ) ■ i
Fs

iFs + FA)2]s F'Ait) +
-Fa

ViFs + Fta)2 I Kit) (20.3)

with the prime indicating deviation variables. The system is liquid-filled; thus, there
is essentially no delay between a change in a component flow rate and a change
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in the mixed-product flow rate. It is also assumed that the concentration at the
location of the analyzer is essentially the same as at the mixing point; that is, there
is no transportation dead time. Also, the inlet flow measurements are assumed
to be exactly and instantaneously equal to the actual flows, F, = Fs and F2 =
FA. The dynamics of the mixed stream flow and concentration sensors are not
instantaneous and are characterized by a first-order-with-dead-time model with
gains of 1.0 and the following dynamic parameters:

Dead time Time constant

Flow
Concentration

0F
eA

xF
*a

Thus, the measured controlled variables are related to the instantaneous process
variables in equations (20.1) and (20.3) by

"Ca-

xf-

dA\jt)
dt

dF^jt)
dt

= X ' i t -9A)-A\ i t )

= F'mit-eF)-Fdt)

(20.4)

(20.5)

Equations (20.1) and (20.3) to (20.5) can be combined to give the following
linearized dynamic model:

Axis) =
\ ~Fa 1 e-*A>
LiFs + FA)2\s

1 +xAs Fxis) + LiFs + FA
1 + xAs

e
— * F d s ) (20.6)

l . O e " ^ 1 . 0 * - ' ' *
F d s ) = ^ ^ F x i s ) + ^ — F d s )1 + XFS 1 +XpS (20.7)

Clearly, interaction is present in this process, because each output is affected
by both inputs. Numerical values will be determined for different operating condi
tions later in this chapter.

EXAMPLE 20.2.
The empirical identification procedures described in Chapter 6 can be applied to
the distillation process shown in Figure 20.3. (This design was originally suggested
by McAvoy and Weischedel (1981) and was approximated for constant relative
volatility by Sampath (1991).) The manipulated variables are reflux and reboiler
flow rates, and the controlled variables are distillate and bottoms composition.
Other important variables, such as pressure and levels, are controlled tightly as
shown.

One experiment must be performed for each input variable, and the responses
of all output variables (after 2 min analyzer dead time) are recorded. Either the
process reaction curve or statistical methods can be used to fit parameters in the
transfer functions. The models derived by this empirical procedure are as follows



~§

r \ ( \ I 7 R

-c&»
^ ■ckj-

§

with time in minutes:

Relative volatility 2.4
Number of trays 17
Feed tray 9
Analyzer dead times 2 min
Feed light key XF = 0.50
Distillate light key Xd = 0.98 mole fraction
Bottoms light key *b = 0.02 mole fraction
Feed flow FF = lO.Okgmole/min
Reflux flow Fr = 8.53 kgmole/min
Distillate flow Fd = 5.0 kgmole/min
Reboiler flow Fv = 13.53 kgmole/min
Tray holdup H = 1.0 kgmole
Holdup in drums HD = 10.0 kg mole
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FIGURE 20.3

Example distillation tower.

v , x 0.0747<T3s „ , N 0.0661e-2s „ , v 0.70<r5vXois) = ,„_ , , FRis) - —r^—r-Fvis) + , A A , , XFis)1 2 5 + 1 1 5 * + 1
v , , 0.1173<r335 „ , x 0.1253*-* „ , xX5(5) = ,,„ , , FRis) - ————-Fv(5) +11.75 + 1 10.25 + 1

14.45 + 1
1.3e-3'
125+1 XF(5)

(20.8)

(20.9)

Note that the reflux flow iFR) and amount vaporized in the reboiler (Fv) are
potential manipulated variables, and the feed composition iXF) is a disturbance,
because it depends on upstream operations and is assumed not free to be ad
justed.

Finally, the linearized models in Examples 20.1 and 20.2 will be used in
subsequent system analysis examples. When the dynamic responses are determined
via simulation, the linearized distillation model will be used, but the nonlinear
blending model will be used because of the large range of operating conditions
considered in the blending examples.

Linearized models, whether derived from fundamental balances or from exper
iments, can be used to analyze the system with and without control. To understand
the entire system, it is helpful to present the process in a block diagram. The block
diagram of a general 2x2 system, recalling that each process transfer function
relates one input to one output, is shown in Figure 20.4. Each term G,j is) relates
manipulated input j to output i, and the terms Gjds) relate the effects of a dis
turbance on each process output. If more than one important disturbance is to be
considered, additional disturbance transfer functions can be included. Note that if
both Gxds) and G2xis) [or alternatively Gxxis) and G22is)] are zero, the process
has no interaction, because one input affects only one output. In such a case, the
system behaves like two independent processes, and the behavior of each control
loop is independent.
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Gl2is)

G2iis)

Gdxis)

G^is)
- D i s )

MV2is)
FIGURE 20.4

G22is) -© Kt>—*■ CV2(5)

Block diagram of 2 x 2 open-loop system.

The set of simultaneous equations relating inputs to outputs in Figure 20.4 are
often presented in matrix form as follows:

\CVxis) ] _ \Gxxis) Gxds) ] \MVxis) ] \Gdds) l 2Q m
[CV2is)\ ~ [G2xis) G22is)\ [MVds) J + [Gd2is) J D{S) W10'
Each element of the matrix is a transfer function relating one input to one

output. Thus:

Linear models for multivariable systems can be developed using the same analytical
and empirical procedures as for single-variable systems.

20.3 n INFLUENCE OF INTERACTION ON THE POSSIBILITY
OF FEEDBACK CONTROL

Previously, some basic requirements were stated for the variables involved in a
single-loop feedback control system. Briefly, the controlled variable should be
closely related to process performance; the manipulated variable should be in
dependently adjustable; there should be a causal relationship between the ma
nipulated and controlled variables; and the dynamics should be favorable. These
guidelines are still useful, but a somewhat more thorough analysis is required for
multivariable systems, because range and controllability are influenced by process
interactions.

Operating Window
The first issue is the control system's range of attainable variable values. The term
operating window will be used for the range of possible (or feasible) steady-state
values of process variables that can be achieved with the equipment available. The
operating window can be sketched using different variables as coordinates; in one
approach, the controlled variables are used to characterize the range of possible
set points, with all disturbances constant. Another common approach is to use
the disturbance variables as coordinates to characterize the range of disturbance
values that can be compensated by the control system (i.e., for which the con-
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FIGURE 20.5

Operating window for blending with controlled variables as
coordinates.
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trolled variables can be maintained at constant set points). The two approaches are
demonstrated in the following examples.
EXAMPLE 20.3.
The component flow rates in the blending example can be adjusted continuously
from zero to maximum rates, FAtmK and FSmax. Draw the operating window of attain
able total flow rate and composition, assuming that the component compositions
remain unchanged.

The attainable total flow F3 and composition Ax are shown in Figure 20.5. The
limiting values are easily determined by solving equations (20.1) and (20.2) for
various values of one flow, with the other flow at its maximum value. The interaction
between variables is clear, because the value of one variable influences the range
of the other variable. If the variables were independent and no interaction occurred,
the operating window would be rectangular, which it clearly is not.

EXAMPLE 20.4.
The feed flow rate and composition to the distillation tower in Example 20.2 change
over ranges of 8 to 12 kmole/min and mole fraction 0.4 to 0.6, respectively. Also, the
vapor condensed in the condenser cannot be greater than 15.0 kmole/min. Deter
mine the range of disturbances for which the product qualities can be maintained
at 0.98 and 0.02 mole fraction.

The method for calculating the operating window for this example depends on
the equation-solving methods available. A trial-and-error method could be used to
specify the disturbances and simulate the tower with XD and XB at their set points.
This trial-and-error procedure, involving many simulations, would be executed
until the disturbance value that resulted in the maximum overhead vapor flow was
found. A direct method of solving this problem would be to specify XD and XB and
calculate the feed composition XF that resulted in the overhead vapor flow meeting
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FIGURE 20.6

Operating window for distillation with disturbance
variables as coordinates.

its maximum limit; this approach is possible with a steady-state model solved
using an equation-based approach (Perkins, 1984). The results of the analysis,
performed by either method, are the feasible values of feed rate and composition,
with XD and XB maintained at their desired values; the operating window is given
in Figure 20.6. Again, the interaction is apparent by the shape of the operating
window. The maximum feed rate is attainable with a feed containing the least light
key, because the least amount of distillate product is generated by this feed and
the least distillate requires the minimum overhead vapor.

Con t ro l l ab i l i t y
Another important issue in multivariable control is the independence of the input-
output process relationships between selected manipulated variables (MV/s) and
controlled variables (CV,'s); a process in which the relationships are independent
is termed controllable. Many definitions for the term controllability are used in
automatic control (e.g., Franklin et al., 1990); for the purposes of this book we will
use the following definition, which is appropriate for continuously operating plants
that should attain steady-state conditions (a somewhat less restrictive version of
Rosenbrock's (1974) "functionally controllable (f)"):

A system is controllable if the controlled variables can be maintained at their set
points, in the steady state, in spite of disturbances entering the system.

Controllability is defined for a selected set of manipulated and controlled variables,
and a system may be controllable for one selection and uncontrollable for another
selection. A system's controllability is not always easy to determine by observa-



tion; thus, a quantitative method for determining controllability is presented in this
section. There is no general method for nonlinear systems; therefore, the control
lability of the locally linearized system will be analyzed to evaluate the system. As
a result, the results of the controllability test are strictly valid only at the operating
point at which the linear model is evaluated.

The multivariable dynamic system can be described by a model of the form
given in equation (20.10); only a 2 x 2 system is given, but the extension to
higher orders is straightforward. We will assume that the system begins at steady
state. The definition of controllability will be met if the controlled variables can be
maintained at their set points, so that their deviation variables are zero, by adjusting
the specified manipulated variables in the presence of steplike disturbances, which
achieve a constant value, at least asymptotically. The behavior of the system at
steady state can be determined through the final value theorem. As noted in Chapter
4, the final value theorem can be applied if the output is bounded, which excludes
bounded input-bounded output unstable systems. Applying the final value theorem
to equation (20.10), with CV/(j) = 0 for all /, gives

[SHaMMS]' «»»>
with Kij = lim Gy is) being the steady-state gains.JT—▶O

The system is controllable if there is a solution for this set of linear alge
braic equations for arbitrary nonzero values of Kdx, Kd2, and D' (i.e., all possible
disturbances).
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A solution exists for a square system of linear equations (20.11) when an inverse to
the matrix of feedback process gains (K) exists; thus, the system is controllable if
the determinant of the gain matrix is nonzero.

A square physical system (numbers of manipulated and controlled variables are
constant) is not controllable if any of the following conditions occurs:

1. Any two process inputs are linearly dependent (giving dependent columns).
2. Any two process outputs are linearly dependent (giving dependent rows).
3. A process output is not influenced by any input (giving a column of zeros).
4. A process input does not influence any output (giving a row of zeros).

The controllability test is applied to the two processes in the following example to
ensure that they are controllable.

EXAMPLE 20.5.
Evaluate the controllability of the blending and distillation processes.

The gain matrices and their determinants are
f - F A F ±

Blending iFs + FA)2 iFs + FA)21 . 0 1 . 0
Determinant: -Fs + FA

7^0.0

_. ,.„ .. T 0.0747 -0.0667]Dist.llat.on ^1173 _0.l253j

iFs + FA)2

Determinant: -0.001536 # 0.0



628

CHAPTER 20
Multiloop Control:
Effects of Interaction

Since each determinant is nonzero, each process is controllable for the selected
manipulated and controlled variables.

Note that a controllable system indicates that the manipulated variables can
compensate for effects of disturbances on selected controlled variables for some
small region over which the linearization is valid and constraints are not encoun
tered in the manipulated variables. In contrast, the operating window, which is
evaluated using the nonlinear steady-state models including constraints, defines
the entire possible region of operation. Both analyses should be performed to
ensure the possibility of multivariable control.

Finally, the controllability and range of the system are affected by the pro
cess design and operating conditions, along with the selected controlled variables.
Therefore, deficiencies in controllability and range must be compensated through
changes to the equipment or process operating point, not control algorithms.

20.4 n PROCESS INTERACTION: IMPORTANT EFFECTS
ON MULTIVARIABLE SYSTEM BEHAVIOR
We now continue investigating the effects of interaction on multivariable system
behavior, assuming that the process has a controllable input-output selection. The
goal of this section is to demonstrate how the responses of a control system are
influenced by interaction. To simplify the analysis, only relationships for two-
input, two-output systems are considered, but the results obtained can be extended
to control systems of higher order. Insights will be provided in this section through
analyzing several examples and are formalized in the next section.

The first step is to derive the transfer function for the multiloop feedback
control system and determine the main differences from single-loop control. We
begin this procedure by considering the same system (1) without control, (2) with
one controller, and finally (3) with two controllers. First, suppose that a single
controller were to be implemented on the system in Figure 20.4, with the goal
of controlling CVxis) by adjusting MViCs). The transfer function Gu(s) would
have to be considered when tuning the controller, as demonstrated by the transfer
function:

CVxis)
MVxis)

= Gxxis) no control (20.12)

In this case, the control loop could be considered a single-loop system; however,
changes in MVi(j) caused by the controller would affect CV2is) because of in
teraction.

Next, we consider a more complex structure to determine whether it affects
the first loop. The block diagram for a multivariable process with one single-
loop controller is given in Figure 20.7. This example is considered to demonstrate
the effects of interaction on closed-loop systems. The transfer function relating
MVi(j) with CViOs) would have to be considered when tuning the controller
using these measured and manipulated variables. This transfer function follows
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FIGURE 20.7

Block diagram of 2 x 2 system with one single-loop controller.

for the case with Gc2is) implemented:

CVi(j)
MVxis)

= Gxxis)- Gx2js)G2xis)Gc2js)
1 + Gc2is)G22is) Gc2 is) implemented (20.13)

This equation differs from the transfer function with no control of CV2is), equa
tion (20.12), by the second term, and the path represented by the second term is
shown as a dashed line in Figure 20.7. Clearly, this path results from the process
interaction and the second controller. The second term on the right-hand side in
equation (20.13) would be zero if either or both Gxds) and G2lis) were zero,
in which case the controller Gc2is) would have no effect on the transfer func
tion for CVxis)/MVxis). The path shown with the dashed line will be referred
to as transmission interaction and will be seen to have an important influence on
stability.
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Transmission interaction exists when a change in the set point of a controller affects
its controlled variable through a path that includes another controlled variable and
controller.

Note that it is possible to have process interaction [i.e., only Gxds) or G2x is) non
zero] without having transmission interaction, which requires both to be nonzero.

The control design can be completed by applying two single-loop controllers to
the process, as shown in Figure 20.8. The following closed-loop transfer functions
can be determined from block diagram manipulation. (The results for the other
controlled variable, CV2is), can be obtained by transposing the subscripts.)

CVxis) Gcxis)Gxxis) + Gcxis)Gc2[Gxxis)G22is) - Gl2is)G\2is)]
SPxis) CEis)

CVxis) Gc2is)Gl2is)
SPds) CEis)

(20.14)

(20.15)
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FIGURE 20.8

Block diagram of 2 x 2 system with two single-loop controller.

CVi(s)
Dis)

Gdds)
Gd2Gxds)G

[l + Gc2(s)G
£^U[1
22(^)]J

+ Gc2is)G22is)]

CEis)
(20.16)

with the characteristic expression CE(s), which is the same for equations (20.14)
through (20.16),

CECs) = 1 + Gcxis)Gxxis) + Gc2is)G22is)
+ Gcxis)Gc2is)[Gxxis)G22is) - Gl2is)G2xis)]

(20.17)

When both interaction terms Gxds) and G2i(.s) are nonzero, the dynamic
response of a single-loop controller between CVi is) and MVi is) depends on all
terms in the closed-loop transfer function. As a result, the stability and performance
of loop 1 depend on the tuning of loop 2. By a similar argument, the stability and
performance of loop 2 depend on the tuning of loop 1. Therefore,

The two controllers must be tuned simultaneously to achieved desired stability and
performance.

Further insight can be obtained by considering the steady-state behavior of the
multivariable system. In particular, the necessary adjustments in the manipulated
variables can be used as an indication of how interaction changes the system's
behavior. The general steady-state relationship for a 2 x 2 system is expressed
here in deviation variables:

CV\ = KnMV\ + Kl2MV2
CV2 = K2xMV\ + K22MV'2

These equations are often written in matrix form as

(20.18)
(20.19)

KHK] *"-[££] (20-20)
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MV
MV2J"K Lcv2J (20.21)

where K~* is the inverse of the steady-state gain matrix and exists for a controllable
system. Note that equation (20.21) represents the calculation performed by the
controller with zero steady-state offset. For example, equation (20.21) could be
used to determine the steady-state changes in MV\ and MV2 for any specified
changes in CV\ and CV2 (i.e., set point changes). Several hypothetical systems
are considered first so that the extent of interaction can be changed incrementally
from the base model; then some realistic processes are considered.

The process gain matrices in Table 20.1 represent hypothetical systems with
various extents of interaction: A has no interaction iKx2 = K2x = 0); B has
moderate transmission interaction; C has strong transmission interaction; D is not
controllable (the determinant of the gain matrix is zero), and E has one-way in
teraction (£21 = 0). Thus, their behaviors are expected to vary. In particular,
multivariable control is not possible with system D, because it is not possible to
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TABLE 20.1
Summary of manipulated-variable changes for example
systems with differing amounts of interaction

System

Process
gain matrix
K

Inverse
gain matrix
K"1

cv; = 1.0
cv2 = 0.0

No interaction 1.0
0.0

B
Moderate "1.0
transmission 0.75
interaction

[.1.0
0.0

0.0
1.0

0.75] r 2.29 -1.71]
1.0 J [-1.71 2.29J

MV, = 1.0
MV'2 = 0.0
Same as
single-loop

MV, = 2.29
MV'2 = -1.71
Larger than
single-loop

Strong
transmission
interaction

1.0
0.90

0.90
1.0

MV, = 5.26
5.26 -4.74] MV2 = -4.74
-4.74 5.26J Much larger than

single-loop

D
Not
controllable

fl.O 1.0]
[_1.0 1.0J

Singular;
inverse does
not exist

E
One-way
interaction

1.0
0.0

1.0
1.0

1.0
0.0

1.0
1.0

mv; = 1.0
MV'2 = 0.0
Same as
single-loop
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control CV^ and CV2 independently. This system is not considered further, be
cause a process design change would be required to control the selected controlled
variables.

The changes in the manipulated variables required for the specified CV changes
are given in Table 20.1. The manipulated variable changes for systems B and C with
transmission (two-way) interaction differ from the single-loop values reported as
system A. Also, the differences in manipulated variable behavior from system A
increase with increases in the interaction terms. For cases reported in the table,
the manipulations for systems B and C are greater than those for system A, but
for other specified CV changes, systems B and C could be smaller than system
A. The following points summarize the major differences in steady-state behavior
between single-loop and multivariable systems.

1. The values of the manipulated variables that satisfy the desired controlled vari
ables must be determined simultaneously.

2. Differences between single-variable and multivariable behavior increase as the
transmission (two-way) interaction increases.

(£>
Solvent

Pure A

t&-

0̂ t$y

(J
(sf

^

/*\
— * &

-c£k"

;€ fc

(\_~HEr-
3 — A

$ "

^ ^ - ^ - Q

Before we conclude this section, two examples of process gain matrices are con
sidered. These examples demonstrate that the behavior shown in Table 20.1 occurs
in realistic chemical processes.

EXAMPLE 20.6.
The first is the blending system shown in Figure 20.2, where the product flow and
composition are controlled by adjusting the flows of the two component streams.
The gains are determined from the linearized model in equations (20.6) and (20.7).
The base conditions are taken to be

Fj = 95.0 kg/min F2 = 5.0 kg/min

Ai = 0.05 wt fraction A F3 = 100 kg/min

The gain matrix and its inverse for these conditions are

Ax
Fs ]-[ -0.0005

1.0
0.0095

1.0
Fx
F2

K - l _ [-100 0.95]~ |_ 100 0.05 J

(20.22)

(20.23)

The gain and inverse matrices have one element that is nearly zero. Thus, the
system is likely to behave similar to system E in Table 20.1. As a result, this system
is not expected to experience very strong departures from the single-variable
behavior in manipulated-variable adjustment magnitudes.

mm
EXAMPLE 20.7.
The second example is the binary distillation tower in Figure 20.3, where the prod
uct compositions are controlled by adjusting the reflux and reboiler flows. The
steady-state gains can be taken from the transfer function matrix in equations
(20.8) and (20.9).

[0.0747 -0.0667] y _ [81.58 -43.42]
|_0.1173 -0.1253J ~ [76.36 -48.63 J (20.24)



The distillation tower appears highly interactive in the two-way manner similar to
systems B and C. To complete this distillation example, steady-state changes in
manipulated variables are calculated for single-loop and multivariable control. In
both cases, the bottoms mole fraction of light key is to be decreased by 0.01. In
the first case, only the bottoms mole fraction is specified and the distillate mole
fraction is not controlled. This is single-loop control, and the necessary change in
vaporization is

Single-loop: AFV = B = ~ ' = 0.0798 kmole/minKxb.v —0.1253
Since the bottoms composition is not controlled, AFR = 0 and AXD £ 0. In the
alternative multivariable case, the distillate mole fraction is maintained unchanged
(AXD = 0), while the bottoms composition is changed by -0.01.

Multivariable: [AFS1 = [81.53 -43.42] [ 0 ]_ [0.4343]
[AFV\ [76.36 -48.63J [-0.01 J ~ |_0.4863J

The results demonstrate that the change in the vaporization in the reboiler
was much larger in magnitude for the multivariable system (0.4863 compared with
0.0798 kmole/min), and in addition, a large change in reflux was required. Clearly,
the interaction has strongly affected the steady-state behavior of the system.

In conclusion, interaction can strongly influence the steady-state and dynamic
behavior of multivariable systems. There exists a range of interaction from com
pletely independent through nearly dependent (i.e., nearly singular), with this in
teraction dependent on the process characteristics, not on control. In general, the
closer the system approaches singularity (system D in Table 20.1), the more its
behavior differs from that of independent loops. The final two process examples
demonstrated that real processes can have interaction similar to the range of ex
amples in Table 20.1. In the next section, a quantitative measure of interaction is
introduced.
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20.5 □ PROCESS INTERACTION: THE RELATIVE GAIN
ARRAY (RGA)

As shown in the previous section, process interaction is an important factor influ
encing the behavior of multivariable systems. A quantitative measure of interaction
is needed to proceed with a multiloop analysis method, and the relative gain ar
ray, which has proved useful in control system analysis, is introduced to meet
this need. The relative gain array was developed by Bristol (1966) and extended
by many engineers, most notably Shinskey (1988) and McAvoy (1983b). In this
section, the relative gain is defined, special properties and methods for calculation
are given, and interpretations for control analysis are presented. The relative gain
array (RGA) is a matrix composed of elements defined as ratios of open-loop to
closed-loop gains as expressed by the following equation, which relates the yth
input and the ith output.

/ d c y \ / a c y \
V d M V - ) \ d M V - )\ J ' M V i = c o n s t , f c ^ / ^ J ' O m c i i u u i j 9 u i J t i i / o n 0 ^ \

kij —
other loops open

/ dCVj \
\dMVj) CWk=const,k î

(acy- \
\ d M V j ) other loops closed
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Consistent with prior terminology, the open-loop gain (Jfy) is the change in
output i for a change in input j with all other inputs constant (for stable processes).
By closed-loop gain we mean the steady-state relationship between MV'j and CV,'
with all other control loops closed (i.e., in automatic). In this definition, it is
assumed that the controllers have an integral mode so that the steady-state values
of the controlled variables are maintained constant (i.e., CV^ = 0 for those under
feedback control). If the relative gain is 1.0, the process gain is unaffected by
the other control loops and no (transmission) interaction exists. Thus, the amount
that the relative gain deviates from 1.0 indicates, in some sense, the "extent" of
transmission interaction in a quantitative manner.

Before control-relevant interpretations of the relative gain are developed, some
important properties must be noted:

1. The relative gain is scale-independent. This is important because rules for
interpretation do not change when the units of a variable change (e.g., from
percent to parts per million).

2. The expression in equation (20.25) suggests that both open- and closed-loop
data is required to determine the relative gain. However, the relative gain can
be calculated from the open-loop data alone, which can be demonstrated by
rearranging equation (20.25) to give

= ( d C Y i \ / 8 M V AH1 V3MvJMVi=consU,AacvJ (20.26)
CV*=const,*#i

The procedure for calculating the relative gain array is to evaluate the open-
loop gain matrix K; calculate its inverse transposed (K_1)T; and multiply
them in an element-by-element manner. This type of matrix multiplication
is referred to as the Hadamard product (McAvoy, 1983b). The following
expression gives the result for each element in the relative gain array, with
Kjj being the elements in the gain matrix and KI<;- being the elements of the
inverse of the gain matrix,

Ay — Ku^ji (20.27)

For a 2 x 2 system, the (1,1) element of the relative gain array can be shown
to be

Xn =
1

1.0- #12^21
Kx 1 #22

(20.28)

3. The rows and columns of the relative gain array sum to 1.0. This property
enables 2x2 systems to be characterized by the Xxx element, as follows:

MV MV2

cv,
cv2

A l l
1 — A.H

1 - A l l
An

(20.29)

4. The relative gain calculation can be very sensitive to errors in the gain calcu
lation. As an example, consider the following relative gain for a 2 x 2 process,
and assume that each process gain can be in error by a factor e,y-, which is 1.0



f o r n o e r r o r . 5 3 5

True An eu €]2 621 €22 An calculated with model errors

1 0 1 . 0 1 . 0 1 . 0 1 . 0 1 0 . 0 N o e r r o r
1 0 1 . 0 1 . 1 1 . 0 1 . 0 1 0 0 . 0
1 0 1 . 0 1 . 2 1 . 0 1 . 0 - 1 6 . 6
10 0 .97 1 .03 1 .03 0 .97 -7 .8 On ly 3% e r ro rs

Since the sign of the relative gain is of great importance in control design
decisions, the sensitivity to model errors demonstrated as the foregoing property 4
must be considered, to prevent incorrect results. Thus, great accuracy is required in
the process gains used for calculating the relative gain. Probably the best method
is to derive an analytical model and evaluate the process gains from analytical
derivatives. This can be done for the blending example using the linearized model
and the foregoing property 2:

r ^ 1 F 2

[A//] =
Fi + F2 Fx + F2

F 2 F x
(20.31)

Fi + F2 Fx + F2 -

However, few complex industrial processes can be accurately modelled by sets
of equations small enough to be conveniently manipulated analytically by hand,
although advances in algebraic processing by computers could change this situation
in the future. Thus, numerical differentiation using steady-state process simulators
is a common approach to evaluating process gains. In this procedure, a separate
simulation is performed at the base case and at a case with each input MV; changed
a small amount from the base case. The process gains are calculated using the
equation below, and the relative gain array is determined from equation (20.27):

CV/(MV,, MV2, ...,MVj + AMV;,...) - CV,(MVi, MV2,...)K
AMVj

(20.32)
Special care is required when using this method because of the accuracy re
quired for the relative gain. When numerical differentiation is used, two potential
causes of errors are introduced: the convergence tolerances in solving the equa
tions and the use of approximate rather than exact derivatives. As demonstrated by
McAvoy (1983fc), the convergence tolerances and AMVs used in equation (20.32)

1
i K x 2 € x 2 ) i K 2 x € 2 x ) ' P r o c e s s I n t e r a c t i o n :1 - 0 - — — T h e R e l a t i v e G a i n
i K x x € x x K K 2 2 € 2 2 ) A r r a y ( R G A )

When the relative gain element has a large magnitude, the relative gain can take
widely varying values and can even change sign for small errors in individual
process gains, as shown by the following example cases. In this example, the
actual values for the gains are Kxx = K22 = 1.0 and Kl2 = K2\ = 0.949,
and the erroneous relative gain is shown for a few example sets of gain errors.
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in calculating the approximate gain must be reduced until the estimated process
gains are not significantly influenced by further reductions in their values. The
conclusion of this analysis can be stated as follows:

The gains Ktj used for calculating the relative gains must be accurate; the use of
gains from l̂inearized fundamental models is recommended. Given the typical errors
in empirical model identification, the use of empirically determined process gains
using methods in Chapter 6 is not recommended for calculating relative gains.

Some very useful control-related interpretations based on the RGA are summarized
as follows and will be used in a hierarchical analysis procedure in the next chapter.

*u <o

ku = 0

0 < kn < 1

An = 1

A; i > 1

ku = CO

In this case, the open- and closed-loop process gains are of dif
ferent sighs. In a 2 x 2 process, if the single-loop (CV, — MV,)
controller gain were positive for stable feedback control, the same
controller gain would have to be negative for stable multiloop feed
back control. Thus, the sign of the controller gain to retain stability
would depend on the mode of other controllers in the multiloop
system—not a desirable situation.
One situation in which the relative gain is zero occurs when the
open-loop process gain (ACV//AMV/ with the other loops open)
is zero, which indicates no steady-state relationship between the
input and output variables. Thus, the controller with this pairing
can function, if at all, only when other controllers are in automatic.
Again, this is not generally a desirable situation but is acceptable
in special circumstances, as explained in the next chapter.
From equation (20.25), the steady-state loop process gain with the
other loops closed [e.g., equation (20.13)] is larger than the same
process gain with the other loops open.
In this situation, there is no transmission interaction, in the sense
that the product of K\2K2x is zero, but either one of the terms may
be nonzero. Thus, a change in MV/ is) is transmitted to CV/ is) only
through Gijis). Note that this does not preclude the possibility that
the manipulated variable might affect another controlled variable
(i.e., one-way interaction).
From equation (20.25), the steady-state loop process gain with the
other loops closed [e.g., equation (20.13)] is smaller than the same
process gain with the other loops open.
When the process gain is zero with the other loops closed, it is not
possible to control the variable in a multiloop system.

As examples, the relative gains for all cases in Table 20.1 and the two process
examples are reported here. (Note that the model for the distillation tower was
developed from very small perturbations in the nonlinear model without noise;
the probability of obtaining an accurate relative gain value from empirical model
fitting is quite small.)



System Relative gain, Xn

A 1.0
B 2.29
C 5.26
D CO

E 1.0
Blending kM-F2 = 0.95 Operating conditions in equation (20.22)
Distillation kxD-FR = 6.09 Operating conditions in Figure 20.3
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These values are consistent with the previous, qualitative evaluations of in
teraction in that systems with relative gain deviating most from 1.0 deviate most
from single-loop behavior. Note that system E with only one-way interaction has
A.ii = 1.0; in general, the relative gain array is the identity matrix for systems
with a steady-state gain matrix that is lower (or upper) diagonal [i.e., with nonzero
entries only on and below (or above) the diagonal].

Finally, the relative gain can be related directly to the closed-loop transfer
function of a 2 x 2 system. To do this, the definition of relative gain has been
extended by Witcher and McAvoy (1977) to include frequency-dependent terms
by replacing the steady-state gains with the corresponding transfer functions. Thus,
the frequency-dependent relative gain is

All is) =
1

Gxds)G2lis) (20.33)
1 -

Gxxis)G22is)

This expression can be used, by setting s = jco, to evaluate the magnitude of the
relative gain elements at various frequencies.

Using the foregoing expression, the characteristic expression (20.17) can be
rewritten as

CEis) = 1 + Gclis)Gxxis) + Gc2is)G22is) + Gdis)Gcds)Gxxis)G22is)
Au(5)

(20.34)
This analysis demonstrates the fundamental nature of the relative gain and the
close relationship between the relative gain and system stability for 2 x 2 systems.

A summary of the key results for the relative gain array follows:

1. The deviation from single-loop behavior, specifically the transmission interac
tion, is related to the difference of the relative gain element from the value of
1.0.

2. The condition of A,;- < 0 results in multiloop systems that, to maintain accept
able performance, must alter the (CV,- - MVj) controller gain or automatic
status, depending on the status of other controllers.

3. A direct relationship between frequency-dependent relative gain and control
system stability has been demonstrated for 2 x 2 systems.
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20.6 a EFFECT OF INTERACTION ON STABILITY
AND TUNING OF MULTILOOP CONTROL SYSTEMS

The final major topic in this chapter is controller tuning. Analysis of the closed-
loop transfer function demonstrates that interaction influences the characteristic
equation and, therefore, stability; thus, controller tuning must consider interaction
as well as the single-loop feedback process dynamics. The following example
provides further insight into the effect of interaction on stability and tuning.
EXAMPLE 20.8.
A dynamic system with the following model is to be controlled by two PI controllers.
The input-output pairings are 1-1 and 2-2 as shown in Figure 20.8. Determine the
allowable range of tuning constants that yield a stable system.

r \.0el0s 0.15e-l0s-
CVxis)
CVds) ] ■

l + 2 s \ + 2 s
0.15e-l0s \.0e~L0s

L \+2s \+2s J

\ MVxis)]
Lmv2(*)J (20.35)

The example system has transmission interaction, because both off-diagonal
elements are nonzero; thus, it would not be correct to tune each controller inde
pendently. The stability limit is determined by the characteristic expression, given
in equation (20.17). Finding the limiting values of the tuning constants would be an
arduous task because all four controller tuning constants iKc\, Tn, Kc2, and Tn)
appear in the characteristic equation and, therefore, all affect stability simultane
ously. To simplify the calculations and allow graphical presentation of the results,
the integral times of the controllers will be held constant at 3.0 min, which are rea
sonable values, being the sum of the dead time and time constant of each transfer
function. Note that this selection will not necessarily yield the best performance,
but it is a reasonable choice for this example calculation.

With the integral times fixed, the characteristic equation has two remaining
tuning parameters, the controller gains.

CE{s) = 1 + Gods) (20.36)
where

— - - ( ' ♦ i H ^ M - i H ^ )

♦ ' • ■ K M - i H ^

-10s \.0e~L0s 0.15e-h0s0.15e-L0s\
Y s \ + 2 s 1 + 2 * \ + 2 s )

To calculate the stability region, one gain (e.g., Kc2) was given a value, and
the Bode stability analysis was performed to determine the ultimate value of KcX
that defines the stability limit. These calculations involve extensive manipulations
of complex numbers and were therefore performed using a computer program.
The results of the calculations are displayed in Figure 20.9. If there had been no
interaction, the stability region would have encompassed the entire box defined by
values of the controller gains of (0,0) and (3.76,3.76) shown in the figure, because
the tuning of one controller would not have influenced the tuning of the other. As
can be seen, the interactions in this example reduced the allowable values for the
controller gains.



1 . 5 2 2 . 5 3
Loop 1 controller gain

3.5

K,c\
FIGURE 20.9

Map of stable and unstable controller gain regions for
Example 20.8 with Tn = T,2 = 3.0.
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TABLE 20.2

Summary of example tuning for 2 x 2 system
Case Kc\ Tn Kci Tn IAE! IAE2 IAE! + IAE2

Figure 20.10a
Figure 20.10b
Figure 20.10c
Figure 20.11

0.95
1.40
0.50
1.23

3.0
3.0
3.0
1.76

0.95
0.50
1.40
0.89

3.0
3.0
3.0
1.06

7.22
4.90

13.7
3.46

5.41
10.3
3.67
2.46

12.63
15.2
17.37
5.92

iMMWKMUsUyi

EXAMPLE 20.9 i

Although all tuning within the defined region yields a stable system, the control
performance is different for various tunings chosen from within the stable region.
To investigate by example the effect of tuning on performance, three sets of tuning
constants were chosen for the system in Example 20.8 from within the stable area
shown in Figure 20.9. The tuning was selected to have a reasonable gain margin
(i.e., margin from the stability boundary). The simulation results for multiloop PI
controllers responding to a CV, set point change of 1.0 for three different tuning
constants are given in Figure 20.10a through c and tabulated in Table 20.2. Figure
20.10a gives equal weight to both controlled variables. Figure 20.10b gives more
importance to controlled variable 1, whereas Figure 20.10c gives more importance
to controlled variable 2. These results demonstrate that controller tuning influences
multiloop system performance, so tuning can be used as a method for adapting
system performance to conform to specific priorities in the importance of controlled
variables. This result will be exploited in the next chapter.

CC
Stamp
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Time Time

Time Time

FIGURE 20.10

Multiloop control: id) with the same gains for both controllers; ib) with loop 1
gain higher.
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Time Time

Time
ic)

Time

FIGURE 20.10 Con't.

Multiloop control (c) with loop 2 gain higher.

Since tuning influences performance, the engineer should be able to use this
flexibility to obtain good control system performance. Three approaches are typi
cally used for tuning multiloop systems, and each is described here.

Trial and Error

Although potentially tedious, a trial-and-error method is often used in practice.
Initial tuning constant values are typically the single-loop values altered for sta
bility, perhaps with the gains reduced by a factor of 2 or more. These initial values
are adjusted through fine tuning, as described in Chapter 9, with trials performed
on a simulation or directly on the process. The final tuning must be conservative
(i.e., not too close to the stability margin) to account for changes in process op
erating conditions that would occur after the trial-and-error procedure has been
completed. Naturally, the success of this approach depends on the expertise of the
engineer, but the approach can reach reasonable results quickly when transmission
interaction is not too strong.

Optimization
An optimization approach, similar to the approach described in Chapter 9 that
optimized a simulated transient response, can be implemented to automate the
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trial-and-error procedure. This approach would require a computer optimization
of the simulated transient response to obtain good initial values for each control
system (Edgar and Himmelblau, 1988). Optimization is justified when process
interaction is strong and the trial-and-error method would be time-consuming or
result in severe process disturbances.

As an example, the tuning for the control system considered in Example 20.9
was optimized for a unit step change in controlled variable 1, assuming equal
importance of the two controlled variables and no other objectives; therefore, the
objective was to minimize the total integral of absolute value of errors (IAEj +
IAE2). The tuning and transient response are given in Figure 20.11 and included
in Table 20.2. The optimization method yielded initial estimates with little engi
neering effort and modest computing resources. The reader is cautioned that the
results in Figure 20.11 are not satisfactory, because of the lack of robustness and
the very aggressive manipulated variable adjustments; a more complete definition
of control performance, including these factors, should be used. However, it does
provide a useful bound for the lowest IAE that can be attained with PI control.

Approximate, Noniterative Approach
A few methods have been proposed for estimating the tuning for multiloop systems
without the time-consuming iterations associated with trial and error or the com
puter computations associated with the optimization approach. The goal of these
methods is to provide initial tuning constants that are much closer than single-loop
tuning constants to the "best" multiloop values. Naturally, fine tuning based on

Time Time

Time Time
FIGURE 20.11

Multiloop control with PI tuning that minimizes £ IAE (tuning is too aggressive).



plant experience is still required. Unfortunately, there is no generally accepted
method for quickly estimating multiloop tuning. The method explained here is se
lected because it provides insight and introduces some key process-related issues.
It also provides a useful correlation for many 2x2 systems; however, it is not
easily extended to higher-order systems.

The method takes advantage of simplifications to determine the tuning for
three cases of limiting process dynamics for 2 x 2 systems with PI multiloop
controllers (McAvoy, 1983a, and Marino-Galarraga et al., 1987). In all of these
cases, the relative importances of the controlled variables are considered equal;
this is the most demanding case for tuning, but other situations are considered in
the next chapter as we tailor the performance to control objectives. The general
approach is to establish how much the PI controller tuning must be changed from
single-loop values when applied in a multiloop system.

The basis of the analysis is the closed-loop characteristic expression (20.34)
divided by 1 + Gc2is)G22is), which does not change the stability limit:

\+Gc2is)G22is)/kxxis)~\
CEis) = \ + Gcxis)G xxis) (20.37)1 -f- Gc2is)G22is) J

As demonstrated in Chapter 10, the closed-loop characteristic expression given by
equation (20.37) determines the stability of the control system. To evaluate poten
tial simplifications, the relative importance of each term must be determined at the
critical frequency of the loop. Since the approach is based on stability analysis,
which considers only the denominator of the closed-loop transfer function, the
same tuning is obtained for all disturbances and set point changes. The method
considers three limiting cases for tuning loop 1: loop 1 much faster than loop 2;
loop 1 much slower; and both loops having the same dynamics. (The following
analysis considers loop 1, but the same results can be obtained for loop 2 by simply
transposing the subscripts.)
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LOOP 1 MUCH FASTER THAN LOOP 2. When the loop 1 process is much
faster than loop 2, the term Gc2ijco)G22ijco) is very small at the loop 1 critical fre
quency because of the tendency of processes to have amplitude ratios that decrease
rapidly after the corner frequency (for example, see Figure 10.13b). Assuming that
A.] i is not a strong function of frequency, as is most often true,

1 -\-Gc2ijco)G22ijco)/kxx
1 + Gc2ijco)G22ijco)

% 1.0

which gives

CE(» « 1 + Gcxijco)Gxxij(o)

(20.38)

(20.39)

Therefore, the very fast loop 1 in this case can be tuned like a single-loop controller
without interaction.

This result confirms a qualitative argument in which we would consider the inter
action from the slow loop to be a slow disturbance to the very fast loop 1, which
could be tuned using single-loop methods.
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LOOP 1 MUCH SLOWER THAN LOOP 2. When loop 1 is much slower,
the term for the fast controller, Gc2ijco), would have a very large magnitude at
the critical frequency of loop 1, because the amplitude ratio of the integral mode
in Gc2ijco) will have a very high value at a frequency much less than the loop 2
critical frequency (see Figure 10.13/). Therefore, \Gc2ijco)\ » 1.0, which leads
to the following simplification in the characteristic equation:

CE(» * 1 + Gcl(»G,,(ja» rGc2(>)G22aa»)A„1
L Gc2ija))G22ijco) J

CE(»^1+Gc l (» Gxxijco) \+Gcxijto) Gxxijco)
(20.41)

As noted, the steady-state relative gain has been used as an approximation
for the frequency-dependent relative gain. In this case, the gain of the process
"seen" by the controller 1 in the multiloop system is changed by 1/Xn from the
single-loop gain iKxx). Therefore,

The slow controller gain can be modified to be the product of the relative gain and the
single-loop tuning, KcML — ikn)iKcSL), to maintain the desired stability margin.
Since the phase lag is not affected, the integral time can retain its single-loop value.

Again, this result seems consistent with a qualitative argument that a very fast
associated loop would "become part of the process" and affect only the closed-
loop process gain.

The tuning result for the slow loop has a potential flaw. When the relative
gain has a value much different from 1.0, the controller gains for the single-loop
and multiloop situations have very different values. Thus, the correct value for the
controller gain depends whether an interacting controller is in automatic or manual!
To ensure that the stability of the slow loop does not depend on the status of the
interacting loop, the slow loop's controller gain is often limited by its single-loop
value, Kcml < Kcsl> If this limit is significantly exceeded, a real-time computer
program could be implemented to monitor the status of the interacting loop and
adjust the controller gain of the slow loop accordingly.

LOOPS 1 AND 2 HAVE THE SAME DYNAMICS. The entire closed-loop
characteristic equation (20.34), as follows, must be considered.

CEis)*\+2Ais) + A2is)
(20.42)

withACs) = Gc\is)Gxxis) — Gc2is)G22is), because the loop dynamics are equal.
With the simplification that all transfer functions in the process, Gyis), have

similar dynamics, the effects of interaction on tuning are completely represented
by the relative gain, and the results can be condensed into detuning correlations
in Figure 20.12a and b (Marino-Galarraga et al., 1987). These figures show how
single-loop tuning must be altered for 2 x 2 multiloop control when all input-output



2 2 . 5 3 3 . 5
Steady-state relative gain, k},

ia)

4.5

645

Effect of Interaction
on Stability and

Tuning of Multiloop
Control Systems

0 . 5 1 1 . 5 2 2 . 5 3 3 . 5 4 4 . 5 5
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FIGURE 20.12

Relationship between single-loop (SL) and multiloop (ML) PI controller
tuning when both loops have similar dynamics.

dynamics are similar. The controller gain is reduced by about a factor of 2.0 as
the relative gain changes from l .0. Also, the integral time increases by a factor of
about 2.0 as the relative gain decreases to 0.5.

Two important conclusions for systems with similar dynamics become appar
ent from this plot:

1. The multiloop controllers must be detuned from their single-loop tuning over
the entire range of relative gain.

2. The change in tuning constants is not very large.

Thus, interaction results in controller detuning, which slows feedback action for
most 2x2 multiloop systems. The tuning results for 2 x 2 PI control presented in
this section are summarized in Table 20.3.

Note that these results are appropriate for systems that satisfy the assump
tions employed. At the current time, there is no approximate method for the gen
eral case with very different dynamics of all paths, Gijis). The trial-and-error or
optimization-based methods must be used in these cases. Also, the importances
of the controlled variables have been assumed to be relatively equal; the case for
unequal importances is covered in the next chapter. The next two examples apply
the tuning approach to realistic processes.
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TABLE 20.3

Summary off example tuning for 2 x 2 system
Situation Characteristic expression Interaction effect

General \+Gcxis)Gxxis) + Gc2is)G22is)
+Gcxis)Gnis)Gc2is)G22is)/kxxis)

Transmission interaction
affects stability

Loop 1 much faster \+Geiis)Giiis) Loop 1 stability is not
strongly affected by
interaction; use single-loop
tuning

Loop 1 much slower* l+Gciis)Gxlis)/kxx Loop 1 stablility is
affected by the change in
close-loop process gain;
multiply single-loop
controller gain by A.n

Both loops with
equal dynamics

\ + 2Ais) + Ais)2/kxx
With Ais) = Gcxis)Gxxis) = Gc2is)G22is)

Loop 1 stability is affected
by changes in gain and
phase; use Figure 20.12

*This approach will lead to a very large controller gain for large A. If the interacting controller is switched to
manual, loop 1 could become unstable. Thus, the additional limit (#c)ml 5 (̂ c)sl is often applied to
ensure stability for both single- and multiloop systems.

§>
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EXAMPLE 20.10.
Determine initial tuning constants for multiloop PI controllers applied to the blend
ing system operating at the conditions given in equations (20.22), 5% A in the
product, and the following sensor dynamics:

Dead time Time constant

Flow
Concentration

1
15

2 sec
30 sec

Consider first the A\-F2 and F3-F| controlled-manipulated variable pairing.
The basis for the tuning values is the linear transfer function models in equations
(20.6) and (20.7) with gain values from equation (20.23), and any single-loop tuning
method could be used. The dynamics above indicate that this case fits the situation
having one fast and one slow loop. Referring to Table 20.3, and noting that An =
k22 = 0.95 % 1.0, both the fast and slow loops can be tuned very close to their
single-loop values. The tuning results using the Ciancone single-loop correlations
are summarized in Table 20.4.

A transient response of this system, simulated using the linearized equations,
for a set point change of 0.01 in the mixed concentration, is given in Figure 20.13.
This is a reasonably well-behaved response, which could be fine-tuned as needed.
An important result of this analysis is that the tuning for this loop pairing does not



TABLE 20.4

Tuning for the blending system with dilute product (x„, = 0.05, X = 0.95)

Ai-F2 (con t ro l le r F3-F] controller
(slow loop) (fast loop)

TUning term Single- loop Mul t i l oop Single- loop Mu l t i l oop

Process gain Ku = 0.0095 AT„A„=0.01 K22 = 1.0 K22 = 1.0
9/iO + x) 0.333 0.333 0.333 0.333
KcKp 1.0 1.0 1.0 1.0
Ti/iO + x) 0.85 0.85 0.85 0.85
Kc (kg/min/wt fraction) 105.0 100.0 1.0 1.0
Ti (sec) 38.0 38.0 2.6 2.6
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FIGURE 20.13
Set point response for multiloop blending system in Example 20.10.

change significantly from single-loop to multiloop; in other words, the tuning of the
controllers does not depend on the control status (automatic/manual) of the other
controller. This is a good situation.

Now consider the alternative loop pairing, Ai-F| and F3-F2. Again, the system
consists of a fast and slow loop, so that the same approach can be used. How
ever, in this system, the relative gain has a value far from unity, AM = k22 = 0.05.
Therefore, the response of the slow loop iAx-F\), which has an effective process
gain of Ku/ku, is significantly altered by interaction. The results, using the rec
ommendations in Table 20.3 and the Ciancone single-loop tuning correlations, are
summarized in Table 20.5.
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TABLE 20.5

Tuning for the blending system with dilute product ixm = 0.05, k = 0.05)

A , -Fx pairing Fy-F2 pairing
(slow loop) (fast loop)

Tuning term Single- loop Mu l t i l oop Single- loop Mul t i l oop

Process gain Kxx =-0.0005 Kxx/kxx = -0.0\ K22 = 1.0 £22 = 1.0
6/iB + x) 0.333 0.333 0.333 0.333
KCKP 1.0 1.0 1.0 1.0
Ti/i0 + r) 0.85 0.85 0.85 0.85
Kc (kg/min/wt fraction) -2000.0 -100.0 1.0 1.0
Ti (sec) 38.0 38.0 2.6 2.6

The transient response of the multiloop system with the multiloop tuning given
in Table 20.5 is essentially the same as that for the previous pairing and is not
shown. However, the single-loop and multiloop tunings are very different in Table
20.5, because the relative gain is much different from 1.0. If both loops are in
automatic, the A] controller gain must be the (small) multiloop value given in the
table. When the F3 controller is in manual, the effective process gain for the Ai
controller changes to its single-loop value (which is lower by a factor of about 20).

A summary of the implications of the multiloop system in Table 20.5 follows:

Tuning of Ax Single-loop (A,) system Mult i loop system

Single-loop
iKc = -2000)
Multiloop
iKc = -100)

Good performance

Poor performance
(very slow)

Unstable system

Good performance

€g=^: y£

Thus, the controller tuning in Table 20.5 must be matched to the status of
the controllers—a situation to be avoided if possible. This complexity in updating
tuning online suggests that the pairing in Table 20.4, which can have the same
tuning for any combination of loop statuses (since k & 1.0), is a much better
choice.

EXAMPLE 20.11.
Determine initial tuning constants for the distillation tower with the pressure and
level controller pairings given in Figure 20.3, resulting in the model in equations
(20.8) and (20.9). Evaluate the dynamic behavior for a step change in the feed
light key of -0.04 mole fraction light key.

This process has similar dynamics for both loops, so that the summary in
Table 20.3 recommends the tuning correlations in Figure 20.12. The large value



TABLE 20.6

Tuning analysis for distil lation control system

Xd-F r con t ro l l e r XB-FV con t ro l l e r
■ u i i i i i v j i c n i i

(A = 6.09) Single-loop Multiloop Single-loop Multi loop
Process gain 0.0747 K22 = -0.1253
0/(0 + x) 0.20 0.16
KcKp 1.55 1.7
T,/iO + x) 0.60 0.50
Kc 20.75 Kcsl/2 = 10.4 -13.6 Kcsl/2 = —6.8
T, 9.0 9.0 6.1 6.1
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Example disturbance response for multiloop distillation in Example 20.11.

of the relative gain (6.09) indicates that the controller gains must be reduced by
a factor of 2.0 from their single-loop values, and the integral times can remain
unchanged. The results from applying this approach are given in Table 20.6, and
a dynamic response of the multiloop system, using the multiloop tuning from the
table, is shown in Figure 20.14. The response is well behaved, because the con
trolled variables return to their set points reasonably quickly and the manipulated
variables experience moderate adjustments. Thus, the correlations provide ac
ceptable initial tuning, which can be tailored to specific objectives through fine
tuning.
Ia l3 iSM?M^»^S!^^
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20.7 m ADDITIONAL TOPICS IN INTERACTION ANALYSIS
The material on interaction in this chapter is only introductory, and a coverage of
much more material would be required for a mastery of the topic. Some of the key
additional topics are reviewed briefly in this section.

Modelling
Models for multivariable control should be developed with their ultimate use
in mind. Recent results on model consistency (Skogestad, 1991; Haggblom and
Waller, 1988) give useful relationships that can be used to verify that linearized
models observe fundamental properties of the nonlinear system. Also, new exper
imental designs (Kwong and MacGregor, 1994) could be of use in obtaining better
empirical estimates of process gains, but even with these careful experimental steps
the use of empirical models for calculating relative gains with large magnitudes is
problematical.

Interaction Measures
The important features of systems with transmission interaction discussed in Sec
tion 20.3 can be developed through singular-value analysis for systems of arbi
trary size and dynamics. The relevant matrix, here the process gain matrix K,
can be decomposed into three matrices, which can be used to determine the di
rections in the CVs that cause the manipulated variables to change the "most"
and the "least" (as measured by the root sum of squares of the changes in the
MVs). Also, the ratio of the largest to the smallest changes in these two direc
tions can be determined and is called the condition number. Clearly, the larger
the condition number, the more interaction affects the multiloop system. Also,
the condition number indicates the sensitivity of the calculation to model errors.
The basic mathematics of this analysis is presented in Ortega (1987), and con
trol applications are given in Barton et al. (1991) and Arkun (1984). The rela
tionship between the relative gain and condition number is given by McAvoy
(19836) and Grosdidier et al. (1985). An alternative measure of interaction has
been proposed by Grosdidier and Morari (1987). Finally, the controllability and
relative gain calculations can be extended to systems with pure integration, such
as liquid levels, by replacing the derivative of the variable idL/dt) with a sur
rogate variable £ and proceeding with the standard method thereafter (McAvoy,
19836).

Frequency-Dependent Measures
The material in this chapter on controllability and interaction relied principally on
steady-state measures. The definition of controllability used here involves steady-
state behavior. An alternative frequency-dependent definition involves the ability
to influence the dynamic trajectory of the output variables and requires that det
Gis) ^ 0 (Rosenbrock, 1974). Since this book deals mainly with continuous pro
cesses operated at specified steady-state conditions, the definition of controllability
used here involves steady-state ico = 0) controllability.



In addition, the effects of interaction should be evaluated near the critical
frequencies of the control loops. Frequency-dependent interaction is discussed by
McAvoy (1981).
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Tuning
Another approach to tuning multiloop PID controllers that seems to have met
with success is presented by Monica et al. (1988). This method can be extended
to higher-order systems with frequency response calculations. The definition of
modelling errors to be considered in tuning multivariable systems is much more
difficult, because errors in the individual transfer functions and parameters within
an individual transfer function are not independent.

20.8 n CONCLUSIONS

Multiloop process control systems have been introduced, and the important con
cept of process interaction defined. Standard modelling methods can be used to
represent the input-output behavior of the process without control. Interaction—
one input affecting more than one output—is seen to influence the behavior of
multivariable systems. Using the convention that the single-loop controllers are
paired on the 1-1 and 2-2 elements in a two-variable process, interaction occurs
when at least one of the interacting terms, Gxds) or G2x is), is nonzero. The pro
cess model can be employed to determine a useful measure of interaction: the
relative gain array.

Requirements of controllability and values for relative gain are really exten
sions of conditions that are required for good single-loop feedback control, as
summarized in the following table.

Required
cond i t i on Single- loop system Mult ip le- loop system

Controllability A causal relationship
exists between the manipulated
and controlled variables, Kp£0

n independent, causal
relationships exist between
the manipulated and controlled
variables, det K # 0.

>^,:Wk->-V- H

Since the requirements are less obvious in multiloop systems, the rigorous math
ematical tests are provided.

Transmission interaction—the additional connection path between an input
and output through an interacting controller—occurs when both interacting terms
in a 2 x 2 system are nonzero. Transmission interaction can strongly affect the be
havior of a multivariable system. First, depending on the directions of the desired
changes in controlled variables, it can substantially influence the adjustments re
quired in the manipulated variables. Second, it can influence the system's stability
and proper controller tuning.
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Some of the results introduced in this chapter are general for all multiloop
systems of any order (n x n), while some are restricted to two-variable (2 x 2)
systems. The following summary is provided to help the reader.

n x n systems 2x2 systems only

Modelling
Controllability
Relative gain array definition,
equation (20.25)
Relative gain calculation,
equation (20.27)
Interpretations of relative
gain in Section 20.5

Closed-loop transfer function,
equations (20.14) to (20.17)
Relationship between RGA and
stability, equation (20.34)
PI tuning, Section 20.5

Finally, an important interpretation concerning control performance can be
reached from these tuning results by considering a system having similar dynamics
and a relative gain much larger than 1.0. (Many important processes have large
relative gains.) In this system, the multiloop process gain is smaller than the single-
loop process gain by a factor of about 1 /k, as shown in equation (20.25). However,
stability and tuning analysis indicated that the controller gain in the multiloop
system must be reduced from its single-loop value, as shown in Figure 20.12! As a
result, the reduction in effective process gain caused by interaction in the multiloop
system cannot be compensated by an increase in the controller gain; if an attempt
is made to increase the controller gain to improve control performance, the system
will become unstable! Thus, the product KpKc can be small (i.e., very much less
than 1.0) in the interactive system, and feedback adjustments in response to some
disturbances can be very slow because of this "detuning" effect of interaction. This
stability limit for multiloop systems accounts for the very slow return to set point
experienced by some processes with large relative gains.

To this point, general interpretations of multiloop system behavior have been
developed. The many useful insights and quantitative expressions for the effects
of interaction on multivariable behavior and stability will be exploited in the next
chapter on multiloop control performance, in which specific methods for tailoring
control design to performance goals are presented.
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Shinskey, F. G., Controlling Multivariable Processes, Instrument Society of
America, Research Triangle Park, NC, 1981.
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neers (2nd ed.), McGraw-Hill, New York, 1990.

The material in the chapter enables the engineer to evaluate the suitability of candi
date processes and variables for multiloop control quantitatively. Specifically, con
trollability and operating window (or range of operation) can be used to establish
the feasibility (or infeasibility) of feedback control for potential process designs.
Interpretations of the relative gain suggest that only variable pairings with ky > 0
for 2 x 2 systems should normally be considered further (but see Chapter 21 for
important exceptions). Also, the effects of interaction on tuning are demonstrated
by some preliminary tuning rules for 2 x 2 systems. The methods in this chapter
enable the engineer to eliminate some candidate designs as infeasible for multiloop
control, so that future effort can be directed toward evaluating the remaining feasible
candidates.

QUESTIONS
20.1. For the blending process in Figure 20.2, design a control system to control

the following three product variables at independent values: id) the total
flow (F3), ib) the mass fraction of component A, and (c) the mass fraction



of component S. You may assume that both mass fractions can be measured
by the analyzer Ai.

20.2. Answer the following questions for two physical processes: (1) the chemi
cal reactor described in Section C.2 of Appendix C and (2) the same chem
ical reactor with no heat of reaction. Both processes have two feedback PI
controllers: T -* Fc and Ca -*• Cao (with F unchanged).
ia) Does process interaction influence the stability of the closed-loop sys

tem? Provide quantitative analysis to support your conclusion.
ib) Does process interaction influence the dynamic behavior of the closed-

loop system? Explain your answer briefly.
20.3. Prove the statements made in this chapter about the relative gain array:

ia) The elements are scale-independent, ib) The sum of values in a row or
column is 1.0. (c) the A,/; in equation (20.27).

20.4. Verify the closed-loop transfer functions in equations (20.12) through (20.17).
20.5. Answer the following question about controllability.

ia) How must the controllability test be modified when a constraint (bound)
is encountered in one or more manipulated variables?

ib) Develop an alternative definition of controllability and develop a math
ematical test for the situation in which the controlled variables must
only achieve specified values at a single point in time. This might be
valid for batch control or for intercepting a missile.

ic) Relate the definition of controllability used in this chapter to the relative
gain array.

id) How would the test for controllability in Section 20.3 be modified if
the control algorithms were implemented via digital calculation?

ie) How far can one extrapolate the conclusions of the controllability test
to other operating conditions?

20.6. Determine the controllability and possible loop pairings (A. > 0) for the
process in Figure Q20.6 for the following two situations. The feed consists
of only solvent and component A. The manipulated variables are the valves,
and the controlled variables are the level and the composition of A, Ca-
ia) The situation without chemical reaction (i.e., a mixing tank).
ib) The situation with a single chemical reaction A -> B, r& = —kC .̂

20.7. Consider the CSTR in Figure Q20.7 in which solvent and component A in
solvent (Cao) are mixed. The two streams can be at different temperatures.
A single reaction A -▶ B occurs in the reactor. The rate expression is
rA = —kCp,, and the heat of reaction can be nonzero. The manipulated
variables are the flow rates of the two inlet streams, and the controlled
variables are the temperature and concentration of A in the reactor.
id) Determine under what conditions the system is controllable.
ib) For the conditions which are controllable, if any, determine allowable

loop pairings (X/y > 0).
20.8. Answer the following questions for a 2 x 2 control system with PI con

trollers.
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id) Is it possible for tuning values to exist that would yield a stable multi
loop system and an unstable single-loop system for the same process?

ib) Is it possible for tuning values to exist that would yield an unstable
multiloop system and a stable single-loop system for the same process?

ic) State the criteria for the single-loop system in Figure 20.7 to be stable.
id) Suggest a manner for using the results in Example 20.8 in tailoring the

dynamic performance to control system goals.
20.9. The following transfer function was provided by Waller et al. (1987) for

a distillation column with the levels and pressure controlled with single-
loop controllers as in Figure 20.3. The product qualities were not measured
directly; they were inferred from tray temperatures (°C) near the top, T*,
and near the bottom, T\$, trays. The manipulated variables are the reflux,
Fr, and reboiler steam, Fs, both in kg/h. Time is in minutes.

-0.045*r0-5* 0.048*?-
r Tds) 1 _
[Tids)}

8.15 + 1
-0.23«-1'5f

,-0.5* -|

11 5 + T
0.55e-°-55

FR{
Fs

is)]
is)}

Flue gas

L 8.15+1 105 + 1 J
Answer the following questions for this system.
id) Determine whether the input-output combination is controllable.
ib) Determine if either loop pairing can be eliminated based on the relative

gains ikij > 0).
ic) Determine the initial tunings for PI controllers for all allowable loop

pairings.
id) Estimate whether the interaction affects the magnitude of the manipu

lated variable changes for a set point change between single-loop and
multiloop control.

20.10. The outlet temperature of the process fluid and the oxygen in the flue gas
can be controlled in the fired heater in Figure Q20.10 by adjusting the fuel
pressure (flow) and the stack damper % open. A dynamic model for the
fired heater in Figure Q20.10 was reported by Zhuang et al. (1987) and is
repeated here:

0 . 6 - 0 . 0 4
Tis) '
Ais)

240052 + 855 + 1
-1.1

300052+905 + 1
0.30

P*(s)
vds)

Fuel
FIGURE Q20.10

7 0 5 + 1 7 0 5 + 1
The inputs and outputs are in percent of the range of each instrument, and
the time is in seconds.
id) Determine whether the input-output combination is controllable.
ib) Estimate whether the interaction changes the magnitude of the manip

ulated variable changes for a set point change between single-loop and
multiloop control.

(c) Determine if either loop pairing can be eliminated based on the relative
gains ikij > 0).

id) Determine the initial tunings for PI controllers for all allowable loop
pairings.



20.11. Three CSTRs wi th the configurat ion of Sect ion C.2 and wi th the fo l lowing 657
design parameters are considered in this example; the common data is given mammmmnM^tM
below, and the unique data and steady states are given in Table Q20.11 for Questions
three cases.

F = 1 m3/min, V = 1 m3, CA0 = 2.0 kmole/m3, Cp = 1 cal/(gK),

p= 106g/m3,fc0= 1.0 x 1010 min-1, E/R = 8330.1 KT1
iFe)s = 15 m3/ min, Cpc = 1 cal/(g K), pc = IO6 g/m3, b = 0.5

The controlled variables are Ca and T, and the manipulated variables
are Cao and Fc. Answer the following questions for each chemical reactor
and explain the differences among the designs. (Note that this question
requires the linearized, steady-state model for each case.)
id) Determine whether the input-output combination is controllable.
ib) Estimate whether the interaction changes the magnitude of the manip

ulated variable changes for a set point change between single-loop and
multiloop control.

ic) Determine if either loop pairing can be eliminated based on the signs
of the relative gains.

id) Determine the initial tunings for PI controllers for all allowable loop
pairings.

ie) Evaluate the transient responses for a concentration set point change
of +0.02 kmole/m3.

TABLE Q20.11

C a s e I I I I I I

-AtfrxnlO^al/fkmole) 130 13 - 3 0
a (cal/min)/K 1.678 x IO6 1.678 x IO6 0.7746 x IO6
T0K 323 370 370
Tcin K 365 365 420 (heating)
TSK 394 368.3 392.7
Cas kmole/m3 0.265 0.80 0.28

20.12. Discuss an empirical method for identifying the inverse of the process gain
matrix directly from experimental data.

20.13. Determine whether K(K)-1 would give the same (correct) result as equa
tion (20.27) for the elements of the relative gain array.

20.14. The process with two series chemical reactors in Example 3.3 is consid
ered in this question. The process flexibility is increased by allowing the
temperatures of the two reactors to be manipulated independently. The two
controlled variables are the concentrations of reactant A in the two reactors.
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The rate constant can be expressed as 5.87 x iô -5000/7" (with temperature
inK).
id) Determine whether the input-output combination is controllable.
ib) Determine if either loop pairing can be eliminated based on the signs

of the relative gains (X,;- > 0).

20.15. The following transfer functions were provided by Wood and Berry (1973)
for a methanol-water separation in a distillation column similar to Figure
20.3. The products are expressed as mole % light key, and the reflux FR
and reboiler steam Fs are in lb/min. Time is in minutes.

\XDis)]_L**(*)J
12.8e" -3s -x

16.1s +1
6.6e"7*

-18.9g
215 + 1

-\9.4e~3s
L 10.95 + 1 14.45 + 1 J

\FRis)]
L Fs(s) J

id) Determine whether the input-output combination is controllable.
ib) Estimate whether the interaction changes the magnitude of the manip

ulated variable changes for a set point change between single-loop and
multiloop control.

(c) Determine if either loop pairing can be eliminated based on the sign
of the relative gains (X,;- > 0).

id) Determine the initial tuning for PI controllers for all allowable loop
pairings.

ie) The model was determined empirically. Discuss the effects of likely
model errors on the results in parts id) to id).

20.16. A series of nonisothermal CSTRs shown in Figure Q20.16 is analyzed
in this question. The heat transfer is adjustable in each reactor, so that
each reactor temperature can be considered a manipulated variable. The
feed contains only a nonreacting solvent and component A. The potential

-t&H
'AO

&
-&y

♦ ^

e -t&r-

' f
FIGURE Q20.16



manipulated variables are Tx, T2, F, V|, V2, and CAo- The variables to be
controlled to independent steady-state values are the compositions of B and
C in the effluent from the second reactor. For each of the sets of elementary
reactions given below, determine (1) for which sets of two manipulated
variables the system would be controllable and (2) for the variables selected
in (1), whether either pairing of variables could be eliminated based on the
relative gain.
i a ) A^B-^C
ib) A-^-B + C
Assume that the rate constants can be expressed as Arrhenius functions of
temperature and the heat of reaction is zero.

20.17. The mixing tank in Figure Q20.17 has two independent inlet streams of pure
A and B that can be manipulated. The outlet flow cannot be manipulated by
the unit; it is set by a unit of higher priority. The composition, the weight
percent of B, and the level are to be controlled.
ia) Derive a linearized model of the system.
ib) Determine whether the system is controllable.
ic) Calculate the relative gain array for this process and make conclusions

about the possible loop pairings for this system.

20.18. A proposal is made to control the temperature (T) and composition (Ca)
in the chemical reactor in Figure Q20.18 by manipulating the feed flow
and the inlet temperature. The chemical reaction is A -» B, with r^ =
—£Ca and no heat of reaction. The flow in the pipe is laminar, so that
the flow out can be taken to be proportional to level, F = KL. The data
for this system at the base case operation is the same as for Example 3.2;
in addition, the temperature is 323 K and the reaction rate constant is
* = 2.11xlOV500°/7'.
(a) Derive the linearized model for this system in deviation variables.
ib) Determine whether the system is controllable in the steady state.
ic) Derive the four individual single input-output transfer functions.
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CHAPTER 20 (e) Select a feasib le loop pair ing and design a control system.
Multiloop Control:
Effects of Interaction 20.19. Evaluate the controllability and the interaction for the blending and distil

lation processes modelled in Section 20.2. Discuss the differences, if any,
between the steady-state and frequency-dependent results.

20.20. The analysis of multiloop tuning summarized in Figure 20.9 considered
only positive controller gains. Discuss the control performance when one
of the controller gains is allowed to be negative.



Multivariable
Control

In this part we continue the trend of addressing increasingly more complex process
control systems. Although some of the control systems in Part IV involved more
than one measured variable, we considered these to be single-variable control
because they had the ultimate objective of maintaining only one variable near its
set point. By contrast, multivariable control involves the objective of maintaining
several controlled variables at independent set points.

The simple chemical reactor process shown in Figure V. 1 is considered first to
introduce the concept of a multivariable process. The control objectives depend on
the goals of the entire plant and of the design of associated equipment, but typical
objectives would be to control the level, temperature, and outlet concentration at
independent set points, which would be achieved by adjusting selected manipulated
variables in the process. Again, the variability of the controlled variables is reduced
through actions that increase the variability of the manipulated variables. In Part V
the complexity of multivariable systems is reduced by assuming (for the most part)
that the process design, measurements, and final elements cannot be changed; thus,
the process dynamics and control calculations are addressed. These restrictions will
be relieved in Part VI, when process control design is addressed.

Control of multivariable systems requires more complex analysis than that
of single-variable systems, as summarized in Table V.l. Fortunately, essentially
all methods and results learned for single-variable systems are applicable to mul
tivariable systems. Thus, aspects of a single-variable system that make it easy
or difficult to control have generally the same effect for multivariable systems.
However, in multivariable systems new characteristics due to interaction must be
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TABLE V.I
Characteristics of multivariable control systems

Single-loop characteristics that generally
lead to good control performance in
multivariable systems

Characteristics unique to multivariable
systems

1. Fast feedback processes (small 9 + x)

2. Feedback processes with a small fraction
dead time (0/(0 + r)) and no
inverse response
3. Disturbances with small magnitudes far
from the critical frequency

4. No limitations encountered in the
manipulated variable

5. Digital controllers with relatively
fast execution periods
6. Controllers based on accurate models

1. Interaction between variables influences
control stability and performance.
2. Feasibility of control depends on overall
process, not just individual
cause-effect relationships.
3. The source of the disturbance, not just
the magnitude, must be considered
in designing the control strategy.
4. The pairing of measured variables and
final elements via control
is a design decision.
5. Some processes have an unequal number
of controlled and manipulated variables.
6. Some multivariable control designs
are very sensitive to modelling
errors.

7. Controllers using appropriate
enhancements from Part IV

considered. Interaction results from process relationships that cause a manipulated
variable to affect more than one controlled variable. In Figure VI the heating oil
valve position influences both the temperature and, through the reaction rate con
stant, the concentration. This is the major difference from single-loop systems and
has a profound effect on the steady-state and dynamic behavior of a multivariable
system.

Thus, it is not possible to analyze each manipulated-controlled variable con
nection individually to determine its performance; the integrated control system
must be considered simultaneously. A closely related new issue is the distur
bance source, because multivariable systems respond differently to different dis
turbances. For example, the chemical reactor responds differently to disturbances
in feed composition and feed temperature, and, as we shall see, these differences
must be considered in designing a multivariable control system.

Another realistic issue is the number of controlled and manipulated variables,
which may not be equal. Note that the system in Figure V.l has four manipulated
variables, which can be adjusted to control three measured variables. Multivariable
control methods presented in this part are able to utilize all flexibility available in
the process.

There are two basic multivariable control approaches. The first is a straight
forward extension of single-loop control to many controlled variables in a process,
as shown in Figure V.2. This is termed multiloop control and has been applied with



success for many decades. The second main category is coordinated or centralized
control, in which a single control algorithm uses all measurements to calculate all
manipulated variables simultaneously, as shown in Figure V.3. Algorithms for this
approach have been available for several decades and have been widely applied
for a considerable time in the process industries.

At the conclusion of this part, the unique characteristics of multivariable pro
cess systems and how these characteristics affect process control will have been
presented. The reader is cautioned that this is a complex topic, worthy of an en
tire book, and that the presentation here is introductory. However, it presents the
major issues, along with some of the more common analysis methods and control
approaches.
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FIGURE V.1

Multivariable process.
FIGURE V.2

Example of multiloop control design.

FIGURE V.3

Example of multivariable control design.
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21.1 m INTRODUCTION

Multiloop process control systems were introduced in the previous chapter, where
some important effects of interaction on steady-state and dynamic behavior were
explained, and a quantitative measure of interaction—the relative gain—was pre
sented. This understanding of interaction is now applied in the analysis of multiloop
control performance and design. Three main facets of control performance analy
sis are presented and applied to the design of multiloop systems. The first is loop
pairing: deciding the controlled and manipulated variables for each single-loop
controller in a multiloop system. The second facet is controller tuning to achieve
the desired performance, as well as to maintain stability. The third facet involves
enhancements to the PID control calculations that can improve control perfor
mance while retaining the simplicity of the multiloop control strategy in selected
applications.

As in the single-loop case, the first step is to define control objectives thor
oughly. The main aspects of multivariable control performance are presented in
the following list. Several are the same as for single-loop systems; however, items
2, 5, and 6 are new, and item 4 can assume even greater importance.

1. Dynamic behavior of the controlled variables. The control system should
provide the desired control performance for expected disturbances and set
point changes. The performance can be defined by any appropriate measures
presented in Chapter 9 (e.g., IAE and decay ratio).

2. Relative importance among controlled variables. The multiloop control struc
ture should be compatible with the relative importance of various controlled
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variables, since some controlled variables may be very important and should
be maintained close to their set points, while others may not be as important
and can be allowed to experience larger short-term deviations.

3. Dynamic behavior of the manipulated variables. Feedback control reduces
the variability in the controlled variables by adjusting manipulated variables;
however, the variability in the manipulated variables should not be too large.

4. Robustness to model errors. The control system should be robust so that it
performs well in spite of inevitable modelling errors. As with single-loop
systems, this objective requires that feedback controllers be tuned to ensure
stability and give the best feedback performance possible for the expected
model errors. In addition, we shall see that some multivariable control systems
are highly sensitive to model errors and can be applied only when models are
very accurate.

5. Integrity to controller status changes. Each controller should retain reason
able performance for its basic objectives, even if performance is somewhat
degraded, as changes occur in the automatic/manual status of interacting loops.

6. Proper use of degrees of freedom. The control system should be able to adapt
itself to the degrees of freedom available in the process, which can change
when a manipulated variable cannot be adjusted (e.g., because it reaches a
physical limit). This topic is addressed in Chapter 22.

It would be possible to arrive at the best design by simulating all possible
loop pairings and enhancements. However, simulating the numerous candidate
designs would be a time-consuming task, especially since the controllers in every
candidate would have to be tuned. In addition, such a "brute force" simulation
technique would provide little insight into improving performance through changes
in process equipment, operating conditions, or control structure.

The approaches presented here are selected because they address the most
important issues and generally require less engineering effort than simulating all
possibilities. Because these methods build on the results of the previous chapter,
it will be assumed that all systems considered are controllable. The new analysis
method for each major design decision is addressed in a separate section of the
chapter; then, some advanced topics are introduced. Finally, a flowchart is provided
to clarify the integration of major analysis steps in reducing potential candidate
designs and making decisions for multiloop systems. The hierarchical analysis
method eliminates candidates with a minimum of engineering effort and results in
one or a few final designs. Because of assumptions in some of these methods, the
final design selection may still require simulation, but of only a few candidates. Be
fore the methods are covered, a few motivating examples are presented to highlight
some important issues that distinguish multiloop from single-loop performance.

21.2 m DEMONSTRATION OF KEY MULTILOOP ISSUES
In this section, four important multiloop issues are introduced through process
examples that show the key effects of interaction on the dynamic performance of
multiloop control systems. These issues were selected because they often influence
control design for process units and they are unique to, or assume heightened
significance for, multiloop systems. The analysis methods to address these issues
are provided in subsequent sections of this chapter.



EXAMPLE 21.1. Operating conditions
The first issue is the effect of operating conditions on multiloop control perfor
mance, which is introduced through consideration of the blending process in
Figure 20.2. We begin by considering the same operating conditions previously
considered in Table 20.5, which are repeated in Table 21.1 as the base case.
For these operating conditions, the product is very dilute (5% A). Thus, changing
the flow rate of component A by a small amount affects the product composi
tion significantly while affecting the total product flow only slightly. This qualita
tive analysis was substantiated by the quantitative tuning analysis in Example
20.10, which leads to the recommendation of the pairing for the base case in
Table 21.1.

Next, we investigate whether a different pairing is recommended for an al
ternative operating condition that involves a very concentrated product (95% A).
In this operation, the product concentration is more sensitive to the flow of the
solvent than to the flow of component A, as it was in the base case. The tuning
for proportional-integral controllers is determined by the guidelines for 2 x 2 sys
tems with one fast and one slow loop. For this alternative case the loop pairings
Ax-Fx and F2-F2 provide better control, because the tunings for the controllers in
this configuration are not dependent on the automatic/manual status of the other
controller. From this example, we can conclude:
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The proper control loop pairing depends on the operating conditions of the
process.

Thus, it is not possible to specify a single control design for each unit operation,
like blending or two-product distillation. Even though units may appear similar,
at least with respect to equipment structure, their operating conditions and the
resulting dynamic responses must be considered.

TABLE 21.1
Effect of operating conditions on multiloop performance of the blending system

Operating
condition

Set points
A , F 3

Relative gain
kAl-F2i kAi-pi
kF3-Fli kp3-F2 Pairing: A\-F2, F3-F1 Pairing: Ax-Fx, F3-F2

Base case 0.05 1 0 0 0 . 9 5 0 . 0 5

Alternative case 0.95 100 0.05 0.95

Recommended
The controller tuning
is essentially the same for
single-loop and multiloop
control.
Not recommended
The controller tuning
depends strongly on the
status of the interacting
loop.

Not recommended
The controller tuning
depends strongly on the
status of the interacting
loop.
Recommended
The controller tuning is
essentially the same for
single-loop and multiloop
control.

immî m',Msmimm^msmimmmw^«^^mm^MM!mmm



664

CHAPTER 21
Multiloop Control:
Performance Analysis

EXAMPLE 21.2. Transmission interaction
The previous analysis selected the controller pairing that reduces transmission
interaction. In fact, the best controller pairings for the two examples are consistent
with selecting the multiloop pairings that yield relative gain values closest to 1.0, as
verified by the relative gain values in Table 21.1. Given this result, it is tempting to
assume that the multiloop control with relative gains closest to 1.0 always gives the
best performance. This example demonstrates that this assumption is not always
valid and that a more complete analysis is required.

ia)

0.98

0.95

0.03

1 0 0 1 5 0 2 0 0
Time

150 200
ib)

5 0 1 0 0 1 5 0 2 0 0
Time

FIGURE 21.1

150 200

Energy balance distillation control: (a) schematic diagram; ib) transient response to a change
in light key in feed of -0.04.



This example consists of the two-product distillation tower separating a binary
feed considered in Example 20.2. Both top and bottom product compositions are
of equal importance, and the major disturbance is a change in feed composition.
Two regulatory loop pairings, which differ only in how the distillate and reflux flow
rates are manipulated, are considered. The first, shown in Figure 21.1a, has the
distillate manipulated to control the overhead drum level and the reflux manipu
lated to control the top product composition; this is called energy balance and was
considered in Chapter 20. The second, shown in Figure 21.2b, has the distillate
and reflux pairings interchanged; this is called material balance and is introduced

665

Demonstration of Key
Multiloop Issues

(§)

o

-C&H-■

& —

D
H&-

§™~ ia)

0.98

0.95

0.03

200
ib)

0 5 0 1 0 0 1 5 0
Time

200 5 0 1 0 0 1 5 0 2 0 0
Time

FIGURE 21.2

Material balance distillation control: ia) schematic diagram; ib) transient response to a
change in light key in feed of —0.04.
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TABLE 21.2

Tuning and performance data for distillation dynamics

Energy balance Mater ia l balance

kxD-FB 6.09
kxD-FD 0.39
Kcd 10.4 -9.35
I/O 9.0 10.0
Kcb -6 .8 -68.7
Tib 6.1 6.7
Feed
composition IAExd 0.17 0.45
disturbance IAExb 0.35 0.31
iAxf = -0.04)

IAExd 0.35 0.0585
SPxD IAE™ 0.34 0.0456
disturbance
(ASPxd = 0.005)

here for the first time. It is important to recognize that the steady-state responses
of these two systems are identical because the process equipment, controlled
variables, and manipulated variables are the same. Only the transient behavior
is different. The linear transfer functions, including 2 min analyzer dead times, for
the two systems follow.

Energy balance.
- 0.0747c"3v -0.0667c"25 "I

[SI- 12s+ 1
0.1173c"3-35

15s + 1
-0.1253c"25

- 11.75* -h 1 10.2s+ 1 -1
Material balance.

r -0.0747*-* 0.008c-25 "I

[SI- \0s + \
-0.1173c-25

5s+ 1
-0.008c"25

L 9s+ 1 3s+ 1 -1

[S] +
0.70c- 5 s - i

14.4s + 1
1.3c"35

L 12s+ 1 J

X, (21.1)

[S] +
0.70c -55 -,

14.4s -1-1
1.3c"35

L 12s+1 J

X F ( 2 1 . 2 )

Tuning for these control systems can be determined by the methods in Chapter
20. The results are reported in Table 21.2.

The transient responses for well-tuned feedback control in response to a feed
composition upset are given in Figures 21.1b and 21.2b, and the control perfor
mances are summarized in the IAE values in Table 21.2. Based on the total IAE
values (0.52 for energy balance and 0.76 for material balance), the performance
of the energy balance control design is better than the material balance controller
for the feed composition disturbance—in spite of the fact that the interaction, as
measured by the relative gain, is much further from 1.0 for the energy balance
controller pairing. Thus, we conclude:



The best-performing multiloop control system is not always the system with
the least transmission interaction (i.e., with relative gain elements closest
to 1.0).
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This result should not be surprising when one considers the closed-loop trans
fer function for a multiloop system, derived in Chapter 20 and repeated here.

Gd2is)Gl2is)Gc2
CVxis)
Dis)

Gdlis)-
[1 + Gc2is)G22f ^ l fllis)] J

+ Gc2is)G22is)]

CEis) (21.3)

with

CEis) = 1 + Gcxis)Gxxis) + Gc2is)G22is) + Glds)Gxxis)Gc2is)G22is)
kxxis)

The dynamic response depends on all elements in the transfer function, so both
numerator and denominator must be considered, especially in multivariable sys
tems. However, the relative gain appears only in the denominator, whereas the
disturbance transfer function appears in the numerator. This result is a bit disap
pointing, since the design of multiloop systems would have been relatively easy
if the pairing were determined completely by the relative gain. Transmission inter
action is important and must be considered, but a simple pairing method based
entirely on the relative gain is not always correct.

EXAMPLE 21.3. Disturbance type.
A further important question concerns the performance of candidate controls for
different disturbances. Specifically, is it true that one candidate control pairing
performs best for all disturbances? This issue is investigated by extending the
study of the two distillation controller pairings for a different disturbance: a set
point change to the distillate controller. The dynamic responses for a set point
change in the top composition controller of +0.005 mole fraction, with the other
set point and all disturbances constant, are given in Figure 21.3a and b. The
results, summarized in Table 21.2, show that the total IAE values are 0.69 for
energy balance and 0.104 for material balance. In this case, the material balance
system performs better. Note that an attempt to "speed" the sluggish response of
the energy balance system through tighter controller tuning will lead to instability.

From this example we conclude:

The relative performance of control designs and the selection of the best
design can depend on the specific disturbahce(s) considered.

This result seems reasonable when considering the following closed-loop transfer
function for the set point change:

CV,0) Gcxis)Gxxis) + Gcxis)Gc2is)[Gxxis)G22is) - G12(s)G21(s)]
SP,(s) CE(s)

(21.4)
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Transient response of distillation control to +0.005 distillate light key set point
change: (a) energy balance design; ib) material balance design.



The characteristic equation is unchanged from equation (21.3), but the transfer
function numerator is different for different disturbances, and thus the control per
formance could be different. The result again demonstrates the difficulty with hav
ing a single, standard design for a unit operation, because the types of distur
bances a unit most often experiences depend on the entire plant design.
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EXAMPLE 21.4. Interactive dynamics.
The examples covered to this point involved interactive systems in which the trans
mission interaction is not faster than the "direct" transfer function between the
manipulated and controlled variables. Assuming that the controller is paired ac
cording to CVi(s)-MVi(s), the systems studied to this point have had

Gn(s) faster than G2xis)Gc2js)Gx2is)
1 + Gc2is)G22is)

A particularly difficult control challenge can occur when the transmission inter
action is faster than the direct process response. As an example, two systems
are considered; they have the same steady-state gains, but system B2 has fast
transmission dynamics, whereas system B1 has similar dynamics for all transfer
functions in the process model. In Example 20.9, system B1 has been shown to
have "well-behaved" closed-loop dynamics and to be easily tuned.

System B1.

System B2.

rev, on
|_CV2(s)J

rcv,(s)"|_
LCV2(S)J

1.0c-1.0s 0.75c-l.0.v - i

l +2s
0.75c"1 °5

L l + 2 s

l+2s
!.0c"'°5
l + 2 s J

MVxis)
MV2(s) (21.5)

1.0c-3.05 0.75c-OAs

l +2s
0.75c"015

L l + 2 s

l+2s
1.0c-°l5
1 +2s J

MVxis)
MVds) (21.6)

System B2 has the same steady-state gains but very different dynamics. To first
acquire some understanding of this system, the dynamic response is determined
for a step change in MV, it) with only the controller for variable 2 in automatic; this is
the process reaction curve for the process MV] (f)-CVj(r) with the other controller
in automatic. The dynamic response in Figure 21.4a shows an inverse response,
because the fast transmission effect produces an initial negative response before
the slower diagonal [Gnis)] effect produces a positive steady-state response.

It is important to recognize that the structure of a multiloop system with interac
tion ensures that parallel paths exist; the parallel paths include the direct transfer
function and transmission interaction, as shown in Figures 20.7 and 20.8. These
parallel paths do not always create complex feedback dynamics such as inverse
response or initial overshoot, but the possibility always exists. In system B2 the
interactive path is faster and has an effect opposite to the direct effect, leading to
the initial inverse response.

A process with an initial inverse response is usually difficult to control; thus,
interaction with fast transmission dynamics can result in poor control performance.
As an example, the control response of system B2 to a set point change in CV,
with PI tunings that yield minimum (IAE| + IAE2) is given in Figure 21 Ab. (Again,
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System B2: (a) Process reaction curve of MVi-CVi with other loop closed;
ib) multiloop transient response to set point change in CVj.



TABLE 21.3

Effect of dynamics on multiloop performance

Case
B1: Uniform
interactive
dynamics
(Figure 20.11)
B2: Complex
interactive
dynamics
(Figure 21.45)

Kcl Tn Kc2 Tn I A E , I A E 2 I A E , + I A E 2
1 . 2 3 1 . 7 6 0 . 8 9 1 . 0 6

0.71 3 . 0 0 4 . 0 0 2 . 9 7

3.46

9.80

2.46

1.27

5.92

11.07
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this simple measure of control performance is selected for comparison purposes
only.) The feedback controller cannot eliminate the initial inverse response, which
results in a relatively long time during which CV](0 is far from its set point.

The tuning and performance for systems B1 and B2 are compared in Table
21.3. This example clearly demonstrates the importance of interactive dynamics;
recall that both systems B1 and B2 have the same steady-state interaction, but
system B2 has poorer performance.

This example demonstrates:

Multivariable systems with strong interaction and fast transmission dynam
ics can result in complex dynamic responses, involving inverse response
or large overshoot, which can degrade control performance.

The examples considered in this section have demonstrated that the design of a
multiloop control system is a challenging task, involving more complex issues than
single-loop systems, and that the process dynamic responses, operating conditions,
disturbances, and extent of interaction must all be considered. The next three
sections present methods for considering these issues when making the three main
multiloop decisions: loop pairing, tuning, and enhancements.

21.3 o MULTILOOP CONTROL PERFORMANCE
THROUGH LOOP PAIRING

Loop pairing—the selection of controlled and manipulated variables to be linked
through single-loop controllers—is an extremely important design decision. For
the distillation examples in Figures 21.la, the two possible pairings are (1) XD-
FR and XB-Fy and (2) XD-FV and XB-FR. However, for a system with more
manipulated variables, the number of potential designs becomes very large; in fact,
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Dynamics
Performance
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the number of initial candidates for a process with n manipulated and controlled
variables is n factorial (n!). For example, there are 125 candidates for a five-
controller, five-manipulated-variable distillation system in Figure 21.1a when the
product compositions, pressure, and levels are considered! Clearly, the number
of candidates must be reduced significantly, or the analysis task will require an
enormous effort to evaluate all candidates. In this section, four separate analyses are
described for eliminating clearly unacceptable pairing candidates and evaluating
the remainder for likely performance. These analyses would be applied only to
process designs that have been verified to be controllable and to have an adequate
operating window. Also, the four analyses are employed sequentially, with only
those candidates passing the prior steps evaluated at the next step.

Integrity
An important factor to be considered in multiloop control design is the performance
of the system when a fault or limitation occurs. Here, a fault is assumed to involve
a sensor or final element so that a control loop ceases to function; we will be
considering the situation after a fault has been recognized and the loop with the
fault has been taken out of service. The resulting situation is the same when one
(or more) controller is placed in the manual status, so that it no longer adjusts the
manipulated variable. In such circumstances, interaction influences the stability
and performance of the remaining closed-loop control system. We would like the
system to have integrity.

A system has integrity if, after one or more loops are placed in manual, the remain
ing closed-loop system can be stable without changing the signs of any feedback
controller gains remaining in automatic.

Some very useful results regarding integrity can be determined from the relative
gain.

NEGATIVE RELATIVE GAIN. If a control loop (with integral mode) is paired
using manipulated and controlled variables that have a negative relative gain ele
ment kij, one of the following situations must exist (McAvoy, 1983; Grosdidier et
al. 1985).

1. The multiloop system is unstable with all controllers in automatic.
2. The single-loop system ij is unstable when all other controllers are in manual.
3. The multiloop system is unstable when the 17th controller is in manual and

all other controllers are in automatic.

Since all three situations are undesirable, the general conclusion is that single-
loop designs should avoid pairings with negative relative gains, whenever possible.
Only when essential, fast feedback dynamics can be achieved only by pairing on a
negative relative gain should this design be considered. Industrial experience has
shown that good designs with loop pairings on a negative relative gain occur very



infrequently. An industrially important example of pairing on a negative relative
gain is described by Arbel et al. (1996).

ZERO RELATIVE GAIN. When the relative gain, ku, is zero for a pairing,
the steady-state gain of the pairing CV/(f) — MVjit) is zero when the other loops
are open, that is, the process gain Ky = 0. Since no causal relationship exists,
the single-loop controller cannot function. However, the multiloop system can
function because of the causal relationship through the interacting process and
the interacting controller. The causal interaction relationship is demonstrated with
equation (20.13), which gives the transfer function between CV] is) and MVj is)
for a 2 x 2 system with loop 2 in automatic.

0

CVxis)/MVxis)=pfxis)-Gxds)G2xis)Gc2is)/[\ + Gc2is)G22is)] (20.13)
Clearly, a nonzero causal relationship exists between MVj is) and CV] when pro
cess interaction occurs [Gxds)G2xis) ̂  0] and the interacting controller is in
automatic [Gc2is) ̂  0] to create a feedback loop via the interaction path. There
fore, successful operation of a control loop paired on a zero relative gain depends
on the status of the interacting loop. Pairing on a zero relative gain should be im
plemented only when essential, fast feedback dynamics are achieved. Industrial
experience indicates that this situation is not common, but occurs occasionally.

In both of these cases, proper functioning of a control loop requires that the
adjustments from other controllers be implemented at the final elements, which
would not be satisfied if an interactive controller (1) were in manual or (2) had
its output saturated at the upper or lower bound. It is not uncommon for these
situations to occur, at least temporarily, and thus, multiloop control designs with
relative gains less than or equal to zero could often fail to provide stable feed
back regulation. To prevent these failures, a real-time computer program could be
prepared to continuously monitor the control system and change controller gains
and automatic/manual statuses depending on the condition of all controllers in the
multiloop system.

To summarize this discussion on integrity:
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Pairing a control loop on negative or zero relative gain should be avoided, if pos
sible; such a pairing is implemented only when essential, significant dynamic
advantages can be gained by this design and by no other reasonable process or
control modifications.
When a control design has a loop paired on a negative or zero relative gain, a
program should be executed in real time to monitor the interacting loops and
either warn the operator or take automated actions to prevent unstable systems
when the status of an interacting loop changes from automatic to manual.

To discuss a process with conventional and zero relative gain pairing, we
begin by considering the fired heater process in Figure 21.5. The process fluid
flows through a pipe (termed a coil) and is heated by radiant and convective heat
transfer from the combustion of fuel. The variables to be controlled are the process
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Fuel oil
FIGURE 21.5

Furnace multiloop control pairing on variables with
X>0.

fluid flow rate and the process fluid outlet temperature, and the two manipulated
valves are in the process fluid ivx) and fuel iv2) lines. When no feedback controllers
are present, the process fluid flow rate is influenced directly only by v\, and the
outlet temperature is influenced by both vx and v2. Thus, the 2 x 2 gain matrix has
a zero, and as shown in Chapter 20, the relative gain array has ones in the diagonal
elements and zeros in the off-diagonal elements. There is only one pairing with
nonzero relative gain values, and this pairing is shown in Figure 21.5, which is the
common loop pairing used in most industrial designs.

The guideline for eliminating pairings on nonpositive relative gains conforms
to theory and common industrial practice; however, there are a few cases where the
rule is violated and pairings with zero relative gains are used. These unconventional
designs are employed, in spite of their recognized drawbacks, to achieve specific
advantages—typically, very fast feedback dynamics for a particularly important
controlled variable. An example of an exception is given in Figure 21.6. In this
case, the tight control of the coil outlet temperature is very important, and the
dynamic response between the process flow valve vx and the temperature can be
very fast when the fluid residence time in the coils is short. Since the open-loop
gain between valve v2 and the process fluid flow is zero, the proper functioning of
the flow controller in this case requires the operation of the temperature controller.
This design is used industrially only when the temperature is of especially great
importance, feed flow control need not be controlled tightly, and other steps to
improve control performance are not possible or are extremely costly.

Dynamics
If one or a few controlled variables are much more important, the control loop pair
ing should be selected to give good performance for the most important variables.
As demonstrated in discussions on single-loop control, control performance is



FIGURE 21.6

Furnace multiloop control pairing on variables with X = 0.

much better when the feedback process dynamics involve a fast process with small
fraction dead time. Thus, the second loop-pairing guideline is stated as follows:

675

Multiloop Control
Performance through

Loop Pairing

Very important controlled variables should be paired with manipulated variables
that provide fast feedback dynamics with small dead times and time constants and
negligible inverse response.

As an example of this guideline, consider the simplified system in Figure
21.7 in which two gases are mixed, as might occur where the heating value of
the mixed gaseous fuel stream is to be controlled. The sources of the feeds are a
gas stream L (lower heating value) and a vaporizer for the stream H (higher heat
ing value). The controlled variables are the pressure and the composition in the
pipe after mixing, and both manipulated variables affect both controlled variables.
Generally, the pressure is of greatest importance, because variations could lead to
unsafe conditions; short-term composition variations, while not desirable, can be
more easily tolerated. Therefore, the pressure is controlled by manipulating the
fast-responding gas feed, while the composition is controlled by manipulating the
more slowly responding vaporization process. Since the pressure is most important,
this pairing would be used as long as the gas feed valve has the flexibility range to
control pressure—in other words, as long as it does not go fully opened or closed in
response to disturbances—regardless of the interaction effects on the composition.
EXAMPLE 21.5.
Evaluate the two possible loop pairings for the blending example process with
base-case conditions in Table 21.1 according to the relative gain and dynamic
responses.

<§>
Solvent C%r
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FuelL

FIGURE 21.7
Heating medium

Fuel gas control system with key pressure variable
paired with fast manipulated variable.

The relative gain array for the blending process with dilute product (5% A)
can be evaluated from the steady-state gains to be

F2
Relative gain array: Ax

Ft
0.05
0.95

0.95
0.05

Since none of the elements is less than or equal to 0.0, both possible pairings
are allowed based on the first guideline. Also, the data reported in Example 20.10
show the same dynamic responses for both pairings, since the dominant dynamics
are due to the sensors. Therefore, neither pairing has an advantage regarding
dynamics. Finally, since the two guidelines do not exclude either pairing, the results
in Table 21.1 give strong evidence for preferring the Ax-F2 and F3-F\ pairing, since
the tuning of each controller does not depend on the automatic/manual status of
the other.
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EXAMPLE 21.6.
Evaluate the two possible composition control loop pairings for the distillation ex
ample in Figure 20.3 according to the relative gain and dynamic responses.

The relative gain array can be evaluated from the steady-state gains in equa
tion (20.24), giving

FR
Relative gain array: XD

XB
6.09

•5.09
-5.09

6.09

Since only the pairing XD-FR and XB-FV has positive relative gains, only this
pairing is allowed by the first guideline; this is the design in Figure 21.1a. The loop
dynamics for the allowed pairing are not slower, and are even slightly faster, than
the disallowed pairing, which indicates that there is no significant disadvantage
to this design based on feedback dynamics.



Performance Measure 677
The third analysis addresses the remaining candidate pairings, involving control
lable systems with positive relative gains, similar feedback dynamics, and con
trolled variables of equal importance, by investigating the control performance for
specific disturbances. If only a few candidates remained at this point, one could
simulate the systems for the important disturbance(s) to select the best design, as
was done for the distillation tower in Examples 21.2 and 21.3. Here a shortcut
method is outlined that provides a quick estimate of control performance and is
useful in reducing the pairing candidates that can yield good control performance.
Equally important, it provides insight into the effects of disturbances, specifically
how interaction can be favorable or unfavorable in multiloop control (Stanley et al.,
1985). The approach is introduced for 2 x 2 systems; however, it can be extended
to higher-order systems (Skogestad and Morari, 1987a). In spite of its advantages,
the method does not provide a definitive recommendation, because of the assump
tions required; thus, some care is required in its application, and the results may
have to be verified through dynamic simulation.

The method takes advantage of a simple estimate of control performance that
can be determined directly from the closed-loop transfer function. The control
performance measure used here is integral error, which can be obtained directly
by using the following relationship (see Appendix D):

/ • O O / » O C

/ Eit) dt = lim / Eit)e'J o s ~ + Q J o
dt = Eis)\5 = 0 (21.7)

This relationship demonstrates that the integral of a variable, specifically the error,
can be obtained from the transfer function of a stable system without solving for the
complete transient response (Gibilaro and Lee, 1969). Naturally, much detailed in
formation about the transient response is lost, but a useful single measure of control
performance is easily obtained. A large integral error indicates poor performance
and a pairing candidate that should be eliminated. A small integral error can result
from good performance, and the pairing should be retained for further evaluation.
However, large positive and negative errors occurring during the transient could
cancel in this calculation (this is not the IAE!), so a small value of integral error does
not definitely prove good control performance. Thus, the final selection requires
further evaluation, such as a simulation, to determine the transient behavior.

The closed-loop disturbance response transfer function for a 2 x 2 system
is given in equation (21.3). The relationship in equation (21.7) can be applied to
equation (21.3) with Dis) = \/s, resulting, after some rearrangement, in

.Jo
Exit)dt

J ML [fJo
E\it)dt (/l.tuneXRDG,) (21.8)

JSL

where Integral error under multiloop control = j°°Exit)dt\ ML

Integral error under single-loop control = j Ex it) dt \ =

Detuning factor for multiloop control = /i,lune =

Is l KidKci)sL
(21.9)

JKc\/Th)sl
iKcx/Tn)wL

(21.10)
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1 - J2 l2 )

KdlK22/
(21.11)

The multiloop control performance calculation in equation (21.8) is arranged to be
the product of three factors so that separate facets of multiloop control are repre
sented in each factor: (1) a factor for the single-loop performance, (2) a factor for
tuning adjustment, (3) a factor accounting for interaction and disturbance. The first
factor represents the single-loop performance that would be achieved if the other
control loop were not in operation (e.g., in manual). This term again demonstrates
that aspects of single-loop control performance, which are summarized in Chapter
13, also influence the controlled variables in a multiloop system. For example, fast
feedback dynamics and small disturbance magnitudes are beneficial in multiloop
systems.

The final two factors represent the change in control performance due to the
multiloop structure. The detuning factor /,une represents the effects of detuning the
PI controllers for multiloop control. The values of the multiloop tuning constants
can be estimated using methods in Chapter 20 or alternative methods cited in
the references. By applying the tuning method recommended in Chapter 20 for
2x2 systems with equal dynamics for the two loops, the detuning factor can be
determined from the relative gain, as shown in Figure 21.8. Since the relative gain
in most properly designed control systems is greater than about 0.7, the correlation
shows that the detuning factor is usually bounded between 1.0 and 2.0 for 2 x 2
systems (Marino-Galarraga et al., 1987a).

Thus, the effect of multivariable control is usually dominated by the third
term, which is called the relative disturbance gain, RDG. The relative disturbance
gain is the product of the relative gain and a disturbance factor. Recall that the
relative gain is an inherent property of the feedback process, independent of the
type of disturbance. In contrast, the RDG depends on the type of disturbance; for

1.5 2 2.5 3 3.5 4 4.5 5
Steady-state relative gain, An

FIGURE 21.8

Correlation between detuning factor /tune and
relative gain for 2 x 2 system with equal
input-output dynamics.



example, it has different values for feed composition and set point changes to a
distillation tower.

The influence of the RDG is first analyzed from a mathematical, then a process
point of view. The RDG is the product of two values, and its magnitude is small
when control performance is good. The first factor is the relative gain; if the relative
gain has a large value, its contribution will be to degrade control performance,
because the integral error will tend to increase. The second factor represents the
effect of the disturbance type, and because it is the difference of two values, it can
have a magnitude ranging from zero to very large. A small magnitude of this factor
indicates that the multiloop performance could be much better than the single-loop
performance. This situation would occur when the term (1 — Kd2Kx2/Kjx K22) has
a value near zero, which is interpreted as favorable interaction. The other result,
with a large disturbance contribution and much poorer multiloop performance, is
also possible and is interpreted as unfavorable interaction.
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The combined effects of inherent process interaction and disturbance type determine
the dominant difference between single-loop and multiloop control performance.
These effects are reflected in the magnitude of the relative disturbance gain (RDG).

This clearly demonstrates that multiloop control performance can be better or
worse than single-loop performance for some disturbances.

A key element in determining the effect of interaction in multiloop systems
is the manner in which a disturbance affects both controlled variables, sometimes
referred to as the "direction" of the disturbance. Thus, it is worthwhile considering
the basis for favorable interaction. Favorable interaction occurs when controller 2,
in correcting its own deviation from set point, makes an adjustment that improves
the performance of controller 1, CVi it). The net effect must consider the effects
of the disturbances on both controlled variables iKjx and Kj2), the manipulation
taken to correct the CV2(0 deviation (characterized by 1/^22) and the interaction
term (£12). All of these parameters are in the interaction factor of the relative
disturbance gain.

EXAMPLE 21.7.
For the distillation towers in Figures 21.1 and 21.2, evaluate the relative distur
bance gain and provide an interpretation of the effect of interaction on the control
performance of the distillate composition, XD, for a disturbance in the feed com
position.

The effect of interaction on control performance is predicted by equation
(21.8), and the calculations are summarized in Table 21.4 for both distillation con
trol designs. This analysis predicts that the energy balance performs better for
feed composition disturbances, because its sum of values of /,une x RDG,- for the
two compositions is smaller than for the material balance system. This conclusion
is confirmed by the simulation results in Figures 21.1b and 21.2b and in Table 21.2.

The physical interpretation of the favorable interaction is considered here
for the control design in Figure 21.1a. The initial effect of increased light key in
the feed (before the analyzer controllers respond) results in the top and bottom
products having too much light key. In response, the bottom controller increases
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TABLE 21.4

Summary calculations of predicted control performance for the distillation
tower in Examples 21.7 and 21.8

Energy balance design
in Figure 21.1a

Data and
calculated variable xD XB

Kf r 0.0747 0.1173
Kfd
Kfv -0.0667 -0.1253
k 6.09
/tune
Feed Kd

2.0
0.70 1.3

composition
disturbance

RDG
/tune • RDG

0.071
0.14

0.94
1.88

Set point
change iXD)

Kd
RDG
j'^e RDG

1.0
6.09

12.2

0.0
*
*

Material balance design
in Figure 21.2a

0.0747 -0.1173
0.008 -0.008
0.39
5.0
0.70 1.3
1.11 0.06
5.55 0.30
1.0 0.0
0.39 *
1.53 *

* Predicted / Edt is finite, although RDG is infinite, due to cancellation of Kd2 (which is zero) in numerator
and denominator.

the heating flow rate (i.e., reboiler duty). This adjustment by the bottom controller
has the effect of decreasing the light key in the top product, exactly what the top
controller is doing itself! The top controller must also take action by increasing the
reflux; however, the (reinforcing) interaction from the bottoms controller improves
the overall control performance. Therefore, the energy balance control pairing
has favorable interaction and good multiloop performance for the top controller
in response to a feed composition disturbance. The reader should repeat this
thought experiment for the material balance system to confirm that the interaction
is unfavorable for XD.

EXAMPLE 21.8.
For the distillation towers in Figures 21.1 and 21.2, evaluate the relative disturbance
gain for a change in the distillate composition controller set point and select the
better design for XD.

The analysis method, summarized in Table 21.4, correctly predicts that the
material balance performs better for set point changes in the distillate controller,
as was found by simulations in Figure 21.3b. Note that equation (21.3) can be
used to represent a set point change by setting Gdlis) = 1.0 and Gd2is) = 0.0,
and in this case the RDGi is equal to kn.

In summary, equation (21.8) provides the basis for estimating the major effect
of multiloop control on the performance of each controlled variable. ITie infor-

CC
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The physical interpretation of the favorable interaction is considered here for the control design in Figure 21-1a.  The initial effect of decreased light key in the feed (before the effects of the analyzer controllers) results in the top and bottom products having too little light key.  In response, the bottom controller decreases the heating flow rate, i.e., reboiler duty.  This change by the bottom controller has the effect of increasing the fraction of light key in the top product, exactly what the top controller is doing itself!  The top controller must also take action by increasing the reflux; however, the (reinforcing) interaction from the bottoms controller improves the overall control performance.  Therefore, the energy balance control pairing has favorable interaction and good multiloop performance for the top controller in response to a feed composition disturbance.  The reader should repeat this thought experiment for the material balance system to confirm that the interaction is unfavorable for XD.



mation required to perform this calculation involves process gains in the feedback
path Ky and the open-loop disturbance gains Kji, which can be easily determined
from a steady-state analysis. One should consider the likely errors in the values of
the gains, as well as in the simplifications in linearizing the process model, when
interpreting the results. Small differences (10-20%) in predicted integral error
should be considered within the accuracy of the information, and the candidate
loop pairings should be considered indistinguishable.

This subsection introduced the consideration of disturbance type, which should
be considered in all analyses of multiloop systems. However, it is necessary to re
peat a caution concerning the use of the integral error, which can be small because
of cancellations of large positive and negative errors. Thus, while large values
of |RDG|| AD\K<t\ definitely indicate poor control performance, small values do
not necessarily indicate good performance. The best recourse to determine the
effects of complex dynamics at this time is to perform a dynamic simulation. Note
that the procedures described here are useful in substantially reducing the number
of candidates for simulation, as well as providing insight into the importance of
disturbance type (or "direction") on control performance.
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Control Range
The method for determining controllability in Chapter 20 is valid for the linearized
model at the point of linearization. For most processes that are not highly non
linear, the results can be extended in a region about the point. However, there is
no guarantee that the results can be extrapolated, especially when a manipulated
variable encounters a constraint while attempting to make the change required
by the controller. The method for identifying difficulties with range in achievable
steady-state behavior is to determine the operating window of the process. Even if
all steady states are feasible, manipulated variables may reach limits during tran
sients; dynamic simulation would be required to determine the importance of a
temporary saturation of a manipulated variable.

This section demonstrated a stepwise method for evaluating candidate multi
loop control designs:

1. Use the relative gain to eliminate some pairings which lack integrity.
2. Use dynamic models to select pairings with fast dynamics for important vari

ables.
3. Use approximate control performance analysis—the relative disturbance gain

(RDG)—for specific disturbances to evaluate systems with controlled vari
ables of equal importance.

Note that step 1 requires only steady-state information, which means that it is
easy to perform with limited modelling information. Also, steps 2 and 3 require
approximate dynamic information to identify where major differences in feedback
dynamics are present. This approximate dynamic modelling information is also
generally easy to obtain. If the effects of interactive dynamics are not easily pre
dicted, so that the methods here cannot provide conclusive recommendations, the
final design could be simulated to determine its performance.
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21.4 ® MULTILOOP CONTROL PERFORMANCE
THROUGH TUNING
The tuning of PID feedback controllers should be matched with the control ob
jectives. Prior to tuning, the first steps presented in the previous section should be
applied, to eliminate inappropriate pairings by the use of the relative gain and to
select pairings with fast feedback dynamics for the important controlled variables.
In all cases, controllers for the most important controlled variables should be tuned
tightly. The tuning of the controllers of lesser importance depends on the type of
interaction present: favorable or unfavorable.

For systems with unfavorable interaction, as predicted by the relative distur
bance gain, the effect of interaction degrades the performance of other loops; this
degradation can be reduced through judicious controller detuning, consistent with
the control objectives. Thus, the controllers for the important variable(s) would
be tuned tightly, as close as possible to single-loop tuning. To ensure stability and
prevent unfavorable interaction, the controllers for the less important variables
would usually be detuned.

If the interaction is favorable, as indicated by a small relative disturbance gain,
interaction improves the performance of other loops and should be maintained by
proper tuning. In this case, the interacting loop, even if not of great importance
itself, should be tuned as tightly as possible to enhance the favorable interaction.

There are no exact guidelines for how the less important controllers should
be tuned. When interaction degrades control performance, a starting approach
is to tune the important loops close to their single-loop values and detune the
less important loops by decreasing their controller gains. Normally, all feedback
controllers would retain an integral mode to return the controlled variables to their
set points (albeit very slowly for some variables) after disturbances. When both
are to be tightly tuned, the method in Chapter 20 would give initial values. An
example of how differences in control performance in the same process can be
induced through different tuning is given in the results in Table 20.2.
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EXAMPLE 21.9.
The effects of tuning the composition controllers on the control performance of
the energy balance distillation control design in Figure 21.1a are investigated.
For this example (only), the distillate product composition is assumed to be much
more important than the bottoms composition, so the bottoms composition will
be allowed to experience larger short-term variation about its set point. Since no
strict guidelines exist for this tuning, the extent of detuning used in this example
represents exploratory results.

The effects of tuning, as determined by simulating the entire response, are
given in Table 21.5. For a set point change in XD, the interaction is unfavorable,
as demonstrated by the large magnitude of RDG • f̂  (12.2) in Table 21.4. There
fore, tight tuning of the distillate composition controller, along with detuning the
bottoms loop, reduces interaction and improves the performance of the distillate
composition controller (reducing the IAE from 0.71 to 0.35). As expected, the vari
ation in the bottoms composition (IAE) increased as the bottoms controller was
detuned.

For the feed composition disturbance, the interaction is favorable, as demon
strated by the small magnitude of RDG • /tune (0.14) in Table 21.4. Therefore, the



TABLE 21.5
The effects of tuning on performance for Example 21.9

Tuning Performance

Input change KCXD Tixd KCXB TlXB IAE*fl IAE*B
Set point,
iASPXD=0.0\)

10.4
20.75

9.0
9.0

-6.8
-3.4

6.1
6.1

0.71
0.35

0.68
1.37

Feed
composition,
iAXB = -0.04)

10.4

10.4

9.0

9.0

-6.8

-2.0

6.1

6.1

0.17

0.36

0.35

1.18
W#WPPI
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control performance in the case with both controllers tightly tuned has better dis
tillate composition performance (IAE of 0.17) than the case with the bottoms con
troller detuned (IAE of 0.36), since detuning reduces the favorable interaction.
fi S K S S * ^ ^

The discussion in this section and the results of Example 21.9 reinforce the
importance of considering the effects of the disturbances in control design and
tuning.

Multiloop tuning should be chosen to retain favorable interaction and to reduce
unfavorable interaction.

21.5 n MULTILOOP CONTROL PERFORMANCE
THROUGH ENHANCEMENTS: DECOUPLING
When the previous analyses are complete, it is possible to arrive at a design with two
(or more) equally important controlled variables, which may not have the desired
performance even with the best pairing and tuning. Often, the limiting factor is
unfavorable interaction, which is indicated by a large magnitude of the relative
disturbance gain (| RDG |). When poor control performance stems from unfavorable
interaction, a potential solution involves reducing interaction through an approach
called decoupling, which has the theoretical ability to improve performance in
some loops without degrading performance in others.

Decoupling reduces interaction by transforming the closed-loop transfer func
tion matrix into (an approximate) diagonal form, in which interaction is reduced or
eliminated. There are at least three different decoupling approaches: (1) altering the
manipulated variables, (2) altering the controlled variables, and (3) retaining the
original variables but altering the feedback control calculation. Each is presented
briefly in this section.
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Manipulated Variables
The first decoupling approach involves changing the control structure to affect dif
ferent manipulated secondary variables in a cascade structure, with the same final
elements. This approach will be introduced by reconsidering the blending in Exam
ple 20.1, in which both manipulated variables influence both controlled variables.
The goal is to control the same variables (Aj and F3) with altered manipulated
variables so that the altered system's gain matrix is diagonal or nearly diagonal.
This goal is usually achieved through process insight. The restructured dynamic
model can be developed from equations (20.1) and (20.2) without linearizing.

■ca
dA

xF-

dt

dFdt)
dt

i (o r Fdt-eA)
Fxit-9A) + F2it -BA)\

Axit) = MVxit-9A)-Axit)
(21.12)

= Fxit -9F) + Fdt - 9F) - F3(f) = MVdt - 6F) - F3(0 (21.13)

From this model it becomes clear that the two controlled variables would be inde
pendent if the manipulated variables were defined as follows:

Manipulated variable number 1 = MVi = F2/iFx + F2)
Manipulated variable number 2 = MV2 = Fx + F2

With this modification, the system in equations (21.12) and (21.13) has been altered
to two independent input-output relationships, and as a side benefit the altered
system is linear. Thus, standard single-loop control methods can be used to tune
the controllers in this decoupled system.

The control strategy can be implemented using real-time calculations and
cascade principles, as shown in Figure 21.9, because Fx and F2 are measured and
respond essentially instantaneously to changes in the valve positions. For example,
when the mixed flow (F3) set point is increased, the initial response of controller

Fl+F2

FIGURE 21.9

Manipulated-variable decoupled control of blending.



F3 is to increase the total flow (Fi + F2) set point; this is achieved by adjusting
vx. This changes the flow ratio and is quickly followed by an adjustment by the
flow ratio controller to increase v2 to maintain the proper ratio F2/iFx+ F2); this
adjustment is made without feedback from the analyzer composition controller.
These adjustments continue until the desired values of the total flow and ratio
are achieved. By similar analysis, it can be shown that the analyzer controller
output affects only the product composition, not the total flow. Thus, the interac
tions have been eliminated. As an added advantage, the decoupled control system
is also easily understood by plant operating personnel. Naturally, the feedback
controllers remain to account for small inaccuracies in the flow measurements,
manipulated-variable calculations, and disturbances. Many similar strategies are
used industrially to minimize unfavorable interactions and are the basis for the
common water faucet design in which the total water flow and the ratio of hot to
cold can be adjusted independently.
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Controlled Variables
Another decoupling approach alters the controlled variables by replacing measured
variables with calculated variables based on process output measurements. Again,
the proper calculation is designed with knowledge of the process dynamics. As a
simple example, the two-tank level control system in Figure 21.10 is considered;
the levels are to be controlled by manipulating the set points of the flow controllers.
If the goal were to design two decoupled controllers for maintaining the desired
levels, calculated variables which yield independent equations would be sought in
the basic linearized model of the process.

dL\
~aT
dV2
I T

= Fiin - F'x ~ KxdL\ - L2)

— F2\n — F2 + KxdL\ - L'7)

(21.14)

(21.15)

A decoupled system can be derived by noting that the sum of the levels depends
on the sum of the manipulated variables, whereas the difference between the levels
depends on the difference between the manipulated variables. This is easily shown

'lin
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FIGURE 21.10

Level process.
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by adding and subtracting equations (21.14) and (21.15) to give

Ad(L\ + V2) = (f,^ + pL) _ (f, + p,} (2U6)

Ad(L''~L'2) = (F'Vm - FiJ - 2Kn(L\ - L'2) - (F[ - F2') (21.17)

Thus, a control design in which (L i + L2) and (L i — L2) are controlled by adjusting
(Fj + F2) and (Fj — F2), respectively, is decoupled. Note that (Lj + L2) is non-
self-regulatory, whereas (Li — L2) is a first-order system. A process application
of this principle to distillation reboiler level and composition control is given by
Shinskey (1988).

This approach is not as widely applied as the approach based on manipu
lated variables, because it uses measured process output values in calculating the
controlled variables. For this approach to function properly, all measured output
variables should respond to adjustments in all manipulated variables with nearly
the same dynamics so that the calculations are "synchronized." This criterion is
easily satisfied for the example in Figure 21.10, because levels respond rapidly,
but it is not commonly satisfied for complex units. Control designs for distillation
composition using these concepts have been reported (Weber and Gaitonde, 1985;
Waller and Finnerman, 1987).

Explicit Decoupling Calculations
The third approach to decoupling is to retain the original manipulated and con
trolled variables and alter the control calculation, while retaining the multiloop
structure. There are two common implementations of this approach. The "ideal"
decoupling compensates for interactions while leaving the input-output dynamic
relationships for the feedback controllers unchanged from their single-loop be
havior, Gais). While the concept is attractive, since controller tuning would not
be affected by decoupling, experience has shown that the resulting system is very
sensitive to modelling errors and generally does not perform well (Arkun et al.,
1984; McAvoy 1979); thus, it is not considered further.

The "simplified" decoupling method presented here achieves a diagonal sys
tem by calculations that result in the interaction relationships between the controller
outputs and controlled variables all being zero. Since it is not possible to eliminate
the process interaction Gjjis), the decouplers are designed to provide compen
sating adjustments that cancel the process effects of manipulations in MVjis) on
CVjis) for i ̂  j and thus yield independent, single-loop systems. The system is
shown in Figure 21.11, with the decoupling transfer functions £>,-; is) given by the
following relationships:

Decoupler: Dijis) = -
Gijjs)
Gids) (21.18)

The reader may recognize the decoupler as similar to the feedforward controller,
which compensates for measured disturbances; here the measured disturbance is
the manipulated variable adjusted by an interacting feedback controller. The reader
is referred to Chapter 15 on feedforward control for the derivation of this equation
and a discussion of the possibility of the decoupler being unrealizable.
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FIGURE 21.11

Block diagram of explicit decoupling.

When the process behavior can be modelled by first-order-with-dead-time
transfer functions, the decoupler in equation (21.18) becomes
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Duis) = -
Kjj 1 + TjjS _(oi:_
Ku 1 + XnS

(0ij-Ou)s (21.19)

Again, this is the same form as feedforward controllers. The decoupling calcu
lations in equation (21.19) can be implemented in digital form through the same
procedures used with feedforward controllers in Chapter 15.

The explicit decoupler completely eliminates interaction only when the model
is perfect. The resulting transfer function can be derived through block diagram
manipulation assuming perfect decoupling, equation (21.18). The perfectly de
coupled system is shown in Figure 21.12. Clearly, the "effective process" being
controlled has changed because of the decoupling, and the controller tuning must
be changed from single-loop values. Since the change in the "feedback process"
transfer function is the inverse of the relative gain, the controller gain for the de
coupled system should be taken as (approximately) the product of the single-loop
controller gain, calculated using Guis), and the relative gain. This will maintain
the Gods), product of the controller and the "process" [A.uGCi is)][G\\is)/ku]t
nearly constant, as a first approximation.

Errors in the models used in the decouplers affect the accuracy of the de
coupling and, more seriously, affect the stability of the multiloop system. The
sensitivity can be determined from an analytical expression of the performance as
a function of the decoupler errors. The procedure to calculate the integral error in
equation (21.7) can be applied to the closed-loop transfer function for the decou
pled system with modelling errors. To simplify the analysis, only the decoupler
gains have errors, with e,- being a multiplicative error in the decoupler controller
gain, Koij. The resulting expression for the performance is

Jo
Exit)dt = kxxk<xe2

r ^ iT / i i r i + j€x — l)Kd2Kx2
Kd\K22

(21.20)
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FIGURE 21.12

Consolidated block diagram explicit decoupling with perfect models. (Reprinted
by permission. Copyright © 1983, Instrument Society of America. From
Interaction Analysis.)

where k =
KxxK22

kxx =

Dtjis) = -€(

\ - K

Gjjjs)
Guis)

kfi =
1 — €jK

^•<Me2 =
1

1 ~€x€2K

€i = (1 for perfect model)

Clearly, the error relative gain, k€i€2, plays a key role. As the decoupler errors in
crease, this factor and the integral error can become very large and the performance
very poor. For processes with relative gains significantly greater than 1, even small
decoupling errors can lead to very poor performance. For example, a small (5%)
model error of e/ = 1.05 in a decoupler applied to the distillation example with
energy balance control (A, = 6.09, k — 0.836) would increase the integral error by
about 100% over perfect decoupling! Thus, caution should be used when applying
decoupling, since it requires model accuracies nearly impossible to achieve for
real process systems with large relative gains. Similar results have been presented
by McAvoy (1979), Shinskey (1988), and Skogestad and Morari (19876) using
different analysis methods.

Several simplifications are possible in this decoupling approach. First, the
dynamic decouplers in equation (21.18) can be approximated by the gains when
this is sufficient for good control. Typically, the steady-state approximation is
acceptable when Dyis) has a small dead time and nearly equal lead (numerator)
and lag (denominator) dynamics. Note that this simplification does not reduce the
sensitivity to model gain errors shown in equation (21.20).

Also, decoupling can be simplified by using only one-way decoupling, with
one Dijis) = 0. This approach would be applied to improve the performance of
the more important controlled variable. Sensitivity analysis shows that one-way
decoupling is much less sensitive to model gain errors than full decoupling, which
presumably leads to its more frequent successful application in practice (McAvoy,
1979).



EXAMPLE 21.10.
Determine the performance with decoupling for the energy balance distillation
control system in Figure 21.1. The disturbance is a set point change of +0.01 to
the top composition controller.

The first question the engineer should ask is "Will error-free decoupling im
prove the control performance?" Recall that the magnitude of RDG • /tune indicates
the effects of interaction on multiloop controllers. Decoupling removes the effects
of interaction, and the integral error will be the same as for a single-loop controller
(i.e., with the other controllers in manual). Therefore, unfavorable interaction oc
curs when RDG • /,une > 1.0, and decoupling can be used in such cases to remove
the unfavorable interaction. The information required is given in Table 21.4, which
gives the values of 12.2 for XD and 0.0 for XB. Since the value for XD is so large,
decoupling should be considered.

The values for the decoupler can be determined from the linear model of the
energy balance system and are as follows:

10.2$ + 1 ,-,->->,
Dris) = 0.893 ig \ g-(2-3.3).v15^ + 1

0.893

D2Xis) = 0.930

10.2$ + 1
155 + 1

10.25 + 1

(not realizable)

(physically realizable)

, - U . i
11.755 + 1

A dynamic response for this decoupled system to a set point change of 0.01
in the top composition is given in Figure 21.13a, and the tuning values and per
formance are summarized in Table 21.6. This theoretically best decoupling per
formance is quite good, with a much lower IAE than the multiloop case reported
in Table 21.2 (energy balance), although in this example the set point change
has twice the magnitude. Note that both manipulated variables changed imme
diately when the set point was changed. The immediate change in MVi is from
the controller Gc\, while the immediate change in MV2 is from GcxDl2, so that
the decoupler acts before the controlled variable XB is disturbed. Again, the
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FIGURE 21.13

Explicit decoupling in distillation control, Example 21.6: ia) based on a perfect model; ib) with 15%
gain errors in decouplers. (Scales: One tick = 0.02 for XD and XB, 0.50 for FR, 0.30 for Fv.)
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similarity to feedforward is apparent, because the decoupler bases an adjustment
in a process input on another process input.

However, the engineer must also consider the sensitivity to modelling errors.
This decoupled system will become unstable for errors of about 10% in both de
coupler gains; an example with 15% errors is given in Figure 21.13b, which shows
the instability. No amount of detuning (short of Kc2 = 0) in the feedback controllers
will stabilize this response. Although the decoupler theoretically could improve
performance, it is doubtful that sufficient model accuracy is generally available to
use simplified (two-way) decoupling for processes with large relative gains.

With perfect decoupling, it is theoretically possible to improve control per
formance by reducing unfavorable interaction through decoupling as well as to
degrade control performance by misapplying decoupling to a system that has fa
vorable interaction. Decoupling should be considered only after an analysis of
the relative disturbance gain has established that interaction is unfavorable for
the expected disturbances and that performance with decoupling is not extremely
sensitive to model errors.

• Decoupling improves control performance only when process interaction is
unfavorable, so favorable interaction should not be reduced by decoupling.

• The stability and performance of full decoupling can be very sensitive to model
errors when the relative gain is greater than 1. One-way decoupling has much
lower sensitivity to model errors.

An important observation is that greater control system complexity does not
always lead to better performance!

21.6 H MULTILOOP CONTROL PERFORMANCE THROUGH
ENHANCEMENTS: SINGLE-LOOP ENHANCEMENTS

Many enhancements were presented in Part IV to improve the performance of
single-loop control systems. These methods are also widely applied to the control
of multiloop systems, as will be covered in more depth in Part VI, but a brief
example is presented here to complete the methods for achieving good multiloop
performance. The distillation tower in Figure 21.14 has multiloop control of the



FIGURE 21.14

Multiloop distillation control with single-loop
enhancements.

two product compositions. In addition, the control performance is enhanced by
inferential tray temperature control, which could provide a surrogate variable for
control when the top analyzer provides an infrequent feedback measurement. Also,
the reboiler utility and reflux flows have cascade control to reduce disturbances that
result from changes in supply pressures. Other enhancements, such as feedforward,
could be included as needed.

21.7 a ADDITIONAL TOPICS IN MULTILOOP PERFORMANCE
The material in Chapters 20 and 21 presents only an introduction to the advances
made in meeting the daunting challenges of multiloop control. The following
subsections introduce a few selected additional topics.
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Regulatory Control
Examples 21.2 and 21.3 on distillation control demonstrated that the regulatory
control loops influence the composition control performance. An excellent control
design objective is to select regulatory designs giving manipulated variables that
simultaneously reduce transmission interaction (i.e., make the relative gain close
to 1) and improve the disturbance rejection capability of the system (i.e., make
the magnitude of the relative disturbance gain small). An example of such an
approach is the simple distillation design developed by Rhyscamp (1980), which
has proved remarkably successful on two-product distillation towers (Stanley et
al., 1985; Waller et al., 1988). When simple regulatory loops do not provide these
advantages, calculated variables can sometimes be derived that potentially improve
multiloop performance (Haggblom and Waller et al., 1990; Johnston and Barton,
1987); however, the sensitivity of these approaches to model errors has not been
fully evaluated.
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Integrity: Integral Stabilizability and the Niederlinski Index
As already discussed in Section 21.3, the integrity of a multiloop control system
is an important property that is influenced by decisions on loop pairing. Here, a
further test for acceptable closed-loop behavior is presented; like the relative gain,
this test can be performed with minimal information about the system, i.e., steady-
state process gains. For this test, we consider multiloop controllers with integral
modes, a very common situation in practice.

For integrity, we want the control system to have the following property, which we
term integral stabilizability: stable control can be achieved when the signs of the
controller gains are the same for (1) the single loop situation (with all other loops in
manual) and (2) the multiloop situation (with all other loops in automatic).

We begin the test by arranging the steady-state process gain matrix so that the loop
pairings involve the 1-1,2-2,..., n-n diagonal elements in K; note that this step
only changes the variable order in the model. Then, the following calculation is
performed to evaluate the integral stabilizability of the plant with the proposed
loop pairing:

/ \

If NI = detK < 0 the system is not integral-stabilizable

Only control designs with the Niederlinski index NI > 0 should be considered
further; those with NI < 0 should be excluded.

This test is sufficient but not necessary for lack of integral stability, which is un
acceptable behavior. (The condition is necessary and sufficient for 2 x 2 systems.)
The proof of this condition and limitations on the plant dynamics for its appli
cability are presented in Grosdidier et al. (1985). Further results on integrity can
be found in Grosdidier et al. (1985), Chiu and Arkun (1990), Morari and Zafiriou
(1989), and Campo and Morari (1994).

Loop Pairing
Some alternative guidelines for loop pairings have been published by Yu and
Luyben (1986), Economou and Morari (1986), and Tzouanas et al. (1990). The
selection of the final design, after many alternatives have been eliminated using
methods in this chapter and references, relies on experience with similar units or
dynamic simulation.
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The models used in control design never exactly match the true process behavior,
and this factor would normally influence the performance of the system. While this
issue could be addressed with simple assumptions and reasonable computation for
single-loop systems, multiloop systems involve many more model parameters, all
of which can be in error. Errors are introduced through empirical identification and
as a result of changes in plant operation, such as flow rates and reactor conversions.
Thus, the parameter errors in linearized models are not independent; that is, they
have structure that must be considered in the analysis of robustness. The importance
of robustness was discussed clearly by Doyle and Stein (1981) and is covered in
Skogestad and Morari (1987b) and extensively by Morari and Zafiriou (1989).

Dynamics
The results of Example 21.4 demonstrated the importance of considering inter
acting dynamics. The frequency-dependent relative gain was introduced in the
previous chapter to evaluate interaction near the closed-loop critical frequency,
and it has been shown that reliance only on steady-state analysis measures can
result in good designs being improperly eliminated (e.g., Skogestad et al., 1990).
Any predictions of control performance using the methods introduced in this chap
ter should be validated with a simulation of the closed-loop response. Since the
design procedures usually result in a few candidates and simulation software is
readily available, this final step should take little engineering effort.

21.8 □ CONCLUSIONS
The main result of Chapters 20 and 21 is the evaluation of the key effects of
interaction on multiloop control. All of the factors that affect single-loop control
affect multiloop control in similar ways. Table 21.7 summarizes the effects of
interaction on performance.

In this chapter, methods have been presented for achieving good control per
formance in multiloop systems through variable pairing, tuning, and simple en
hancements. The methods have demonstrated that no single control performance
predictor is available; for example, control strategies with relative gain values near
1.0 may not perform well for the disturbances of greatest importance. Even using
the relative disturbance gain alone can lead to improper designs. For example,
the pairing and tuning of a multiloop strategy can be selected to give better per
formance for a specific controlled variable (or variables) of particular importance
over other variables of much less importance. Thus, the multiloop strategy must
be selected with careful attention to the control objectives and process dynamic
responses.

The flowchart in Figure 21.15 gives a procedure by which the analysis meth
ods presented in this chapter can be applied to a 2 x 2 system analysis. Naturally,
the control objectives must first be defined; then the necessary process informa
tion must be developed. The minimum information includes all steady-state gains
as shown in Table 21.4 and some semiquantitative information on the relative

Conclusions
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dynamics between the manipulated and controlled variables is needed to select
pairings based on dynamics and calculate the tuning factor. Finally, dynamic mod
els, at least linear transfer functions and perhaps nonlinear models, are required if
simulation verification is performed.

In the first step in the flowchart, the process is screened for the feasibility
of multiloop control through evaluation of the controllability and operating win
dow; if multivariable control is not possible, a different selection of variables or
a process equipment modification is required. The first decision in the flowchart

TABLE 21.7
Effects of interaction on multiloop performance

Issue Measure Comments

F e a s i b i l i t y o f L d e t K ^ O
feedback control

Performance and
integrity

Stability and
tuning

Performance

Enhancements

2. Specified set points can be
achieved for expected
disturbances
1. For n x n, not integral-stabilizable
if

/
detK < 0

v n K„
For 2x2, not integral-controllable if
ku < 0
2. ku > 0

For 2 x 2, An

Relative disturbance gain (RDG)

1. Independent relationships exist
between manipulated and controlled
variables
2. Manipulated variables have sufficient
range; i.e., the process has sufficient
capacity
1. Niederlinski criterion (or RGA for 2x2)
used to evaluate whether controllers with
integral modes can stabilize both single
and multiloop systems without changing
sign of controller gains

2. Usually, pairing selected that functions
in single-loop and multiloop. ik{j = 0 or
ktJ < 0 sometimes acceptable)
Interaction influences the characteristic
equation, so it influences stability.
Controller tuning must be modified
for single-loop, usually detuned.
Pairings are selected to reduce
unfavorable interaction (|RDG||A:rf| small)
and provide fast feedback dynamics for
important loops.
Designs, such as cascade and
feedforward, that reduce the effects of
disturbances are always beneficial.
Decoupling can be used to reduce the
effects of unfavorable interaction
(|RDG| > 1) when the transmission
interaction (RGA) is not too large
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performance (e.g., fast dynamics)
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ensure stability
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Niederlinski criterion > 0
I Kd || RDG | small
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Select decoupling approach,
if any, based on

* performance
* sensitivity to errors

Tune controllers

FIGURE 21.15

Flowchart for selecting 2x2 pairing and tuning.

is whether both controlled variables are of equal importance. If one is of much
greater importance, the left branch is taken. The important controlled variable is
paired with the manipulated variable that provides the fastest feedback dynamics
(along with satisfactory range) if a significant difference exists. A check is made
to determine whether the controlled variable can be improved (through faster dy
namics) by pairing it with a manipulated variable giving a zero relative gain; this
step would be taken only in unusual situations in which the controlled variable is
extremely important. After pairing has been selected, the control loops are tuned.
Since the left-hand path is for unequal control priorities, the more important loops
should be tuned to retain favorable interaction and reduce unfavorable interaction,
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and the less important loops should be tuned in a manner consistent with improv
ing the overall performance and maintaining stability. Decoupling would probably
not be considered, because detuning alone would reduce the effects of unfavorable
interaction.

If the controlled variables are of equal importance, the pairings should be
selected according to the analysis of the relative disturbance gain. If substantial
unfavorable interaction remains, consideration would be given to decoupling, es
pecially one-way decoupling to prevent the sensitivity problems encountered with
two-way decoupling when the process has a large relative gain. Finally, the con
trollers would be tuned using methods described in Chapter 20. This procedure
can lead to a good multiloop control strategy for the given process.

The concepts and methods presented in this chapter can be applied to a mul
tiloop system of any order. However, the equations for the relative disturbance
gain in this chapter are limited to a 2 x 2 system; they have been extended for
higher-order systems by Skogestad and Morari (1987a), who also introduce an
alternative measure of multiloop performance.

Finally, this approach often, but not always, provides satisfactory performance.
However, depending on factors such as the feedback dynamics and the disturbance
type, magnitude, and frequency, situations exist in which no multiloop feedback
design provides acceptable dynamic performance. Other steps for improving con
trol performance include multivariable control, which is covered in Chapter 23,
and process alterations.
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The methods in Chapters 20 and 21 can be applied in sequence, as shown in Figure
21.15, to eliminate poor alternatives, rank likely performance of feasible designs,
and evaluate the appropriateness and sensitivity of decoupling. This analysis is based
on quantitative analysis of the linearized system.

QUESTIONS
21.1. The following transfer functions were provided by Wood and Berry (1973)

for a methanol-water separation in a distillation column similar to Figure
20.3. The products are expressed as mole % light key, and the reflux FR,
the reboiler steam Fs, and the disturbance feed flow F are in lb/min; time
is in min.
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[Fsis)} +

-8.1* n3.8g
14.9j +1
49^,-3.4*

L 13.2s + 1 J

Fis)

Answer the following questions for the feed flow disturbance.
(a) Determine whether the input-output combination is controllable.
ib) Determine whether either loop pairing can be eliminated based on the

sign of the relative gains (Xy > 0).
ic) Select the loop pairing based on an estimate of the control perfor

mance.
id) Determine the initial tunings for PI controllers for the best loop pairing.

Answer this question for (1) the two product compositions of equal
importance and (2) the top product quality more important.

ie) Discuss whether decoupling is recommended and if so, design the
decoupler.

if) Discuss whether feedforward compensation would improve the control
performance and if so, design the feedforward controller.



ig) The model was determined from empirical identification experiments.
Discuss the likely errors in the model and the effects of these errors on
the design conclusions.

For (c) through if), compare the multiloop control performance for each
controlled variable with its single-loop performance.

21.2. (a) Derive the expressions for the relative disturbance gain (RDGi) and the
integral error (/ E\ dt) for the following inputs (1) ASPi, (2) ASP2,
(3) a disturbance that has the same transfer function as MVi, and
(4) a disturbance that has the same transfer function as MV2.

ib) Relate the value of the relative disturbance gain, RDGi, to the ratio
of changes in the manipulated variable for single-loop and multiloop
control, (AMV|)ml/(AMVi)sl. to the same disturbance.

ic) Why is the magnitude, not the value, of the RDG used in evaluating
performance?

id) Is the RDG scale-dependent?
21.3. For a 2 x 2 control system with PID controllers and decoupling, write the

equations for digital implementation of all control equations, or provide a
sample computer program.

21.4. A linear transfer function model of a chemical reactor was determined by
Foss et al. (1980) and simplified by Marino-Galarraga et al. (1987a). The
reaction of oxygen and hydrogen over a catalyst occurs in two beds, with
cold hydrogen quench added between the beds. The reactor is shown in
Figure Q21.4, and the model is given below. The units are composition in
mole%, temperatures in °C/167.4, flow in L/min/13.5, and time in sec/87.5.
Assume that both controlled variables are of equal importance. Answer the
following questions for two cases: (1) the input perturbation is a set point
change to the composition controller and (2) the input perturbation is a
change to the cooling medium temperature, so that the disturbance transfer
function is the second column of the following matrix (the same effect as
a change in the manipulated quench temperature).

Lew J
r -2.265<?-1326v 0.746<T2-538* '

0.786s + 1 0.092s + 1 \FQis)]
1.841c-a44& -0.654e-°-786s [TQis)i

L 0.917s+ 1 0.870s + 1 J

ia) Determine whether the input-output combination is controllable.
ib) Determine if either loop pairing can be eliminated based on the sign

of the relative gains.
ic) Select the loop pairing based on an estimate of the control performance.
id) Determine the initial tunings for PI controllers for the best loop pairing.

Answer this question for (1) the temperature and product composition
of equal importance and (2) the temperature more important.

ie) Discuss whether decoupling is recommended and if so, design the
decoupler.

if) Discuss whether feedforward compensation would improve the control
performance and if so, design the feedforward controller.
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For (c) through if), compare the multiloop control performance for each
controlled variable with the single-loop performance.

21.5. TAvo physical systems with exactly the same equipment structure, pressures,
and flow rates in Figure Q21.5 are considered in this question. The only
difference is that in system (a) phase I is a liquid (this is a decanter), whereas
in system (6) phase I is a vapor (this is a flash drum). You may assume that
the flows are proportional to the square root of the pressure drop and the
valve % open; the valves are all 50% open at the base-case conditions. The
three valves are available for manipulation, and three controlled variables
are shown as sensors. The following additional information is provided
about the variability of the process operation: the feed flow is 1400 to 2600
L/min, the percent overhead material in feed is 1 to 5%, and the external
pressures are essentially constant. Select the best control loop pairing and
discuss the differences, if any, between the results for systems (a) and ib).

250 psi
2093 L/min

2 GMPhase I
180 psi

Liquid
phase

V2

30 psi
60 L/min

id) Phase I is liquid
ib) Phase I is vapor

4&] ▶ 30 psi
v f 2 0 3 3 L / m i n

FIGURE Q21.5

21.6. Answer the following questions.
(a) Is there a feedback control system for system B2 in equation (21.6)

that will prevent the inverse response?
ib) For system Bl in equation (21.5), can the multiloop feedback system

experience an inverse response with two PID controllers?
ic) Values of the relative disturbance gain (RDG) can be related to the

change in the manipulated variables under multiloop control. Deter
mine the value of AMVi for a disturbance and relate this to RDGi •

id) Is it possible to have a relative gain % l .0 and a large RDG?
ie) Is it possible to have no interaction of any type (e.g., Kx2 = K2x =0)

and have a large RDG?
if) Feedforward control can be applied on a multiloop system. Modify the

calculation of the relative disturbance gain (RDGi) and the integral
error (/ E\ dt) for various feedforward control designs (feedforward
to MVi only, to MV2 only, and to both) using the same disturbance.

ig) The relative disturbance gain provides the ratio of multiloop to single-
loop performance. Discuss how to use this information when compar
ing the performance of two designs with different single-loop perfor
mances.



21.7. The outlet temperature of the process fluid and the oxygen in the flue gas
can be controlled in the fired heater in Figure Q20.10 by adjusting the fuel
pressure (flow) and the stack damper % open. A dynamic model for the
fired heater in Figure Q20.10 was reported by Zhuang et al. (1987) and is
repeated here.

0 . 6 - 0 . 0 4
Tis)~\T(S)] =I Ms)}

2400s2 + 85s + 1
-1.1

3000s2 + 90s + 1
0.30

70s + l 70s + l

Pspis)
Viis)

The inputs and outputs are in percent of the range of each instrument, and
the time is in sec.
(a) Determine whether the input-output combination is controllable.
ib) Determine whether either loop pairing can be eliminated based on the

sign of the relative gains.
ic) Determine whether decoupling will improve the control performance.
id) Determine the PI controller tuning for the best multiloop control, with

or without decoupling.

21.8. The following transfer functions were provided by Waller et al. (1987) for
a distillation column. System I was similar to Figure 20.3 except that the
controlled product compositions were not measured directly; they were
inferred from tray temperatures (°C) near the top, T4, and near the bottom,
T14, trays. System II had the distillate/(distillate + reflux) as a manipulated
variable rather than the reflux; this is designated as R. The flows are in
kg/h; time is in min. Answer the following questions for both systems (the
same process with different regulatory control designs) and compare the
results.
System I: Energy balance regulatory control

T -0.045«-°-5j 0.048g_0-5v 1
Tds)
Txds)]

8.1s+ 1
-0.23g-'-5'

L 8.1s+ 1

lls + 1
0.55g-°-5'

10s + 1 -I

\FRis)l[ Fsis) J+
0.004g-*
8.5s + 1
-0.656T*

L 9.2s + 1 J

XFis)

System II: Modified regulatory control; R = FD/iFD + FR)

[ Tds) 1 =
LTxds)}

6.1e-°5s 0.01e-°<5s 1
lls + 1 13s+ 1
34g-13* 0.35g_0-5s

L 12s + 1 10s + 1 -I

Ris)
Fsis) +

-0.026g-2.5s -\

23s + 1
-0.81g~A

L 13s+1

XFis)

(a) Determine whether the input-output combination is controllable.
ib) Determine whether either loop pairing can be eliminated based on the

signs of the relative gains.
ic) Select the loop pairing based on an estimate of the control perfor

mance.
id) Determine the initial tunings for PI controllers for the best loop pairing.

Answer this question for (1) the two product compositions of equal
importance and (2) the top product quality more important.
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(g) Discuss whether decoupling is recommended and if so, design the
decoupler.

if) Discuss whether feedforward compensation would improve the control
performance and if so, design the feedforward controller.

For (c) through if), compare the multiloop control performance for each
controlled variable with the single-loop performance.

21.9. (a) The limit for the integral error of a decoupled system in equation
(21.20) as the gain errors approach zero is k x x Kj x Ti i /Kcx Kx x. Explain
why this differs from equation (21.9).

ib) Explain why the gain decoupler errors in Example 21.10 lead to an
unstable system. (Hint: Consider the relative gain or Niederlinski cri
terion for the system with decouplers.)

(c) Derive the expression in equation (21.20) for the integral error for a
2x2 multiloop system with PI controllers and decouplers, with gain
errors in the decouplers.

21.10. The process with two series chemical reactors in Example 3.3 is consid
ered in this question. The process flexibility is increased by allowing the
temperatures of the two reactors to be manipulated independently. The two
controlled variables are the concentrations of reactant A in the two reactors.
The rate constant can be expressed as 5.87 x io5g-5000/r (with temperature
in K), and the disturbance is feed composition, Cao-
(a) Determine whether the input-output combination is controllable.
ib) Determine whether either loop pairing can be eliminated based on the

signs of the relative gains.
(c) Determine whether decoupling could improve the dynamic perfor

mance, especially if the most important controlled variable is the con
centration in the second reactor.

21.11. Doukas and Luyben (1978) reported the transfer function model for the
distillation column with a side stream product, shown in Figure Q21.11.
The feed contains benzene (B), toluene (T), and xylene (X). The controlled
and manipulated variables are given in the figure, with the benzene in the
side stream of much less importance than the other controlled variables.
The linearized transfer function model is

r-1.986g-°-7s 5.24g"60s 5.984g"2-24s n

XDT(s)
XSds)
XSxis)

LXBTis)J

66.7s + 1
0.002g-0fe
(7.14s+ 1)2
-0.176g-°-5'
(6.9s +1)2
0.374g"7-75s

400s + 1
-0.33g-°75
(2.4s + l)2
448g-0.5.Y
11.1s+ 1

-11.3g-38j

14.3s + 1
2.38g-°-42*
(1.43s+ 1)2
-11.7g-!-*
12.2s + 1

-9.81g~165

RR(s)
LS(s)

LQB(s)

L 22.2s+ 1 (21.7s+ 1)2 11.4s+ 1
For this system, determine the best loop pairing by following the method
in Figure 21.15.

21.12. Design an improved control system to improve the dynamic performance
of the composition in the fuel system in Figure 21.7 when



r \

RR (ratio)
LS (Ibmol/hr)

XDT (mole frac)

XSB
XSX

QB (BTU/hr)

FIGURE Q21.11
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(a) A measurement of the total fuel flow to the consumers is available.
ib) A measurement of the gas fuel (L) is available.

21.13. Calculate the controller tuning for the blending system in Table 21.1 with
Ai = 0.95. Discuss which loop pairing would be preferred.

21.14. (a) Derive the closed-loop transfer function for a 2 x 2 system with de
coupling.

ib) From the result in (a), determine whether one-way decoupling influ
ences the stability of the closed-loop system.

21.15. The series of well-stirred chemical reactors with equal volumes shown in
Figure Q21.15 is to be controlled. The controlled variables are the temper
ature and reactant concentration in the third reactor, and the manipulated
variables are the inlet concentration set point and the cooling valve v2. The
chemical reaction is first-order, the rate constant has an Arrhenius rela
tionship with temperature, and the heat of reaction is negligible. The heat
exchanger dynamics are negligible. For this example, the concentration
is much more important than the temperature, but both should have zero
steady-state offset for a steplike disturbance. Design the loop pairings and
tuning and discuss the rationale for the design.

21.16. Answer the following questions for two physical processes: (1) the chem
ical reactor described in Section C.2, and (2) the same chemical reactor
with no heat of reaction, AHnn = 0. Both processes have two feedback PI
controllers: T -> Fc and Ca -▶ Cao (with the feed flow unchanged).
(a) Does process interaction influence the stability of the closed-loop sys

tem? Provide quantitative analysis to support your conclusion.
ib) Does process interaction influence the dynamic performance (behav

ior) of the closed-loop system? Explain your answer briefly.
21.17. Design feedforward controllers for the distillation column under energy

balance control, described by equation (21.1), for a measured disturbance in
feed composition. Design the feedforward controller for the two following
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F, » FA

FIGURE Q21.15

situations, discuss the differences in the results, and discuss the implications
for application of each.
(a) The distillate composition Xd is to be maintained constant, and the

bottoms composition XB is not controlled and may vary.
ib) The distillate composition Xd and the bottoms composition XB are

both to be maintained constant via the feedword controller.
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2 2 . 1 □ I N T R O D U C T I O N

To this point we have made the assumption that the multivariable process has
the same number of manipulated and controlled variables. This situation is often
referred to as a square or n x n system. Square systems are typical, because we
consider dynamic behavior and control when designing plants and provide suffi
cient manipulated variables for at least the most important controlled variables.
However, it is often the case that, due to process limitations and overriding con
trol objectives, the number of manipulated and controlled variables are not always
equal, and control approaches are needed to address these situations.

In this chapter, situations will be considered in which the number of manip
ulated variables is greater than or less than the number of controlled variables.
When an excess of manipulated variables exists, the controlled variables can be
returned to their set points at steady state by many combinations of the steady-state
manipulated variables. Thus, the control system should operate the process in the
most economical manner, in addition to providing good dynamic performance.
When an excess of controlled variables exists, not all controlled variables can be
maintained at their set points simultaneously. However, the control system can be
designed to maintain the most important controlled variables at their set points.

The branch of process control that addresses these situations is known as
variable-structure control. In this chapter, methods based on single-loop control
algorithms are presented that provide the ability to change the input-output pairings
of selected loops automatically. These methods are easy to design and simple
to use and are therefore widely applied in practice. However, they are normally
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Fuel A

FuelB

fc

x '

fc
To consumers

FIGURE 22.1

Split range pressure control.

restricted to cases with limited dimensionality, such as one manipulated and several
controlled variables or several manipulated variables and one controlled variable. A
method that can address higher-dimensional structures, as well as square problems,
is presented in the next chapter.

First, split range control systems are presented for processes with excess ma
nipulated variables. Then, signal select control systems are presented for processes
with excess controlled variables. In each section, examples demonstrate typical
reasons for variable structure control, along with implementation guidelines. Fi
nally, a few applications of constraint control are provided; these demonstrate the
combined application of split range and signal select, along with some frequently
used extensions, such as multiple controllers with different set points and valve
position controllers.

22.2 a SPLIT RANGE CONTROL FOR PROCESSES
WITH EXCESS MANIPULATED VARIABLES
The concept of split range control will be introduced through the example process
in Figure 22.1. In this process, the flows of gaseous fuels from two sources are
adjusted to control the pressure of a header, which is a pipe from which fuel
is distributed to many consumers. The flow to the consumers is determined by
many independent processes and cannot be adjusted to control the pressure. The
following simple model of the (well-mixed) gas header system can be used to
evaluate the degrees of freedom:

V—J— = FaCAO - ^out^Ad t (22.1)

V—— = FrCbo — F0[x1Cbdt (22.2)

Fa = KaVa.
Pa -P

Pa (22.3)

Fb = ^A^B, P b - P

p =

Pb

(VCa + VCB)RT
V

(22.4)

(22.5)

Var iab les Ex terna l var iab les Constants
P
FA
Fb
Ca
Cb
Va
Vb

Fout
T
Pa
Pb

Cao
Cbo

R
V

KA
Kb
Pa
Pb



The model could be improved by including nonlinear valve characteristics and a
nonideal gas law, but the model of this resolution is sufficient to demonstrate the
degrees-of-freedom analysis. There are 5 equations and 7 variables; thus, the sys
tem is not specified. For this system to be specified, values for two input variables,
da and vb, should be defined. In this example, the prices of the two fuels are not
equal; fuel A has a lower price than fuel B. Therefore, the control system should
automatically adjust the valves so that as much of fuel A as possible is consumed
before any fuel B is consumed, while providing good control of the pressure.

The split range control system in Figure 22.1 achieves the desired behavior in
a simple manner. The pressure in the header is measured and used as the controlled
variable to a standard PI feedback control algorithm, which has a single calculated
output signal, x. This signal is sent to both control valves, but these valves are cali
brated to open or close differently from the standard control valves. To achieve the
desired behavior, the controller and valves obey the behavior defined in Table 22.1
and shown in Figure 22.2.

With this modification, the control equations become, for controller output
x < 50%,
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va = 2Ja:c ipsp-p) + -L îpsp-p)dtf + /}
(22.6)

db = 0.0

TABLE 22.1

Typical valve adjustments for split range control
Percent opening

Control ler output Pressure to valve Valve A Valve B
0-50%

50-100%
3-9 psig

9-15 psig
0-100%

100%
0%

0-100%

>
>

closed

Controller output, %
FIGURE 22.2

Fixed ranking of valve adjustments for split range.
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For controller output x > 50%,

da = 100

vb = -100 + 2 \kc (iPsp -P) + y j (FSp - P)dA + ll (22.7)

Note that either set of two equations introduces no dependent variables and one
external variable, FSp» along with the controller tuning constants. The combination
of the controller equations, either (22.6) or (22.7), with equations (22.1) through
(22.5) results in a system with 7 equations and 7 variables. Thus, the process
and control system is completely defined when the pressure set point has been
specified.

Split range control is depicted in the process diagram in Figure 22.1. The
fixed relationship between the controller output and the position of the two valves
is shown in Figure 22.2. As the controller output initially begins to increase from
0%, the valve in the less expensive fuel line opens, while the valve in the more
expensive fuel line remains closed. When the controller output reaches 50%, the
fuel A valve is fully open, and the fuel B valve is closed. When the controller
output continues to increase beyond 50%, the fuel A valve remains fully open, and
the fuel B valve opens.

The behavior of the control system is given in Figure 22.3. The initial situation
has a low total fuel demand, so that the pressure controller manipulates only the
fuel A valve. At time 30, an increase in the fuel consumption occurs; the pressure
in the header initially decreases; and the controller output increases. The fuel A
valve is adjusted until the pressure is returned to its set point. At time 110 another
increase in consumption occurs. The pressure controller responds by increasing
its output. In this situation, valve A reaches its limit of 100%; then the fuel B valve
is opened until the pressure is returned to its set point. This example demonstrates
that the split range controller can smoothly adjust the two valves to maintain the
controlled variable at the set point, while minimizing the cost of the fuel consumed.

Several important implementation issues arise in applying split range control.
In principle, the concept of split range can be extended to any number of manip
ulated variables. However, there is a limit on how accurately a control valve can
be adjusted. Therefore, split range is normally limited to two, or three at most,
manipulated variables. Also, a feedback control system could tend to cycle if it
had a "dead zone" in which neither valve is adjusted. To prevent this situation
arising from inaccurate valve calibrations, the valves are normally calibrated to
have an overlap (e.g., 0 to 55% and 45 to 100%).

Typical behavior can be easily implemented by a simple calibration of standard
control valves, which has essentially no cost implication. Recall that the signal to
the single-loop control valve is normally 3 to 15 psig, which relates to 0 to 100%
of the controller output signal,' respectively.

Another important issue is the stability and tuning of the control system. Note
that the feedback process dynamics change when the controller output crosses the
50% value, as shown in Figure 22.4. Therefore, the controller tuning should remain
constant only if the process dynamics for the two closed-loop paths are the same
or similar; that is, if GvAis)GpAis) % GVBis)GpBis). If the closed-loop dynamics
are significantly different, the controller tuning should be changed automatically
by the control system. The controller tuning could be switched based on the value of
the controller output, using one set of tuning constants for controller output values
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FIGURE 22.3

Dynamic response of split range control system.
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Value of MV Characteristic equation

0-50% 1 + Gpds)Gvds)Gcis)Gsis) = 0
50-100% 1 + GpBis)GvBis)Gcis)Gsis) = 0

FIGURE 22.4

Schematic of split range control.

TABLE 22.2

Split range control criteria

Split range control is possible when
1. There is one controlled and more than one manipulated variable.
2. There is a causal relationship between each manipulated variable and the controlled variable.
3. The proper order of adjusting the manipulated variables adheres to a fixed priority ranking.

of 0 to 50% and another set of tuning for 50 to 100%. This retuning approach is
another application of the adaptive tuning method referred to in Section 16.3 as
deterministic modification of controller tuning.

In conclusion, split range control is widely applied to processes with excess
manipulated variables. The general criteria for split range control are summarized
in Table 22.2. The feedback controller can use one tuning if the dynamics for all
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Example of signal select with two
controllers.

feedback paths are similar. If the dynamics are significantly different, the feedback
controller must be (1) detuned to be stable without excessive oscillations for all
situations or (2) retuned automatically via programmed modification.

22.3 □ SIGNAL SELECT CONTROL FOR PROCESSES
WITH EXCESS CONTROLLED VARIABLES

Often, many control objectives exist for a process, and not all of these can be
satisfied simultaneously. As an example, consider the chemical reactor shown
in Figure 22.5, which has control objectives to maximize conversion while (1)
maintaining the reactant composition in the effluent at or above a value (CA)min
and (2) preventing the reactor temperature from exceeding Tmax. Each of these
control objectives can be satisfied individually by adjusting the cooling medium
flow rate. The engineer must determine the relative importance of the control
objectives and design a control system that satisfies the priority ranking.

A signal select control strategy to implement this ranking is shown in Fig
ure 22.5. An individual controller is implemented for each measured controlled
variable, and the output signals from the two controllers are sent to a signal select
element.

The output of a signal select is either the minimum (low signal select) or maximum
(high signal select) value of all inputs to the signal select.

In the example, the proper element is a low signal select, since the largest flow
of cooling medium is preferred and the valve is fail-open. (Selecting the lowest
signal to the cooling medium valve ensures the largest coolant flow.) The output
of the signal select is sent to a control valve, as in this case, or can be sent to the
set point of a secondary controller in a cascade system.

Again, the degrees of freedom of the control system should be analyzed. The
equations that define the process and the control calculations for the example are
as follows:

d C k = F ( C A 0 - C A ) - W £ / / ? 7 C A ( 2 2 . 8 )V dt
dT

VPCp^7 = FPCp<To -T)- UAiT - Tc) + i-AHrxn)Vk0e-E'RTCA (22.9)dt

^i = Kcl [(Casp - CA) + ^- ^(Casp - CA) dt'] +

MV2 = Kc2 [(Tsp - T) + j- / VsP - T) dA + I
UA = /(d)

(22.10)

(22.11)

(22.12)

D = min(MV1,MV2) (22.13)
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The system has 6 equations and 8 variables; thus, the system behavior is defined
when two variables, Casp and Tsp, have been specified (i.e., are shifted to external
variables). To achieve the objectives in this example, the set points must be set to
the limiting values for these variables [i.e., Casp = (CA)min and TSp = Tmax].

Depending on the operating conditions of the chemical reactor (e.g., feed com
position, temperature, concentration of reaction inhibitors), either of the controllers
could be selected to manipulate the cooling medium valve. Dynamic responses for
two feedback systems are given to demonstrate the effect of the signal select.
The initial steady-state conditions of the system result in the outlet composition
being at its set point (minimum value) and the temperature being below its set
point (maximum value). After a short initial period of steady operation, reaction
inhibitor is introduced with the feed, causing the reaction rate to decrease. The
first response involves the reactor system with only composition control (and no
temperature control), so no signal select exists. As shown in Figure 22.6a, the

(not observed in this case)

i ^ i i i

1 1 1 1 1 1 1 I
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T -
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—
Acceptable
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1 1 1 ■ i i i "
Time
ia)

Time
ib)

FIGURE 22.6

Reactor disturbance response: (a) with only composition control; ib) with signal select design.
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composition controller reduces the coolant flow to increase the reaction rate. The
control system returns the composition to its set point, but it increases the reactor
temperature above its maximum value.

The second response involves the same reactor and disturbance but with the
signal select control design shown in Figure 22.5. The dynamic response is given
in Figure 22.6b. Initially, the temperature is below its maximum limit, and the
composition of product in the effluent is at its set point. Since the temperature
controller is sending a higher signal (to increase the temperature) than the compo
sition controller, the output of the composition controller is initially selected. In the
initial response to the disturbance, the coolant is decreased by the concentration
controller until the reactor temperature reaches its maximum value: the tempera
ture controller set point. Then, the temperature controller output signal becomes
smaller than the output from the composition controller. At the new steady-state
conditions, the temperature is at its set point and the composition is above its set
point. This situation may not be the most profitable in the short run, but it is the
best operation, given the input variables, because it prevents damage to equipment
due to extreme temperature. Improvement would require an elimination of the
inhibitor in the feed.

The steady-state relationships between the split range manipulated and con
trolled variables are depicted in Figure 22.7 for the reactor example. Two cases
show how the control objectives can be satisfied by adjusting the manipulated vari
able when the temperature or composition is the limiting factor. When sufficient
range exists for the manipulated variable, the best steady-state operation can be
achieved by opening the valve the least amount as constrained by the most limit
ing controlled-variable value. If the manipulated variable does not have sufficient
range, the proper value of the output of the signal select is at either its minimum
value (more cooling capacity required) or maximum value (zero cooling insuffi
cient, heating required). When the valve saturates, no control system can do better;
the equipment design or cooling medium temperature must be changed to satisfy
the objectives. Thus, the simple signal select control system always achieves the
best (unique) steady-state performance possible for the process design and control
objectives.

v s\ ^

T ^ f
A \Lci \ \

T

S . \ \ . \ .

A ^L] T T \ T

0 Operating point
Controller output, %

ia)
FIGURE 22.7
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Determining the operating point for systems with signal select control.
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Systems for which signal select control is not appropriate.
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However, signal selects are not appropriate for all cases of multiple controlled
variables and one manipulated variable. An example where signal select is not
appropriate is the same chemical reactor as in Figure 22.5 with different control
objectives: Maintain (1) the effluent composition to be no greater than (CA)max and
(2) the temperature below Tmax. This situation is depicted in Figures 22.8a and b. In
Figure 22.8a both limits can be satisfied, but the control objectives are not defined
completely enough to determine a unique value of the manipulated variable. In
Figure 22.8b, no value of the manipulated variable satisfies the objectives. In either
case, no unique operating point exists. Therefore, the control system must perform
a task more complex than determining a limiting value. It must determine the best
or "optimum" operation within acceptable limits (Figure 22.8a) or the operation
that violates the important limits the least (Figure 22.8b). This task cannot be
performed by signal selects but can be solved, using additional criteria entered by
the engineer, with an optimization calculation. Control algorithms that are capable
of performing optimization are introduced in Chapter 26.

The split range elements are designated by the symbols in Figure 22.9. As
presented in Appendix A the designation "Y" is used for the second letter inside
the symbol for a calculation and the less-than or greater-than symbol to indicate
low or high select. An older method that is still used frequently is to write LSS
and HSS for low and high signal select, respectively.

The term signal select indicates that many different types of signals, not just
controller outputs, can be used. As another example, the temperatures along a
packed-bed reactor are monitored, and each temperature is to be maintained below
its specified value. Two signal select control systems are shown in Figure 22.10a
and b. In Figure 22.10a the measurements are input to a high signal select, and
the output of the select is used as the controlled variable for a single controller,
which adjusts the preheat. In Figure 22.10b each measurement goes to a separate
controller, each controller output goes to the low signal select, and the output of
the signal select goes to the control valve.

Both designs could succeed in maintaining the highest measured temperature
at the set point. One difference is that the design in Figure 22.10a has one controller
with one set of tuning constants, whereas the design in Figure 22.10b has separate

7 t y J < f T v J >

i a ) i b )
FIGURE 22.9

Symbols for signal selects.
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ia)
FIGURE 22.10

ib)

Examples of signal select control on:
(a) measurements; ib) controller outputs.

tuning for each controller. The design in Figure 22.10b would be preferred if the
feedback loop dynamics change with the measurement selected, as they might in
this example. If the loop dynamics are essentially the same for all measurements,
the design in Figure 22.10a would be preferred for its simplicity. Also, the design
in Figure 22.10a enforces the same set point value for all measured variables,
whereas the alternative design in Figure 22.10b allows different set points for
different locations in the packed bed.

The designs in Figure 22.10 are similar, and often engineers have difficulty
selecting between them. The proper selection is based on the recognition that
the process dynamics in the feedback loop should be nearly constant (when the
controller tuning constants are unchanged). The design in Figure 22.10b can have
tuning tailored to each measurement and is thus a more general design. Three cases
can occur:

1. When every closed-loop system has the same dynamics,
Txis) Tds)——- = ——- = • • • = Gpis) (22.14)
v i s ) v i s )

either design in Figure 22.10 can be used.
2. When the closed-loop systems have the same dynamics except for the steady-

state gain,
Txis) = KxGpis) Tds) = K2Gpis) Tds) = KiGJs) (22.15)
v i s ) v i s ) v i s )

the design in Figure 22.10a can be used if the controller gain is divided by
a value Kj to compensate for the feedback process gain of the selected tem
perature, which would tune the single temperature controller to give the same
stability margin:

Gods) = KiGpis) - ( * + - )Ki V T,sJ (22.16)



TABLE 22.3

Signal select criteria
A signal select is possible when
1. There is one manipulated variable and several potential controlled variables.
2. There is a causal relationship between the manipulated variable and

each controlled variable.
3. There is a unique, feasible operating point that satisfies all control

objectives in the steady state (see Figure 22.7).
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3. When the process dynamics are significantly different in each feedback loop,
only the design in Figure 22.10b can be used for controllers with constant
tuning values. (See Chapter 16 for evaluation of significant differences and
methods for modifying controller tuning in real time.)

A very important implementation issue in the application of signal selects is the
potential for reset (integral) windup in systems like the ones shown in Figures 22.5
and 22.1 Ob. While all controller outputs are sent to the signal select, only one is used
to determine the valve position; thus, there is only one feedback control system.
The outputs from the other controllers do not influence the manipulated variable,
and because of their controller integral modes, the outputs from the controllers not
selected could wind up (i.e., increase or decrease without limit). Several possible
solutions exist to prevent windup, with perhaps the clearest being the application of
external feedback, which was introduced in Chapter 12. For signal select control,
the value after the signal select is used as the external feedback variable for all
controllers whose outputs go to the signal select. Such a system will not experience
integral windup.

In conclusion, signal selects are widely applied to processes with excess con
trolled variables. The general approach for using a signal select is summarized in
Table 22.3. Controlled variables can be used as inputs to a signal select if the feed
back loop dynamics are similar for all controlled variables. The controller outputs
should be used in the signal select if the feedback loop dynamics are different.

22.4 Cl APPLICATIONS OF VARIABLE-STRUCTURE
METHODS FOR CONSTRAINT CONTROL

The variable-structure control methods introduced in this chapter are based on
a fixed ranking of controlled or manipulated variables. As a result, the operating
conditions achieved through the control system maintain the process near a limiting
or constraining value—for example, the minimum use of the more expensive fuel or
the maximum reactor temperature. Control systems that result in process operation
near a limit are generally termed constraint controllers, and since they often require
variable-structure capability, constraint control is often implemented using split
range and signal select methods. A few additional examples of constraint control
are presented in this section.
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Combined Variable-Structure Methods

This first example demonstrates how split range and signal select can be combined
in control designs to achieve good control performance. Consider the situation in
Figure 22.11, which shows two series processes. The product flow from unit 1
is usually not equal to the feed flow to unit 2; therefore, a large storage tank is
located between the two units. One approach for dealing with the differences in
flows would be to cool the entire production from unit 1, send it to the storage
tank, and heat the feed to unit 2 as it flows at its desired rate from the storage tank.
This approach would provide smooth and reliable flow control, but it would be
very energy-inefficient.

A more efficient alternative approach would be to provide the maximum al
lowable direct flow from unit 1 to unit 2. The maximum direct flow between units
would be determined by either the availability from unit 1 or the demand for unit
2, with the limiting condition changing as both unit operations change. A control
system to maximize the direct flow automatically while always achieving proper
level and flow control would be desirable. Such a system is shown in Figure 22.11,
where both the level and flow controllers have split range outputs. Both controller
outputs are sent to the low signal select, which determines the proper signal to ma
nipulate the direct flow valve, which in this example is the smallest signal, which
gives the smallest direct flow rate. Thus, one controller will adjust the direct flow
valve, and the other controller will continue to increase its output until it adjusts
the flow to the tank (for level control) or flow from the tank (for flow control), as
appropriate. The resulting operations for the two situations are summarized in the
following table.

How each valve is adjusted

Relative flows v 1 0 0 v 1 1 0 v200 Net flow
Unit 1 flow > unit 2 flow By FC By LC Closed To storage
Unit 1 flow < unit 2 flow By LC Closed By FC From storage

With this control system the plant personnel need only input the set points to the
level controller (normally 50 percent of range) and the flow controller (required
flow to unit 2). The system automatically adjusts the valves as described to meet
the level and flow requirements while minimizing flows to and from storage, thus
minimizing energy use.

Multiple Controllers for One Variable
A design involving two separate controllers is sometimes used as an alternative to
split range when the use of one manipulated variable is to be strictly minimized,
even in short transients. For example, consider the level-flow system in Figure
22.12a, in which the level is normally controlled by manipulating the flow to a
downstream unit but can be controlled by adjusting the flow to waste, if required.
Naturally, the flow to waste is to be minimized. A split range controller is employed
in the figure to achieve the control objective.



From unit 1

0-50% v < 0 - 5 0 %
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Storage tank

FIGURE 22.11

Example of combined split range and signal select.

SP = 50%
SP = 30%

ia) ib)
A = downstream unit, B = waste

FIGURE 22.12

Alternative approaches to controlling inventory by id) split range; ib) two
controllers with different set points.

An alternative control system is given in Figure 22.12b, which employs two
feedback controllers with different set points. Under normal conditions, the con
troller with the set point of 30 percent level (LC-1) adjusts the flow to the down
stream unit, and the valve to waste is completely closed. If the flow in becomes
large, the valve to the downstream unit is opened completely. If the flow in is still
larger than the maximum flow to the downstream unit, the level then increases
above 30 percent. If the large flow in remains for a long enough period of time,
the level reaches the set point of the alternative controller with a higher set point
(LC-2), here shown as 80 percent. When this level is reached, the alternative con
troller begins to increase the flow to waste.
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The two-controller design in Figure 22.12b has three advantages. First, it uses
the inventory in the vessel, so there is no flow to waste until the flow to downstream
unit is at its maximum and the level increases to the upper set point. Thus, short-
term disturbances in the inlet flow that can be accumulated in the vessel will not
result in material being diverted to waste. Second, it has two sensors, valves, and
controllers, so failures of elements in both control loops would have to occur
before the level could overflow. This increase in reliability would be important if
a large safety or economic penalty were incurred for an overflow. Finally, the use
of two controllers allows separate tuning for the two feedback loops, although this
probably would not be necessary in the example in Figure 22.12. The split range
controller has one set point and one set of tuning constants and is preferred, if it
achieves the objectives, because of its simplicity.

Valve Position Control
Sometimes a limit is the result of equipment performance, and the approach to
the limit is not easily inferred from measured process variables such as flow or
temperature. This situation is demonstrated in Figure 22.13, in which the feed
rate to a chemical reactor is to be maximized. The reactor temperature must be
maintained constant, and the heat exchanger duty is the limiting factor in increasing
the feed rate. There is no process variable that indicates how close the process
operation is to the limit. One indication that the limit had been exceeded would
be the reactor temperature remaining below its set point for a long time; however,
this indication would be available only after the process had been upset. Thus, this
measure of the limit is not normally acceptable.

Another potential indication of the limit is the temperature controller output,
which is essentially the value of the heating medium valve position. When this
value nears its maximum value of 100 percent, the limitation in heating duty is
being approached. This analysis leads to the use of a valve position controller

Set point to flow controller

Feedback PI
controller with
operator-entered
set point
FIGURE 22.13

do

fc^i
(to valve)

MV from
temperature
controller

I CV to valve position controller

Example of valve position control.



(VC), which uses the temperature controller output as its controlled variable and
adjusts the feed flow controller set point. This is a feedback system and can use a
standard proportional-integral algorithm; the set point of the valve position control
system is chosen sufficiently far from the limiting value that the valve nearly never
reaches a limit during a transient response to an upset. This approach ensures
that the temperature control system has the range to respond to high-frequency
disturbances and maintain the temperature at its set point. (A typical value might be
90%, but could be lower if the system experiences large temperature disturbances.)

The valve position controller feedback path involves the reactor and temper
ature control loop. Therefore, the valve position controller must be tuned loosely
so as not to upset the temperature controller and to provide smooth, nonoscillatory
approach to the constraint. Also, the feedback loop in the valve position controller
includes the temperature controller; in other words, there is no causal feedback path
without the temperature controller functioning. Thus, the valve position controller
represents a loop pairing on a zero relative gain (see Chapter 20), and a monitor
ing program is recommended to determine whether the temperature controller is
functioning and, if not, to switch the valve position controller into manual status.
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Plantwide Variable-Structure Control
Sales demands and prices sometimes result in the pleasant circumstance that all of
the plant's production can be sold at a profit. In this situation, the control system
should be structured to result in the highest production rate possible, consistent with
product quality and equipment performance limitations. Since most plants have
several possible limiting factors, a variable-structure control system is normally
used to monitor all likely limiting factors and adjust the feed rate so that the most
restrictive factor closely approaches but does not violate its limiting value.

The situation is shown in Figure 22.14 for a hypothetical plant in which three
possible factors could limit the operation: heating medium availability for the

FIGURE 22.14

Example of maximum feed constraint control.
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reactor, maximum flow of vapor product from the flash drum, and maximum re
boiler duty in the distillation tower. The control system monitors all three (two
with valve position controllers), uses each in a feedback controller, and selects
the lowest value of the three controller outputs to adjust the feed flow set point.
(Note that many important controllers are not shown in the simplified figure so
that the feed maximization can be clearly shown.) Since the feedback processes
are relatively slow for these constraint controllers, their set points should not be
exactly the limiting values; the set points provide a safety margin from the limits,
to account for the likely variability about the set point.

22.5 ® CONCLUSIONS
To achieve process objectives, engineers design equipment with appropriate capac
ities, provide measurements and manipulated variables, and design flexible control
systems to respond to normal and upset conditions. Variable-structure control often
enables the system to satisfy the operating objectives when the numbers of manip
ulated variables and controlled variables are not equal. TAvo methods have been
presented in this chapter that are applicable to commonly occurring objectives.
In split range control a single feedback controller output is sent to more than one
final element, and the final elements are calibrated to operate over different ranges
of the controller output signal (e.g., 0 to 50% and 50 to 100%). A signal select,
on the other hand, is used when there are several controlled variables and one
manipulated variable, and the signal select determines the most limiting control
objective.

These methods are appropriate for situations in which the best operation re
sides on a constraint or "frame" of the steady-state operating window, as demon
strated in the following examples. First, consider the fuel pressure split range
control in Figure 22.1. Since the flexibility in the system involves the manip
ulated variables, the operating window in Figure 22.15 has manipulated vari
ables as the coordinates. Any point inside the steady-state window that satisfies
Fa + Fb = J2 ̂ consumer is a feasible plant operating point. Clearly, there are infinite
combinations of fuel flows that can satisfy the total consumer demand. The best
operation is designated by the dashed line, which shows the combination of flows

''Bmax y / / / /
\

/
/
/

^ B /
/
/
/

0
FIGURE 22.15

*"a Amax

Operating window for fuel pressure split range
control.



of the two fuels that satisfies the consumer demand from zero to maximum while
also minimizing fuel cost. The split range control system implements this strategy
and therefore is appropriate for this example.

Then consider the chemical reactor signal select control system in Figure
22.5. Since the flexibility involves the controlled variables, the operating window
in Figure 22.16 has controlled variables as the coordinates. Any point in the window
represents feasible plant operation, and there is an infinite number of these points.
The best operation, which maximizes conversion subject to the limitations, is
designated by the dashed line. The arrows on the dashed line represent the (quasi-
steady-state) path followed as the inhibitor disturbance increases. The signal select
implements this strategy and therefore is appropriate for this example.

Implicit in the use of the automated variable-structure methods in this chapter
is the assumption that the change in structure must be made quickly, when required.
If the required structural changes occur very infrequently and need not be made
immediately, a simple switch could be used, and the position of the switch could
be changed by a human operator. The simpler design using a switch is employed
when the structure change is needed infrequently, such as during unit startups.

Variable-structure methods presented in this chapter employ single-loop con
troller algorithms. In this chapter, only PID controllers have been discussed; how
ever, other algorithms, such as the model predictive controllers in Chapter 19, can
be used.

The empirical model identification methods and controller tuning procedures
for variable-structure systems are the same as presented previously for single-loop
systems. Since the feedback path GolCO depends on the status of the variable
structure, models and tuning for each feedback path must be determined and fine-
tuned individually.

It is important to reiterate that the methods presented in this chapter, while
simple and easy to apply, are limited to systems with low dimensionality. It is
very difficult to implement a variable-structure system with many controlled and
manipulated variables by the methods in this chapter. Fortunately, the multivariable
control algorithm presented in the next chapter has the capability of practically
solving high-dimension variable-structure control systems, as well as complex
square control systems.
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Finally, variable structure is applied widely in the process industries. It enables
a process to operate with a specified (efficient) control pairing for normal operation
and to maintain acceptable operation as large changes in input variables occur or
unusual set points are entered. Thus, the integration of variable-structure control
as a component of the control design is essential for proper operation of many
process plants.
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It is very helpful to describe the desired process operating policy in words first and
then sketch the behavior in figures similar to Figures 22.2,22.15, and 22.16. Follow
this suggestion when designing controls for the questions in this chapter.



Q U E S T I O N S 7 2 3
22.1. The three-tank mixer problem in Example 7.2 is considered here, with the mmmmmmmmamm

slight modification that stream B is under flow control, with a sensor and Questions
valve added to the process. The goal is to maximize the production of
material from the third tank. Limitations could be encountered in the flow
rates of either stream A or B.
id) Design at least one control system that would (1) control the product

quality to 3% A and (2) maximize the production rate,
(b) Estimate the initial tuning for every controller in the design.

22.2. Prepare the detailed equations, with sequence of execution, or a sample
digital control program for
(a) The split range controller in Figure 22.1
(b) The signal select system in Figure 22.5

22.3. Analyze the degrees of freedom based on models of the process and the
control calculations for
(a) The system in Figure 22.11
(b) The system in Figure 22.12, both designs

22.4. Sketch the steady-state operating window and describe the path taken by
the process under control for the following systems in response to selected
disturbances: (a) Figure 22.10 (simplify this to two temperatures), (b) Fig
ure 22.11, (c) Figure 22.12a and b, and id) Figure 22.13.

22.5. For the stirred-tank heater system in Figure 22.13,
(a) Verify the degrees of freedom from models of the process and control.
(b) Specify the control calculations in analog or digital using external reset

to prevent integral windup. Indicate the external variable clearly.
ic) Since the design includes a pairing on a zero relative gain, describe the

monitoring program required. Clearly indicate the variables monitored
and the actions taken when specific situations are encountered.

22.6. There are situations with excess manipulated variables in which neither
variable should normally have a zero value. For example, consider the
process in Figure 22.1, but with a contract that requires the plant to pay
for a specified amount of fuel B (say 30% of valve opening), whether it is
consumed or not. Design a control strategy that controls the pressure and
provides good steady-state economic performance for this process.

22.7. Anti-reset windup is a very important aspect of successful control imple
mentation. For the system in Figure 22.5,
(a) Sketch a block diagram in a continuous (analog) implementation of PI

controllers with external feedback and clearly show the measurement
used for the external variable.

(b) Provide the equations or sample program for digital control calcula
tions, including all control elements, and an alternative method for anti-
reset windup that does not have to use the external feedback principle.
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Control 22.9. MacGregor and Harris (1987) describe a process that is shown schemati

cally in Figure Q22.9. A moist film is dried using two sources of heat: an
expensive electrical IR heater, which has a rapid effect on the moisture in
the material, and a less costly steam heater, which has a slower response
on the moisture in the material. Design a control system to provide tight
control of the moisture and to minimize energy costs.

22.10. Plantwide throughput maximization is certainly a good concept, but the
nim moving » s^ow dynamics between the downstream constraints and the manipulated

—~..«- ~.~ ~ feed flow rates could lead to extreme violations of the constraints as distur-FIGURE Q22.9 bances occur. An approach to prevent these violations is to include extra
controllers that adjust manipulated variables that are "close" to the con
trolled variables (and have fast dynamics to the controlled variable). These
override controllers prevent large, long constraint violations during the
time required for the manipulation of the feed flow to affect the limiting
plant variable. Apply this approach to the process in Figure 22.14 to prevent
violations of the maximum vapor flow from the flash and the maximum
light key in the bottom product of the distillation column.

22.11. For a typical level process, as in Figure 18.1, design two control systems
to ensure a minimum flow through the pump. (Some process equipment
changes might be required.) Discuss the merits and demerits of each and
recommend one for application.

22.12. Discuss the control objectives and control design in Figure 2.2.

22.13. Using the methods described in this chapter, design a control system to
maximize the production rate of vapor from the flash drum in Figure 13.19.
You may add sensors but may not add valves or otherwise change the
process equipment.

22.14. Discuss the steps necessary to identify linear dynamic models empirically,
determine initial tuning, and fine-tune all controllers for the systems in
Figures 22.1,22.5,22.10a and b, and 22.11.

22.15. The control design in Figure 22.11 has a deficiency, because the controllers
experience a "gap" when switching between manipulated valves. Explain
how this gap occurs and propose a design modification that eliminates this
gap while retaining the good aspects of the original design.

22.16. For the following processes, design a variable-structure control system with
a sketch, select feedback algorithms and modes, and estimate all initial
tuning constants.
(a) The concentration of A in the effluent of the second reactor of the series

chemical reactors in Example 1.2 is to be controlled. The preferred
method is to adjust the flow of reactant A, FA. When this variable
saturates, the flow of solvent, Fs, is adjusted.



(b) The bottoms composition in the distillation tower in Example 20.2 is 725
to be controlled. The preferred choice is to manipulate the reboiler a>i«iiMift^
duty, but if this saturates, the reflux can be adjusted. Consider two Questions
cases: (1) the distillate composition is free to vary: (2) the distillate
composition is controlled by adjusting the reflux when possible, but
the bottoms purity is of overriding importance.

ic) The temperature of the stirred-tank heat exchanger in Example 8.5 is
to be controlled. The preferred choice is adjusting the coolant flow
rate, but if this saturates, the feed flow rate can be adjusted.

id) The reactor outlet temperature in question 21.4 is to be controlled. The
preferred manipulated variable is the set point of the quench tempera
ture controller. If the quench temperature controller set point reaches
its limit, the quench flow should be manipulated. Design a control
system to satisfy the objectives, sketch the design on Figure Q21.4,
and determine the outlet temperature controller tuning for all possible
situations.
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2 3 . 1 □ I N T R O D U C T I O N

The first three chapters in this section on multivariable control retained the propor
tional-integral-derivative (PID) control algorithm. This approach is generally pre
ferred for its simplicity when it provides good performance, which is often the
case. However, some especially challenging process control objectives are diffi
cult or impossible to achieve using multiloop PID control. In this chapter, one
centralized method for controlling multiple input-output processes is introduced.
The term centralized denotes a control algorithm that uses all (process input and
output) measurements simultaneously to determine the values of all manipulated
variables. In contrast, multiloop control, also called decentralized control, involves
many algorithms, with each using only one process output variable to determine the
value of one manipulated variable. Further discussions on the need for centralized
control are presented in Cutler and Perry (1983) and Prett and Garcia (1988).

In addition to all measurements, centralized controllers use a dynamic model
of the process in the control calculation. The most common approach to using a
model explicitly in the control calculation is the model predictive control structure
described in Chapter 19. Since the discussions in this chapter are based on an
understanding of the model predictive structure, the reader is advised to review
Chapter 19 thoroughly before proceeding with this chapter.

This chapter begins with a straightforward extension of the model predictive
controller to a multivariable system. This extension demonstrates the limitations
in applying the analytical model inverse, which was easily determined for single-
variable systems, to the multivariable case. Then, one approach to determining a
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controller design using numerical methods to obtain good dynamic performance
is presented, first for single-variable and subsequently for multivariable systems.
In this chapter, the digital algorithm is presented, because of the clarity and ease
of implementation of this form. The presentation of the new control algorithm is
concluded with discussions on implementation guidelines and extensions.

23.2 □ MULTIVARIABLE MODEL PREDICTIVE CONTROL
Model predictive control was introduced in Chapter 19, where some important
properties were demonstrated for single-loop systems. The same principles can be
applied to a multivariable system. For example, the following properties can be
shown to hold for the general (open-loop stable) system in Figure 23.1.

1. The controlled variables will return to their set points for steplike inputs if

Gcp(0) = [Gm(0)]
- l (23.1)

Thus, the steady-state gain matrix of the controller must be the same as the
inverse of the steady-state process model. Again, this can be achieved easily,
because the engineer selects both of these elements in the control system. Note
that the model does not have to match the plant exactly, although large model
mismatch can degrade performance and lead to instability.

2. Perfect control (i.e., zero deviation from set point) is achieved when

Gcp(*) = [GM(j)]- (23.2)

D(5)

SPis) ^9 T.(f)
Gmis)•cp

MV(j)

Gds)

GDis)

Gds)
In general, the variables are vectors, e.g.,

CV,(5)
CV2(5)

CV(*) =

CVnc(j)_
The transfer functions are matrices of appropriate dimensions, e.g.,

Gis) _\Guis) G12(j)1" |G21(s) G22(*)J

with Gyis) relating input; to output i.

FIGURE 23.1

Model predictive control structure.
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Even if possible, this might involve excessive variability in the manipulated
variable and thus not be desirable in practice.

3. If the model (and process) contains noninvertible elements, an approximation
to equation (23.2) can be used to determine the controller, as follows:

'cPis) = [G~is)]
- i

Gmis) = GUs)G-is)

(23.3)

(23.4)
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with Gtis)

G~is)

The "noninvertible" factor has an inverse that is not causal
or is unstable. The inverse of this term includes
predictions, e9s, and unstable poles, 1/(1 + rs), x < 0,
appearing in [Gm(^)]_1. The steady-state gain of this
factor must be the identity matrix.
The "invertible" factor has an inverse that is causal and
stable, leading to a realizable, stable controller. The
steady-state gain of this factor is the gain matrix of the
process model, K,„.

For single-variable systems, the design of the controller Gcpis) was relatively
straightforward. However, the application of this analytical approach to multivari
able systems encounters a significant barrier, as demonstrated in the following
example.
EXAMPLE 23.1.
A multivariable predictive controller is to be applied to the binary distillation tower
considered throughout the book. The product compositions are to be controlled
by adjusting the reflux and reboiler; thus, the energy balance regulatory control
strategy provides the base control on which the composition control will be imple
mented. This approach, which shows the multivariable controller as an upper-level
component in a cascade design, is given in Figure 23.2.

The model for the process is given in equation (21.1) and is repeated here:

[£]-
r 0.0747g~35 -0.0667e-2v 1

\2s + l
0.1173g-335

15s+ 1
-o.nssg-25 m+

O.lOe- 5 s - i

14.4s + 1
1.3g-35

L 125 + 1 J

(23.5)

L 11.75^ + 1 10.25 + 1 J
This two-variable system would be represented in the general symbols of Figure
23.1 as

+ Gd\
Gdii

is)]
is) ]

Dis) (23.6)CV,(s) I \Gxxis) Gxds) MVxis)
|_CV2(s)J [G2lis) G22(5)J|_MV2(s)

By applying equation (23.2) the predictive controller is evaluated by determining
the inverse of the feedback model.

[Gm(s)rl =

r -0A253e~2s 0.0667*-*
1 10.25 + 1

-0.1173g-3-3*
L 11.755 + 1

155+1
0.00782e-5-3* 0.00936e"5v 0.0747g"3s

(155 + 1)(11.755 + 1) (125 + 1)(10.25 + 1) 125+1
(23.7)

The model in equation (23.5) cannot be factored uniquely into an invertible part.
Also, the control performance of a control system that would satisfy equations
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Relative volatility 2.4
Number of trays 17
Feed tray 9
Analyzer dead times 2 min
Feed light key xF = 0.50
Distillate light key Xd = 0.98 mole fraction
Bottoms light key xB = 0.02 mole fraction
Feed flow FF = 10.0 kgmole/min
Reflux flow Fr = 8.53 kgmole/min
Distillate flow FD = 5.0 kgmole/min
Reboiler flow Fv = 13.53 kgmole/min
Tray holdup H = l.Okgmole
Holdup in drums HD = 10.0 kg mole

FIGURE 23.2

Centralized multivariable distillation control.

(23.1) and (23.3) is not easily related to the analytical method of obtaining the
invertible factor G~(5).

Thus, the analytical algorithm design method in equations (23.1) through
(23.4) will not be used for multivariable systems in this chapter, although
the model predictive structure will be retained.

The distillation example will be reconsidered after an alternative controller algo
rithm has been developed.

23 .3 ® AN ALTERNATIVE DYNAMIC MODELLING APPROACH

The previous section demonstrated that a new approach to designing the model
predictive algorithm is needed. Fortunately, several approaches have been devel
oped, and one of these will be presented in the next section. However, the new
method requires dynamic models in a format different from the standard transfer
functions used to this point. The requisite modelling is described in this section us
ing the symbols X for input and Y for output. This convention is used because these
models can represent the input-output behavior for various variable combinations;
for example, X could represent a disturbance or a manipulated variable.

Throughout the book, transfer function models have been determined from
fundamental modelling and empirical identification. These transfer functions are
very useful in representing the dynamic input-output behavior of linear (or lin
earized) elements in a control system. They are parsimonious, in that the entire



dynamic response can be represented by a small number of parameters. Also, their
analytical structure enables the engineer to perform many transformations and
calculations easily. However, alternative model structures are possible. For exam
ple, a dynamic model can be represented by the two forms in Table 23.1. This is
the model of a single-tank mixing process with transportation delay used for PID
tuning studies in Section 9.3, and it will be used in examples later in this chapter.

The example transfer function considered here is first-order with dead time,
but more complex equations are common and can be modelled using this approach.
An alternative model form is the step response, which is a set of discrete values
representing the output response to a unit step input; these values are often referred
to as the step weights. The transfer function gives a continuous model of the process,
whereas the step response gives no information at times between the sampled points
and has the same values as the continuous model at the sample points. The step
response can be developed from the transfer function by solving for the output
response of the continuous system to a unit (+1) step input at sample number 0.
For the example first-order-with-dead-time system, the discrete form is

K e~6sYis) = f^—*(,) =ixs + 1) sirs + 1) [note Xis) = AX/s = \/s] (23.8)

Y'it) = (1.0)Kpi\ - e-{ '-6)) i t > 6) (23.9)
This continuous model can be evaluated at sample points by setting time equal to
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TABLE 23.1

Transfer function with its step
response model

Transfer function

Yis)/Xis) = Kpe~6s/ixs + \)
= 1.0g-57(55 + l)

Step response

Sample Time
k t X ' i t ) Y ' i t )=ak

0 0 1 0.
1 2 . 5 1 0.
2 5 1 0.
3 7 . 5 1 0.394
4 1 0 1 0.632
5 1 2 . 5 1 0.777
6 1 5 1 0.865
7 1 7 . 5 1 0.918
8 20 0.950
9 22.5 0.970

10 25 0.982
11 2 7 . 5 1 0.989

^ u
do ^

FB»FA
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multiples of the sample period, At. In the following equations the subscripts m
emphasize that the transfer function parameters refer to the model, which is only
an approximate representation of the true plant.

Time Sample no. Input X' Output Y'
0 0 1 0
At 1 1 0
2At 2 1 0

{continues until the dead time}
®m O J A t 1 0

em + At i$m + At)/At 1 Kdl -e-*"*" )
em + 2 At iOm+2At ) /A t 1

: 1
Km(l-g-2A,/r»')

The reader can verify that this method was used to develop the step weights from
the transfer function in Table 23.1 by calculating the step response from an initial
steady state of Y' = 0. The step response model can be used to calculate the value
of the output Y' at any sample period k in response to a step of any size AX using
the equation

Y^ = akAXQ (23.10)
Recall that the transfer function used in developing the step response can be derived
from fundamental models using methods from Chapters 3 through 5, or it can be
developed from empirical data using methods from Chapter 6.
EXAMPLE 23.2.
Determine two models for the data in Figure 23.3: a transfer function model and a
discrete step model.

The continuous transfer functions can be determined using the methods de
scribed in Chapter 6. This data was used in Examples 6.2 and 6.6, where it was
concluded that a first-order-with-dead-time structure was adequate. For example,
the parameters determined in Example 6.6 using the statistical parameter method
are Km = 2.56°C/% open, 0m - 3.66 min, and xm = 5.2 min.

The discrete step response can also be determined from the data. One ap
proach would be to use the measured values of the output variables as the step
response; this approach would use the data indicated by the circles in Figure 23.3.
While this represents the process behavior exactly for this experiment, the data
includes noise, which would not be repeatable and should not be used for design
ing or tuning controllers. A better method for determining the step response would
characterize the repeatable process response and ignore the higher-frequency
noise. There are many methods for evaluating a step model from noisy data; one
good method uses conventional modelling methods (for example, those in Chap
ter 6) to fit a transfer function model and subsequently evaluate the step response
using the transfer function. This approach is demonstrated in Figure 23.3, where
the dashed line is the continuous output from the transfer function model and the
crosses are the step response from the estimated model, not the raw data. This
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FIGURE 23.3

Process reaction data with continuous and discrete models.

modelling approach captures the dominant dynamic behavior while eliminating
the effects of most of the noise. Further discussions of determining representative
step response models from empirical data are given in MacGregor et al. (1991),
Cutler and Yocum (1991), and Ricker (1988).
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The step response model can be used to predict the dynamics of a system for
any input function of time. This is achieved by sampling the input function and
recognizing that it can be approximated by step changes at each sample point.
The effect on the output of each input step is represented by the step response in
equation (23.10). The overall effect of all of the input steps is the sum of each
individual effect, assuming that the system is linear. This modelling method intro
duces potential errors, because the input may not be a perfect staircase function;
however, the errors will be small if the sample period is short compared with the
rate of change of the input and output variables. Assuming that the plant begins
at a steady-state condition (Fo), the step weights can be used to predict the output
from the input values at the sample points as follows:

Yx=Y0 + axAX0
Y2 = Y0 + a2AX0 + axAXx (23.11)
Y3 = Yo + a3AX0+a2AXx +fl]AX2

and so forth. This model can be expressed as an equation for any number of sample
periods k for a single-input-single-output system as follows:

Jt+i
Y k + ] = Y 0 + J 2 a J * X k - j + x ( 2 3 . 1 2 )

j = \
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Applying the model in equation (23.12) for a long time (/: -> large) would result
in a sum over a very large number of samples, since every change in the past
influences the current value of the output variable. We anticipate that such a large
summation would cause difficulties for the controller calculation. However, the
input changes have a constant effect as the time from the input step becomes large;
that is, after the transient settles to the constant effect for a past AX. Thus, the
model in equation (23.12) can be rewritten to give the following equation.

Y k + i = Yo (23.13)
* + l L L

+ ^2 aj&Xk-j+x+Y^aJAXk-j+i
j = L L + l j = \

I n i t i a l R e a c h e d T r a n s i e n t
cond i t i on s teady s ta te response

The last term on the right-hand side includes those past inputs whose effects have
not yet reached their steady-state values. Thus, the number of samples multiplied
by the period should be the settling time of the process; for example, LLAr is
approximately equal to the dead time plus four time constants for a first-order-
with-dead-time process. The second term on the right-hand side involves the inputs
whose effects have (essentially) reached their steady state, so that a^ % Kp for
k > LL. It is not necessary to sum all of the values in the second term at each
time step, because the summation only changes by one value each sample period:
by 1 past AX. Thus, this can be calculated recursively using a new intermediate
variable Y* to include the initial value of Y and the effects of all AX values whose
effects have reached steady state. (Recall that a recursive calculation uses only the
past result and the new input to calculate the new result.)

y; = /-;_,+aLL+1Ax*_LL
LL

r*+1 = r; + £>yAx*_;+1 (23.14)

The approximation of the step response with its steady-state (or final) value
introduces another potential error, which can be made small by proper choice of
the number of steps (LL) to include in the summation in equation (23.13). Now
the large sum of the steady-state effects has been eliminated by the recursive form
of the model.

The step response model in equation (23.14) does not require all past inputs to
be stored and the large summation to be calculated each execution: the informa
tion about initial condition and inputs whose effects have reached steady state are
accumulated in the Y* term.

The modelling approach described in this section can be applied to most
single input-single output responses; it cannot be applied to unstable processes,
for which Y* (all past effects that have reached steady state) does not exist. Because
only discrete samples of the response are used, the step response model is not
as complete a representation as a continuous transfer function model. However,
the discrete step response model facilitates the design of centralized feedback
controllers, as explained in the next section.



23.4 a THE SINGLE-VARIABLE DYNAMIC MATRIX CONTROL
(DMC) ALGORITHM
Several approaches can be used to develop a practical multivariable centralized
controller. The method presented here is the dynamic matrix controller, which
was developed by Cutler (Cutler and Ramaker, 1979), was extended to include
additional features (Prett and Gillette, 1979; Garcia and Morshedi, 1986), and
has been applied successfully to complex processes (e.g., Kelly et al., 1988; Van
Hoof et al., 1989). The dynamic matrix control algorithm can be implemented
within the model predictive control structure, and the algorithm can be designed
without determining the analytical inverse of the process model, so the extension to
multivariable systems is straightforward. The DMC algorithm will be introduced
here for the single-variable case and then will be extended to multivariable. This
explanation will proceed in three steps, each introducing a key aspect of the overall
algorithm.
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Basic DMC Algorithm (without Feedback)
The algorithm will be introduced by considering the situation encountered every
time a model predictive feedback controller is executed. The dynamic response of
a feedback control system is shown in Figure 23.4. The manipulated variable has
been adjusted in the past, and the controlled variable has been influenced by these
adjustments, as well as by disturbances. The prediction of the controlled variable,
calculated using equations (23.14) and past values of the manipulated variable, is
also shown in the figure. The task of the control algorithm is to determine future
adjustments to the manipulated variable that will result in the predicted controlled
variable returning quickly to the set point.

To determine the best controller moves, a measure of control performance must
be selected. Here, the integral of the error squared, or the sum of the error squared
at sample points, will be taken; we recognize that this measure is not complete, and
we will modify it later to consider robustness and the behavior of the manipulated
variable. The error—deviation between set point and controlled variable—can
be measured at the current time, but we know that it will change in the future
because of recent adjustments to the manipulated variable. The behavior of the
controlled variable without adjustments in the future should be used to determine
the future error, which should be reduced by future adjustments. Thus, the DMC
controller uses a dynamic model of the process to calculate the future behavior of
the controlled variable that would occur without future control adjustments.

LL

CV{ = CV*K +J2aJ+iAMVK-j Note: Without feedback (23.15)
j = \

with CVf = predicted (deviation) value of the controlled variable in the
future as influenced by past changes in the manipulated
variable

CV*K = predicted value of the controlled variable at the current
time based on all past inputs up to K— LL

i = sample periods in the future (i = 1 to NN)
The difference between the predicted values of the controlled variable and the set
point are used to calculate the objective, the sum of the errors squared, which is to
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future CV transient
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EJ, the error that would occur without
future adjustments in the MV

Future AMVs are calculated by the controller
to minimize its objective function

k = K

L_
jfc = 0 Jt = A"-LL

Past samples

FIGURE 23.4

Dynamic response of variables for DMC control.

Time

Current time, controller executed here

be minimized.
N N 2 N N 2

OBJDMc = Ĵ  [SP< " <&*( + CV?)] = E [E( ~ CVi\ (23-16)
« = i « = i

where SP/ = set point at each sample i in the future
CV{ = defined in equation (23.15) and cannot be influenced by the

controller
CV? = effect of future adjustments on the controlled variable at each

sample /
E; = (SP/ - CV/"), deviation from set point that would occur if no

future control adjustment were made
NN = future time over which the control performance is evaluated,

termed the output horizon
In equation (23.16), the set point can remain constant at its current value in the
future, but if it will vary in the future in a manner known when the controller is
executed, a variable set point can be accommodated. Also, the future effects of past
adjustments, CVf, are calculated using equation (23.15). Thus, only the terms CVf
are influenced by the future adjustments determined by the controller algorithm.
Finally, the output horizon (NN) should be long enough for the controlled variable
to approach steady state under closed-loop control.



Now, the challenge is to determine the future adjustments in the manipulated
variables to minimize the objective. This is an optimization problem that could
be solved by many methods, including searching over a large grid of possible
values of the manipulated adjustments, but that would involve wasteful, excessive
calculations. An efficient controller calculation method can be developed using the
modelling approach introduced in the previous section. The step response model
can be used to calculate the effects of future moves, by summing their effects.

CV? ,v-v/+i
i+i

= X>AMvy_y+1 (23.17)
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where CVC = effects of future adjustments in the manipulated variable on
the controlled variable

AMVC = future adjustments calculated by the controller

This model can be slightly rearranged to ease the optimization calculation. The
same result can be obtained with the summation over all inputs at each sample /
of the horizon by ensuring that the effects are zero for all adjustments occurring
after the sample at which the controlled variable is evaluated (/). This model can
be expressed in matrix format as follows, using the step weights aj that can be
nonzero (where i > j) and 0.0 for the elements that must be zero (where i < j).

ax 0 0
a2 ax 0
o-i a2 ax

- «nn Ann- i «nn-2 ffNN-MM+l -1

AMVJ "
- cvf -

AMVf cv̂
amvs; = cvc3

MVMM_! - -cvcm.
(23.18)

In this formulation, the adjustments in the manipulated variable could be allowed
for all samples in the output horizon; however, experience indicates that this can
lead to overly aggressive control action and oscillatory dynamic responses. There
fore, fewer manipulated-variable adjustments are allowed, and the number of ad
justments is given by the input horizon MM, which must be less than the output
horizon. Equations (23.17) and (23.18) are equivalent, and either one may be used
to evaluate the effects of future adjustments on the control objective. Perhaps equa
tion (23.18) provides a clearer picture of the calculation. The coefficient matrix
in equation (23.18) is often designated by the symbol A and is referred to as the
dynamic matrix. With this notation, equation (23.18) can be rewritten as

A[AMVC] = [CVC] (23.19)
The goal of perfect controlled-variable performance would be to have zero error
for all samples in the future, which would be achieved if

E/ = [CVC] per fect contro l o f CV (23.20)

However, this performance cannot be achieved in general, because of dead times,
constraints on the manipulated variables, and right-half-plane zeros (see Sections
13.5 and 19.2). Another way of stating this conclusion is that an exact plant (model)
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inverse cannot be achieved because of limitations in the physical process. There
fore, the best control involves the manipulated-variable adjustments that minimize
the sum of the error squared in equation (23.16), which in general is not zero. The
solution to this problem is the least squares solution, which can be considered an
approximate plant (model) inverse that has desirable properties for control perfor
mance. The solution to the optimization problem in equation (23.16) for the model
in equation (23.18) is the well-known linear least squares result

K d m c = ( A T A ) - ' A T ( 2 3 . 2 1 )
The dynamic matrix controller Kdmc can be used to calculate the future ad

justments at each controller execution by

K d m c E 7 = [ A M V C ] ( 2 3 . 2 2 )
This equation shows that the model of the process in the feedback path, A, and
the future errors are used to calculate the manipulated-variable adjustments. The
calculated adjustment for the current time period, AMV§, would be implemented
after the controller calculation. The later adjustments would not be implemented,
because they would be recalculated during later controller calculations.

EXAMPLE 23.3.
The process model in Table 23.1 describes the mixing process with dead time.
Feedback control using the proportional-integral-derivative (PID) algorithm has
been evaluated for this process in Section 9.3. Assume that the process is initially
at steady state, and its set point is changed by a 1% step. Design the DMC
controller matrix and evaluate the closed-loop dynamic response, assuming that
the model is perfect.

The following parameters must be chosen before the DMC design calculation
can be performed.

At = sample period
LL = number of sample periods required for the process model to reach

steady state
NN = controlled-variable (output) horizon
MM = manipulated-variable (input) horizon

In this example, the analyzer update occurs only once every 2.5 min; thus, the
controller execution is set by this limitation. The product (Ar)(LL) should be equal
to or greater than the settling time of the open-loop process, and the product
(Af)(NN) should be equal to or greater than the settling time of the closed-loop
process. The manipulated-variable horizon is usually selected to be greater than 1,
to allow some manipulated-variable overshoot if desired, and to settle well before
the end of the controlled-variable horizon; thus, 1 < MM < NN. The values of
the parameters for this example are summarized in Table 23.2. The horizons are
somewhat shorter than usually used in practice, to enable the key matrices to be
reported conveniently.

Since the system is initially at steady state, so that all past adjustments are
zero, the future errors are equal to the current error. Some of the key values in the
calculation of the future moves follow.

AT =

rO 0 0.394 0.632 0.777 0.865 0.918 0.950 0.970 0.982 0.989
0 0 0 0.394 0.632 0.777 0.865 0.918 0.950 0.970 0.982
0 0 0 0 0.394 0.632 0.777 0.865 0.918 0.950 0.970

LO 0 0 0 0 0.394 0.632 0.777 0.865 0.918 0.950



rO 0 2.54 0 0 0 0 0 0 0 0
0 0 -4.08 2.54 0 0 0 0 0 0 0
0 0 1.53 -4.08 1.86 0.95 0.40 0.065 -0.14 -0.26 -0.34

LO 0 0 1.54 -2.04 -0.93 -0.26 0.14 0.39 0.54 0.62

Kdmc =

( E / ) T = [ 1 1 1 1 1 1 1 1 1 1 1 ]

These values can be used to calculate the future values of the manipulated-
variable changes using equation (23.22). The changes can be summed to obtain
the manipulated-variable values at each time in the future.

[AMVC] =

Because the controller model is assumed perfect in this example, feedback does
not change the results in later controller executions. The responses of the manip
ulated and controlled variables are given in Figure 23.5. The controlled variable
cannot respond until after the process dead time, and for this system it can be
changed to the set point in one sample period after the dead time. To achieve this
performance, the manipulated variable must experience a rapid change of large
magnitude, which may not be acceptable. However, the controller objectives, as
stated to this point, have been achieved.

2.541 1-2.54
1.54
0.00 MVC = 1.00

1.00
0.00 J Li.oo
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TABLE 23.2

Summary of single-variable DMC simulation cases

Algorithm parameters
Controller
model,
difference
from plant
model**

Controlled-
variable
performance

I A E I S E

MV
performance

Case At MM NN W W qq £(AMV)2

Example 23.3 2.5 4 11 1 0 Same as 6.0 5.6 8.8
Figure 23.5 process
Example 23.4 2.5 4 11 1 0 Km = 0.65 12.9 7.7 29.5
Figure 23.7
Example 23.5 2.5 4 11 1 0.2 Km = 0.65 11.5 7.3 2.9
Figure 23.8a
Example 23.5 2.5 4 11 1 0.2 K„, = 0.65 8.9 4.2 0.8
Figure 23.8b

•The process is represented by the model in Table 23.1.
**The model used in performing all model-based calculations for DMC.
LL = large number, e.g., 5(NN).
«wmi«a^a3^^
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FIGURE 23.5

Dynamic response from Example 233 for the case with no model error.

Adding Feedback to the DMC Controller
To achieve acceptable feedback performance, the DMC controller must use the
measured value of the controlled variable. The method for including the feedback
is the same as employed in Chapter 19: the measured value is compared with a pre
dicted value, and the difference, the feedback signal Em, is added to the predicted
value used by the controller. This scheme is shown in Figure 23.1; note that adding
the feedback to the predicted controlled variable has the same effect on the sum of
error squared as subtracting it from the set point, as seen by considering equation
(23.16). This feedback approach is equivalent to adjusting a bias in the predictive
model without changing the step weights ay, thus, the feedback dynamics used by
the controller to relate adjustments in the manipulated variable to the controlled
variable are not influenced by the feedback. The result of the feedback, shown in
Figure 23.6, is similar to that in the model predictive controllers in Chapter 19:
zero steady-state offset for steplike disturbances, but no adaptation of dynamics
for nonlinearities.

The model used to calculate the effects of future changes in the manipulated
variables is similar to equation (23.15). However, the prediction of the future
behavior without control is modified to combine the model with the feedback
measurement signal as follows.

LL

CV{ = CV*K + iEm)K + £>;+1 AMV*_; (23.23)

The feedback signal is the difference between the measured and predicted values,

CC
Stamp
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EJ, the error that would occur without
future adjustments in the MV

Future CV calculated based on current
measurement and the past AMVs

Lr^

Future AMVs are calculated by the controller
to minimize its objective function

k = 0 k = K - L L

Past samples

k = K Time-

• Current time, controller executed here

FIGURE 23.6

Dynamic response of variables with feedback.

which is assumed to remain unchanged in the future:
iEm)K = iCVmea&)K-CVK (23.24)

Substituting equation (23.24) into equation (23.23) yields the model for the effects
of future changes in the manipulated variables.

LL
CV{ = CV*K + (CVmeask - CV* + £>,+, AMV*_; (23.25)

Thus, the feedback method is equivalent to setting the model prediction at the current
time to the current measured value of the controlled variable.

The DMC controller Kdmc can be designed with the same calculations, equa
tion (23.21). Again only the manipulated-variable adjustment at the current sample
period, AMVo, is implemented. The entire controller calculation is repeated at the
next sample period, because a new measured value of the controlled variable is
available.
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Some insight into the model predictive structure is gained by considering the
meaning of the feedback signal when the controller model is perfect. In this situ
ation, the effects of the manipulated variable on the true plant and the model are
identical and cancel when Em is calculated. Thus, the feedback signal is equal to the
effect of the disturbance on the controlled variable. Since the same value of the
feedback signal Em is used to calculate all future values of the controlled variable
without future adjustments, CV{ for all i = 1 to NN, the tacit assumption has
been made that the disturbance will be the same in the future as it is currently. This
is often a reasonable assumption when we have no special information about the
disturbance.

FB *—L-'•-ip W
ob ~§
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EXAMPLE 23.4.
The results in Example 23.3 were for the case when the controller model exactly
represented the true process. In this example, the model differs from the plant;
the model gain is 0.65%/% open, while the process gain remains 1.0%/% open.
Determine the closed-loop performance for this system.

The step response for the model can be derived using the method in Table
23.1 with Km = 0.65 (not 1.0), and this model can be used to derive the DMC con
troller from equation (23.21). The controller can then be employed with feedback,
and the resulting dynamic response is shown in Figure 23.7 and summarized in
Table 23.2. The model error led to considerable oscillation in this example, with
increased ISE of the controlled variable and excessive manipulated-variable vari
ation. However, the controlled variable ultimately returned to the set point, which
was the goal of the feedback. Thus, feedback has improved the performance of
the closed-loop system, but its dynamic behavior is not yet acceptable.

M M W P P i i ^ ^

55
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o 50
>

73>
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FIGURE 23.7

Dynamic response for Example 23.4 for the case with model error but no
move suppression.
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As with all controllers, adjustable parameters are needed to match the closed-loop
performance to the particular needs (manipulated-variable variability) and circum
stances (model mismatch) encountered in each application. In the DMC controller,
the principal manner for addressing these needs is to expand the objective used
in defining the control algorithm. This is done by adding a term that penalizes
changes in the manipulated variable at each execution.

N N , 2 j M M
OBJdmc = £ ww [SP, - iCV{ + CV;-)] + £ [qq(AMV,)2]

i = i I ' 1 = 1j = i
NNN N r - 2 - i M M

= £ ww(E/-CV?) +X>q(AMV,)2]
(23.26)

The Single-Variable
Dynamic Matrix
Control (DMC)

Algorithm

where ww = (> 0) adjustable parameter weighting the controlled-variable
deviations from set point, the ISE

qq = (> 0) adjustable parameter weighting the adjustments of the
manipulated variable. This parameter is termed the move
suppression factor.

The relative values of the two tuning parameters ww and qq determine how
much importance is placed on the controlled variable ISE and on the variability
of the manipulated variable; the original definition of the controller in equation
(23.16) can be thought of as equation (23.26) with ww = 1 and qq = 0. Naturally,
some variability in the manipulated variable must be allowed to enable the control
system to respond to disturbances and set point changes. However, the controller
with qq = 0 can be very aggressive, as seen in Figure 23.7. Also, because of model
mismatch, the controller with qq = 0 can lead to an unstable closed-loop system,
and increasing the value of qq (more correctly, qq/ww) increases the range of model
mismatch for which stable closed-loop performance is achieved. Finally, equation
(23.26) contains no term for deviations of the manipulated variable from a target
value, since the manipulated variable must be free to respond to disturbances of
various magnitudes and directions; thus, the penalty is on the adjustment or change
at each sample.

Again, the control algorithm determines the values of the future manipulated-
variable changes that minimize the objective function. The result is

- U T ,KDmc = (A1 [WW]A + [QQ])"'A1 [WW] (23.27)
where [WW] = diagonal matrix = wwInn

[QQ] = diagonal matrix = qqlMM
I/? = identity matrix of size R x R

Again, only the current manipulated-variable adjustment is implemented at each
controller execution. This is the form of the DMC control algorithm used in in
dustrial practice.

EXAMPLE 23.5.
Evaluate the control performance with model mismatch in Example 23.4, using the
DMC algorithm in equation (23.27) with adjustable tuning.

H f
CD ©

FB»FA



744

CHAPTER 23
Centralized
Multivariable Control

The matrix algebra in equation (23.27) is slightly more complex, but the re
quired model information (i.e., step weights) is the same. In this example, the
number of parameters for the engineer to select is increased with the addition of
ww and qq. For the single-variable DMC, ww can be set to 1.0 without loss of
generality, which is not true for the extension to multivariable. The value for qq is
selected to be 0.20 for this example, and the choice of this value is discussed
in Section 23.6. The resulting transient response is shown in Figure 23.8a, and
parameters and performance values are summarized in Table 23.2. The perfor
mance with qq = 0.2 is much more acceptable, with lower ISE of the controlled
variable and about one-tenth the variability of the manipulated variable (£ AMV2).
An additional transient response has been evaluated for this system with the same
feedback model mismatch and controller tuning parameters; this is a response to
a unit step disturbance with a model Gds) = 1/(5$ + 1). The response in Figure
23.8b shows that DMC provides acceptable transient behavior and zero steady-
state offset for this disturbance.

The addition of the variability of the manipulated variable to the controller objective
with the associated tuning factor qq provides the engineer with the flexibility to
tune the controller for a wide range of objectives and model mismatch.

23.5 a MULTIVARIABLE DYNAMIC MATRIX CONTROL

It would be possible to employ the single-loop DMC as a replacement for the PID
controller and to implement multiloop control with DMC using the approaches
presented in Chapters 20 through 22. However, this approach would not realize
the great power of dynamic matrix control (or other similar centralized multivari
able algorithms). Here, the goal is to achieve centralized multivariable control,
in which the algorithm uses information from all controlled variables to calculate
all manipulated-variable adjustments simultaneously each execution. Fortunately,
the nature of the DMC algorithm makes its extension to multivariable control
straightforward. In addition, the calculations performed at each controller execu
tion remain relatively simple.

Again, the basis for the algorithm is the step response model. In the multi-
variable situation, one model exists for each input-output combination, and the
form of each single input-output model remains as described in Section 23.3. The
objective for the controller becomes

N C N N 2 N M M M

OBJdmc = £ wwnc £ [Efnc. - CVcncJ] + ]T qqnm £(AMVnm,,y
n c = l / = ! n m = l i = l

(23.28)

where NC = number of controlled variables; nc is the counter for the
controlled variables (1 to NC)

NM = number of manipulated variables; nm is the counter for
the manipulated variables (1 to NM)

wwnc = adjustable parameter weighting the nc'th controlled
variable's deviation from set point

qqnm = adjustable parameter weighting the adjustments of the nm'th
manipulated variable
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FIGURE 23.8

Dynamic response for Example 23.5 for the case with model error and move
suppression: (a) set point change; ib) disturbance.
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For multivariable control, a separate value for wwnc is allocated to each controlled
variable. The ratio of these values represents the relative importance of devia
tions from set point of the controlled variables, which can be used to tune the
controller for different performance objectives. Also, each manipulated variable
has an associated qq^, which gives the penalty for adjustments. A multivariable
controller has many parameters that must be tuned in conjunction to obtain the
desired performance.

The control algorithm that achieves this objective is

KDmc = (AT[WW]A + [QQ])"1 AT[WW] (23.29)
This is the same form as the result for single-loop control. However, the matrices
in equation (23.29) are composed of individual blocks, with each block consisting
of a single-variable matrix or zeros. For the two-variable control problem,

[ W W ] , o ] r n n i _ r [ Q Q ] i 0 1
[WW]2J L^J-|_ 0 [QQ]2J

(23.30)

A TAu A12 l
[A2i A22J

[WW] = 0

where Lnc,nm = dynamic matrix shown in equation (23.18) for the
controlled variable nc and the manipulated variable nm

[WW]nc = diagonal matrix = ww„cInn for nc = 1 to NC
[QQ]nm = diagonal matrix = qqnmlMM for nm = 1 to NM

0 = square matrix containing zeros
With this result, the errors of all controlled variables are considered simultane
ously in determining the adjustments to all manipulated variables. The methods of
modelling and feedback conform to the model predictive control structure, with all
models being multiple-input-multiple-output and the controlled and manipulated
variables being vectors of values for each variable. As before, only the current
manipulated-variable adjustments are implemented at each controller execution.
EXAMPLE 23.6.
Apply DMC control to the distillation tower considered in Example 23.1 and mod
elled in equation (23.5).

The first step is to develop the step response models using the method in Table
23.1 or, equivalent̂ , equation (23.10) for each of the Anc,nm matrices. In performing
this modelling, the sample period and horizon lengths must be decided. Finally,
the tuning parameters are selected. With this information, the DMC controller KDMc
can be calculated using equation (23.29). The controller design parameters used
in this example are as follows:

At - 1 MM = 5 NN = 20 LL = 100 ww, = ww2 = 1 qq, = qq2 = 0.02

The transient response to a set point change in the distillate purity, with the bottoms
set point unchanged, is given in Figure 23.9a. Also, the transient response to a
-4% step change to the light key in the feed is given in Figure 23.9b. In both
plots the plant is represented by the linear model in equation (23.5), so that these
responses are for no model mismatch, although the tuning has been selected to
give a reasonably moderate feedback response.

The performance measures for these dynamic responses are given in Table
23.3. These results can be compared with the performance achieved with two
PI controllers, although no attempt was made to provide the best tuning to either
control system. (Note that the set point change in Table 21.2 was half the magnitude
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TABLE 23.3

Summary of performance for Example 23.6
Case I A E ™ I S E ™ I A E ™ I S E ™ £ ( A F * ) 2 £ ( A F V ) 2

Figure 23.9a
Figure 23.9b

0.225
0.207

0.00122
0.00093

0.073
0.33

0.00010
0.00413

0.0141
0.00029

0.0097
0.0147

of that in Table 23.3.) In these examples, the DMC controller provided about the
same performance for the disturbance and better performance for the set point
change.

As demonstrated in this section, the multivariable dynamic matrix controller
is a straightforward extension of the single-variable controller. The controller al
gorithm can be calculated for any (stable) process model, without regard for dead
times or numerator dynamics. The dynamic responses in the example show that
good performance can be achieved without excessive adjustments of the manipu
lated variables.

23.6 ® IMPLEMENTATION ISSUES IN DYNAMIC MATRIX
CONTROL

While the design and implementation of centralized feedback control have been
shown to be possible, a large number of design and implementation decisions must
be made to achieve good performance. Some of the most important are discussed
briefly in this section.

Real-Time Calculations
The distinction is important between the design calculations, which are performed
once offline, and the control calculations, which are performed every control execu
tion. Basically, the design calculation is given in equation (23.29). This calculation
involves the inverse of a square matrix with dimensions (MM)(MM). This inverse
could be computationally intensive, but it is calculated only during offline design.
In contrast, the controller calculation requires the following limited calculations
every execution:

1. Calculate the feedback signal Em, which requires advancing the prediction of
the model Gm in the block diagram and equation (23.14) by one time step.

2. Calculate the future error that would occur without future adjustments, e{ =
([SP]/ - [CVf]i) for i = 1, NN. This requires the model for [CVf]t in equation
(23.23) to be calculated for NN time steps.

3. Calculate the current adjustment to the manipulated variable. The basis for
this calculation is equation (23.22), which will give the adjustments for the
entire input horizon—more information than needed, because only the current



change in manipulated variable is required. For example, the single-variable
DMC needs only AMVo, which is the sum of the element products of the
top row of Kdmc and the future error W. This vector-vector product requires
fewer calculations.
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Tuning
The dynamic matrix controller has a large number of adjustable parameters, all
of which influence the control performance. In addition, the best value of some
parameters depend on the values of others. The following comments should help
in selecting good initial values.

At Factors in selecting the execution period are the same as discussed
in Chapter 11 on PID control. This should be a small fraction of
the closed-loop dynamics [e.g., At < 0.1(0 + r)].

NN The output horizon should be long enough for the closed-loop system
to approach its steady state in the time A/(NN). Typical values for
NN range from 20 to 50.

MM The input horizon is selected to be shorter than the output horizon.
Typically, MM is about one-fourth to one-third of the output horizon.

wwnc The weighting for each controlled variable represents the relative
importance of each deviation from its set point. Increasing this
number tends to reduce the deviation of this controlled variable,
but the deviation of other controlled variables will increase. The
engineer must recognize that the controller objective is calculated
in engineering units, so that the weighting must reconcile the
comparison of various variables, such as temperature and mole percent.

qqnm The weighting for each manipulated variable represents the relative
importance of the adjustments to each manipulated variable.
Increasing this number will tend to slow the feedback adjustments,
which would degrade the controlled-variable performance; however,
increasing qqnm also improves the robustness of the closed-loop system
to model mismatch. Also, increasing qqnm reduces the variability
of the manipulated variable, which may be required in some
circumstances. As a result, the parameter is often referred to as the
move suppression factor.

Good values for wwnc and qqnm depend on their relative magnitudes, such as
wwi/qq2 and wwi/ww2. Thus, strong interactions exist among the effects of the
many tuning parameters on the control performance, and often some simulation
studies are required to determine good tuning.

The presentation in this chapter has assumed that the weighting matrices
[WW] and [QQ] are diagonal. This assumption is valid when the desired behavior
of one controlled variable does not depend on the behavior of other controlled
variables. That condition might not be the case for some processes. For example,
a high temperature and high reactant concentration might be a particularly bad
condition; in such a case, a penalty could be introduced in the appropriate off-
diagonal elements in [WW] for the deviations of both.
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Move suppression, qq

FIGURE 23.10

Effect of controller tuning on controlled and manipulated
variables (ww = 1).
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EXAMPLE 23.7.
Study the effects of tuning on the single-variable DMC controller in Examples 23.3
through 23.5. For this study, assume that no model mismatch exists and that the
input forcing is a unit step set point change.

The common manner for presenting such a tuning study is to plot the perfor
mances of the manipulated and controlled variables against the tuning parameter,
which for the single-loop case is qq/ww. This plot is given in Figure 23.10, with re
sults that are typical of many systems. As the move suppression is increased from
zero, the first effects are a rapid drop in the variability in the manipulated variable,
with a small increase in the ISE of the controlled variable. After some value of qq,
the effects on both variables are moderate. Often, the value of qq where the vari
ability in the manipulated variable stops decreasing rapidly gives an acceptable
initial tuning, with reasonable robustness to typical model mismatch and moderate
variability in the manipulated variable. This study provided the basis for the value
of qq, 0.2, used in Example 23.5.

F i l te r ing

High-frequency noise in the controlled-variable measurement can be filtered for
the reasons discussed in Section 12.3. The measurement can be filtered before
calculating the feedback signal Em.

Cascade Implementa t ion

Centralized multivariable controllers can output directly to final elements, but a
more common design is to output to a single-loop system. As an example, the
distillation control in Figure 23.2 and studied in Example 23.6 outputs to the set
points of two flow controllers. The design of these lower-level loops follows the



principles of single-loop enhancements (Part IV) and loop pairing (Chapters 20
through 22) already presented.

23.7 □ EXTENSIONS TO BASIC DYNAMIC MATRIX CONTROL
The method presented in detail in this chapter represents only the most basic form
of the dynamic matrix controller. Many extensions are possible, and some are
essential for success in challenging applications. A few of the more important
extensions are introduced briefly in this section.

Nonsquare Systems
Many control systems have an unequal number of controlled and manipulated vari
ables. Methods for addressing these situations using single-loop (decentralized)
control were presented in Chapter 22 on variable-structure control. The DMC
controller can accommodate this situation, because no assumption has been made
in developing the design for KDMc in equation (23.29) regarding the number of
process variables. If more controlled than manipulated variables exist, not all con
trolled variables can be maintained at their set points (at the steady state), and the
DMC controller will minimize the objective in equation (23.26). When a steady
state is achieved after a disturbance, the deviations of each controlled variable
from its set point depend on the weights, ww,-. If more manipulated than con
trolled variables exist, all controlled variables can be maintained at their set points
(in the steady state), and the manipulated variables can be adjusted to achieve
additional benefits, such as low energy consumption. Methods are described in
Cutler and Ramaker (1979) and Morshedi et al. (1985).

Feedforward
The centralized control method in this chapter addressed feedback control, but it
can be extended to include feedforward compensation. If a measured disturbance
satisfies the feedforward design criteria in Table 15.1, it can be included by mod
elling its effect on the future controlled variable without feedback adjustment.
Thus, the effect of the measured disturbance is simply another process input in
calculating the values of [CV ]̂,- that are used in calculating E^ and the controller
calculation in equation (23.22). Both the controller design equation for KDmc
and the calculation at each controller execution, [AMV] = [KdmcHE^L remain
unchanged.
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Constraints on Variables: Quadratic Dynamic Matrix
Control (QDMC)

Often, the behavior of the control system in a real plant is limited by constraints.
These constraints can be limitations to manipulated variables; e.g., a valve cannot
exceed 100% open or the reflux should not decrease below a minimum for proper
tray contacting. In addition, constraints can be imposed on the dependent, con
trolled variables; for example, the temperature should not go above 350 K. The
design of the DMC controller in equation (23.29) was based on a least squares
method that relies on the controlled and manipulated variables having continuous
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derivatives, which is not valid when constraints are encountered. Fortunately, the
DMC approach can be extended to designs that minimize the same objective while
observing constraints by using a different optimization method. One common ap
proach uses a solution method termed quadratic programming; thus, the controller
is termed quadratic dynamic matrix control (QDMC). A slight disadvantage of in
cluding constraints is an increase in the calculations that must be performed with
each controller execution. However, with powerful digital computers, this has not
proved to be a barrier to practical application.

The measure of control performance used in QDMC is the same as the DMC
controller, so that OBJqdmc = OBJdmc. which is given in equation (23.28). A
summary of the mathematical problem solved at each controller execution is given
in the following:

min OBJqdmcamv (23.31)

As in DMC, the dynamics responses between manipulated and controlled
variables are represented by step-weight models.

[CVC] = A[AMVC] (23.19)
The value of the controlled variable in the future output horizon, CV,-, is

C V, = CV?
t

Calculated
from the future
adjustments,
AMV?

+ C V/

f
Calculated
from the past
MV and Em

subject to the following constraints that are imposed on every variable at every
time step in the future horizon (i).

Rate of change of the M V:
Full value of MV:
Value of the CV:

AMVrain < AMV? < AMVr
MVmin < MV,- < MVmax
{"Vmjn < CV,- < CVmax

Some problems occur when the controlled variables are subject to strict limits
as shown above; e.g., it may not be possible to achieve the controlled variable
performance (CVmin < CV,- < CVmax) when the manipulated variables are also
restricted. Therefore, the bounds on the controlled variables are usually imple
mented as penalty functions that force the solution to obey the constraints only
when possible. Further details on the QDMC algorithm are provided by Garcia and
Morshedi (1986), Morshedi et al. (1985), and Ricker (1985). In addition, Qin and
Badgewell (1997) provide an overview of centralized model predictive control,
along with a summary of similar algorithms used commonly in industry. Now, we
will consider two examples of QDMC.

Typically, centralized model-predictive control is applied to plants in which
substantial interaction occurs among important variables. An example of a situation
with strong interaction is given in Figure 23.11, which shows a hydrocrackirig
chemical reactor in a petroleum refinery. The process involves a series of packed
bed, adiabatic reactors in which highly exothermic chemical reactions occur. The
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FIGURE 23.11

Hydrocracker reactor with QDMC centralized control.

reactor bed inlet temperatures are regulated by single-loop controllers that adjust
the mixing of hot and cold feeds for the first reactor and adjust the injection of cold
hydrogen in the second to fourth reactors. The control objectives are summarized
in the following.

1. Prevent high temperatures in each bed Therefore, each 7} should remain
below Tjnax. If this limit is closely approached or exceeded, extreme corrective
action must be taken by decreasing the bed inlet temperature set point, even if
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the product quality is severely upset. Note that feedback action is required for
only a negative error (Tmax — T < 0); this "one-sided" feedback is possible
with QDMC, but not with DMC.

2. Control total conversion Unfortunately, the conversion of feed to products
cannot be measured because of the large number of components. Even if
conversion could be measured, the hundreds to thousands of reactions could
not all be controlled independently. Therefore, the concept of partial control
is employed (see Chapter 24), and a dominant variable is selected. For hy-
drocracking, the weighted average bed temperature, WABT, is often used as
an inference for conversion; it weights each bed temperature by the mass of
catalyst in the bed.

3. Reducing energy consumption An indication of this objective is the amount
of material that bypasses the fired heater, because mixing cold and hot streams
is less efficient than heating the total feed to the required temperature.

4. Maintain yield and catalyst activity Notice that many different operations
(i.e., values of Tx to T4) could yield the same WABT; therefore, the distribution
of individual bed temperatures is selected to provide the desired selectivity
and catalyst life in the four reactors.

5. Manipulated variable bounds Every manipulated variable (set point of
secondary cascade controllers) must remain within specified maximum and
minimum values.

The MPC design for this process and objectives is also shown in Figure 23.11
(Kelly et al., 1988). The controlled and manipulated variables are summarized in
the following table.

Set
point Manipulated variables

Controlled variables
(in order of decreasing importance)

T10 Fired heater effluent
T01 Bed 1 inlet temperature
T02 Bed 2 inlet temperature
T03 Bed 3 inlet temperature
T04 Bed 4 inlet temperature

Bed 1 to 4 temperature < T^
WABT deviation from set point
V01 % open deviation from set point
Bed 1 to 4 temperature distribution

The form of the MPC used industrially by Kelly et al. (1988) was the quadratic
dynamic matrix control (QDMC) with constraint handling capability. Evaluation
of the dynamic performance of the design indicated that it performed very well.
During evaluation tests, no bed temperature exceeded its maximum limit; the most
important variable (WABT) was controlled close to its set point; the bypass valve
was maintained near the desired percent open; and each of the individual bed
temperatures varied about their set points (Kelly et al., 1988; Stanfelj, 1990).

EXAMPLE 23.8.
DMC control was applied to a distillation tower in Example 23.6 for situations
in which no constraints were encountered. Here, QDMC is applied to the same



distillation tower for situations with constraints. Again, the tower is described in
Example 23.1 and modelled in equation 23.5. The set point response is considered
in this example, so that these results can be compared with the unconstrained
results obtained in Figure 23.9a.

The solution is developed with the QDMC controller described in equation
(23.31) using the same values for the following parameters as used in the uncon
strained case in Example 23.6.

At = 1 MM = 5 NN = 20 LL = 100 ww, = ww2 = 1 qq, = qq2 = 0.02

Input constraint. In this situation, the reboiler duty is limited because of a max
imum possible heating medium flow rate. The maximum amount of reboiled vapor
is 14.1 kmol/min. The results are given in Figure 23.12a for a set point change in
the XD controlled variable. Because one of the manipulated variables encounters
a constraint, both controlled variables cannot be maintained at their set points.
Since the QDMC objective [equation (23.29)] considers both controlled variables,
the controller adjusts the one remaining, unconstrained manipulated variable to
minimize the sum of the (squared) errors for the distillate and bottoms compo
sitions. Neither controlled variable achieves its set point, but each is maintained
"close" to its set point. Modifications can be made to QDMC to select a priority
ranking for controlled variables so that the more important can be returned to
their set points when all controller variables cannot be returned to their set points
(Swartz, 1995).

Output constraint. Again, the set point response for a change in the XD set is
considered. In this situation, the light key in the bottoms should be maintained be
low a specified limit or costly economic penalties would occur. The maximum value
for XB is 0.0205, and this limitation is included in the QDMC controller through a
very severe penalty on any XB values that exceed the limit. The results are given
in Figure 23.12b. To reduce the disturbance to XB due to interactions, the con
troller has slowed the adjustment to the manipulated variables slightly. Therefore,
slightly more time is required to change the distillate composition, XD. However,
the controller achieves the dual goals of reasonably fast XD response while XB is
maintained within its specified upper limit. This excellent performance is due to
the capability of the QDMC controller and the perfect model used in this simulation
example. Such excellent performance would not be expected for a realistic non
linear process with dynamics changing due to alterations in operating conditions,
but quite good performance can be achieved using centralized model predictive
control.
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Given the success of centralized control, the reader may wonder about using
this technology for centralized control of large plants having hundreds to thousands
of variables. Although theoretically possible, such large MPC controllers are not
now used because of (1) the difficulty in building the models, (2) the computa
tion time for solving the optimization problem, and (3) the challenge to the plant
personnel in understanding the controller results. Typically, centralized MPC is ap
plied to blocks of variables that have substantial interaction among themselves and
weak effects on the remainder of the plant. Thus, plants can have multiple central
ized, multivariable MPC and many single-loop controllers. Also single-loop con
trollers remain as lower-level, secondary controllers whose set points are adjusted
by the higher-level MPC controllers. For example, PID controllers remain in the
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(a) Dynamic responses for closed-loop QDMC control with a maximum limit on the
manipulated reboiled vapor rate. (Compare with Figure 23.9a.) ib) Dynamic
responses for closed-loop QDMC control with a maximum limit on the controlled
XB. (Compare with Figure 23.9a.)



hydrocracker to cont ro l the furnace out le t and reactor in le t temperatures. Thus, 757
even in the age of block centralized MPC, knowledge of single-loop control is iiiwiyriiiiiiiii^
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Non-Self-Regulating Processes
The step weight model described in Section 23.3 is limited to processes that are
stable and self-regulating so that they attain a steady state after a step input. As
discussed in Chapter 18, many inventory processes (levels) are not self-regulatory,
because they are pure integrators. The step response modelling method has been
extended to integrators, and details are provided by Cutler (1982).

23.8 □ CONCLUSIONS
A practical method for centralized process control has been presented in this chap
ter. The general model predictive structure provides the framework for the control
method, but the analytical design approach proves a limit to direct extension of
the methods from Chapter 19. The novel modelling and numerical calculations of
the dynamic matrix controller algorithm result in a method that can be applied to a
wide range of processes. The addition of feedback and tuning parameters provides
the basic centralized controller algorithm, with extensions possible for special sit
uations. The performance of the dynamic matrix controller has been demonstrated
to be good for single- and multivariable systems.

REFERENCES

Caldwell, J., and J. Dearwater, "Model Predictive Control Applied to FCC
Units," in Arkun, Y, and W. H. Ray (eds.), Chemical Process Control—
CPCIV, CACHE, New York, 319-334 (1991).

Cutler, C, "Dynamic Matrix Control of Imbalanced Systems," ISA Trans., 21,
1, 1-6(1982).

Cutler, C, and P. Perry, "Real-Time Optimization with Multivariable Con
trol Is Required to Maximize Profit," Comp. Chem. Eng., 7, 5, 663-667
(1983).

Cutler, C, and B. Ramaker, "Dynamic Matrix Control—A Computer Control
Algorithm," AIChE Nat. Meet., April 1979.

Cutler, C, and F. Yocum, "Experience with the DMC Inverse for Identifica
tion," in Arkun, Y, and W. H. Ray (eds.), Chemical Process Control—
CPCIV, CACHE, New York, 297-318 (1991).

Garcia, C, and A. Morshedi, "Quadratic Programming Solution of Dynamic
Matrix Control (QDMC)," Chem. Eng. Comm., 46, 73-87 (1986).

Kelly, S., M. Rogers, and D. Hoffman, "Quadratic Dynamic Matrix Control
of Hydrocracking Reactors," Proc. ACC Meet., 295-300 (1988).

MacGregor, J., D. Kourti, and J. Kresta, "Multivariate Identification: A Study
of Several Methods," Proc. ADCHEM '91, 14-16 October 1991,369-375
(1991).

Morshedi, A., C. Cutler, and T. Skrovanek, "Optimal Solution of Dynamic
Matrix Control with Quadratic Programming Techniques (QDMC)," ISA
Nat. Meet., paper no. 85-0732 (October 1985).



758

CHAPTER 23
Centralized
Multivariable Control

Prett, D., and C. Garcia, Fundamental Process Control, Butterworths, Boston,
MA, 1988.

Prett, D., and R. Gillette, "Optimization and Constrained Multivariable Con
trol of a Catalytic Cracking Unit," AIChE Nat. Meet., April 1979.

Qin, S. J., and T. Badgewell, "An Overview of Model Predictive Control
Technology," in J. Kantor, C. Garcia, and B. Carnahan, Chemical Process
Control-V, AIChE Symp. Ser. no. 316, 93, 232-256 (1997).

Ricker, L., "Use of Quadratic Programming for Constrained Internal Model
Control," IEC Proc. Des. Devel., 24, 925 (1985).

Ricker, L., "The Use of Biased Least-Squares Estimators for Parameters in
Discrete-Time Pulse Response Models " IEC Res., 27, 343 (1988).

Stanfelj, N., Control Performance Evaluation and Diagnosis, M. Eng. Thesis,
Dept. of Chemical Engineering, McMaster University, Hamilton, Ontario,
Canada (1990).

Swartz, C, "An Algorithm for Hierarchical Supervisory Control," Comp.
Chem. Engng., 19, 1173-1180 (1995).

Van Hoof, A., C. Cutler, and S. Finlayson, "Application of a Constrained Multi-
Variable Controller to a Hydrogen Plant," American Control Conference,
Pittsburgh, June 21-23,1989.

ADDITIONAL RESOURCES
Centralized multivariable controllers make use of all elements in the feedback
model, which can make these controllers sensitive to certain types of model mis
match. The causes of the sensitivity and experimental designs to improve model
accuracy are discussed in
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An alternative approach using linear programming is reported in
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The full power of centralized multivariable control becomes apparent through stud
ies of closed-loop systems. These questions build understanding of the assumptions,
theory, and preliminary calculations that can be performed without preparing a com
plete design and simulation package.



Q U E S T I O N S 7 5 9
23.1. Determine step response models (i.e., the step weights) for the following Mmmwmmmmmmmmim

systems based on the continuous models already developed. Select ap- Questions
propriate values for the sample period, the input horizon, and the output
horizon.
Single-variable:
ia) The three-tank mixing process, first-order-with-dead-time approxima

tion (Example 6.4, base case)
ib) The series chemical reactors in Examples 3.3 and 4.12.
TAvo-variable:
(c) The blending process in Examples 20.6 and 20.10
id) The two processes with simple and complex interactive dynamics, B1

and B2, in Example 21.4
ie) The distillation tower under material balance regulatory control in

equation (21.2)
23.2. Calculate the dynamic matrix controller Kdmc for one of the single-loop

processes already modelled in question 23.1. Select an appropriate input
horizon and let ww = 1 for all controlled variables. The calculations can
be performed on a spreadsheet or using a programming language. After the
controller has been determined, evaluate the response of the controlled and
manipulated variables to a step change in the set point without model error;
this can be done by evaluating the product in equation (23.22), [AMV] =
[KdmcHE^L where [Ef] = [ASP]. Begin with qq = 0, and increase it.
Select an appropriate initial value for qq.

23.3. The step response model can be determined from empirical data.
ia) Discuss the advantages and disadvantages for using sampled values of

the original data for the model.
ib) Discuss the procedure required and likely results of fitting the coef

ficients aj in the following model to experimental data using linear
least squares. Recall that this model will have between 20 and 50 co
efficients.

*+i
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7=1

ic) Are the dynamics of the sensor and the final element included in the
models used in the design of the DMC controller?

23.4. The DMC objective function selected to be minimized is the ISE over the
output horizon.
(a) What is the advantage of using the ISE rather than the IAE or (error)4?
ib) From a necessary condition for a minimum (the gradient is zero), derive

the equation for the DMC controller in equation (23.21).

23.5. Derive the analytical model predictive controller for the following pro
cesses. For each, state whether the controller can be easily factored, and if
so, select an IMC filter structure and time constant value(s) to give good
dynamic performance.
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MMmnms^^mmmmm ib) The blending process in Examples 20.6 and 20.10.
CHAPTER 23 ic) The disti l lation tower with material balance regulatory control in equa-
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23.6. Discuss the effect on the closed-loop performance of the following changes.
(a) Multiply every ww and qq by a positive constant.
ib) Add a constant to the DMC objective function.
(c) Change the units of one controlled variable, for example, the bottoms

composition in Example 23.5, from mole fraction to mole percent,
(fl") Increase all qq by the same positive factor, maintaining all ww constant.

23.7. Develop the appropriate step response model for a pure integrating level
process. Describe how this could be used to model the process over a long
time, without involving a summation of infinite length.

23.8. Determine all calculations for adding feedforward control for a measured
disturbance to the single-loop DMC control system in Example 23.5. The
answer should include a block diagram, summary of controller execution
calculations, and any new models and/or modifications to the controller
Kdmc- The model for the disturbance is Gdis) = 1 .Qe~25s/i5s +1). Also,
design a feedforward controller using methods in Chapter 15 and discuss
the expected difference in performance.

23.9. Determine all calculations for adding feedforward control for a measured
disturbance in the feed composition to the multivariable DMC control sys
tem in Example 23.6. The answer should include a block diagram, summary
of controller execution calculations, and any new models or modifications
to the controller, Kdmc- The model for the disturbance is given in equation
(23.5). Also, design a feedforward controller using methods in Chapter 15,
and discuss the expected difference in performance.

23.10. Criteria for zero steady-state offset from set point are presented in Chapter
19 for IMC and Smith predictor designs. Determine the criteria for the
DMC system to achieve zero steady-state offset for a steplike disturbance.

23.11. Suppose that slower set point response was desired, but fast disturbance
response was required. How could you modify the DMC control system de
sign to accommodate this performance requirement? (Hint: Review Chap
ter 19 for an approach to achieve this performance.)

23.12. The DMC controller was described in this chapter using step response
models to calculate the model to compare with the feedback measurement
and to calculate the future performance without control, CVJ.
(a) Describe how the discrete models derived in Appendix F could be used

for these calculations.
ib) Could these models also be used to determine KDmc?
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In this final part, we complete the coverage of control engineering by addressing
the design of process control systems. Design is perhaps the most challenging,
yet enjoyable, subject in control engineering, because it enables us to use all of
our analysis methods learned in the previous parts of the book. In fact, the entire
point of the analysis methods is to enable us to design, and ultimately to build,
equipment that functions according to requirements prescribed at the outset of the
design procedure.

Before introducing some of the main concepts and methods in this part, the
term design needs to be discussed. There have been many attempts to provide
a general definition of the term, but no single definition has achieved wide ac
ceptance. Here, we will simply describe the design function relevant to process
control, without any claim to generality.

Design is the procedure by which an engineer arrives at a complete control system
specification that satisfies all performance objectives.

It is important to recognize that the performance specifications are determined
by the engineer at the first stage of the design procedure based on physics, chem
istry, and the marketplace, which defines production rate, product quality, and eco
nomics. The initial objectives are specified independently of the solutions possible.
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PART VI Five important features of design that dist inguish i t f rom previous topics are
Process Control now discussed. The first major feature of design that was not as prominent in pre-
Design vious material is the rich definition of the objectives or performance that the design

is to satisfy. Thus, design involves considerable interaction between the objective
statement and design results. The objective is usually stated to be the reduction
of variability in the operation of a process plant. However, not all variability can
be eliminated, and variability is much more important in some variables than in
others. In fact, the plant is designed to provide specific variables and systems that
can be easily adjusted with minimum effect on plant performance. For example,
the cooling water, steam, electricity, and fuel systems are designed to be able to
respond rapidly to demands in the plant. Thus, process control generally moves
variability from important variables to less important variables. This is achieved by
controlling the (important) controlled variables by adjusting the (less important)
manipulated variables. Therefore, the control design must conform to the priority
of variables indicated in the objective statement.

The second major feature of design is the large number of decisions that
can be considered. For the purposes of this book, the following categories of de
sign decisions are covered: (1) measurements and sensors, (2) final elements, (3)
process design, (4) control structure, (5) control algorithms and tuning, and (6)
performance monitoring. As has been seen many times in previous chapters, the
process dynamics have a major effect on control performance. Thus, process design
changes would be the preferred manner for achieving good control. When a plant
is being designed initially, the engineers can make essentially any design changes,
although equipment design changes to achieve good dynamic performance may be
prohibitively expensive when compared to the alternative of additional instrumen
tation and control algorithms. Major process equipment options require a thorough
safety, reliability, and cost analysis of the alternatives, which is beyond the scope
of an introductory process control book but should be included in a plant design
project. Therefore, only "minor" process design changes are considered here; ex
amples of minor changes are sizing inventory to attenuate variation and adding
bypasses to add degrees of freedom and improve feedback dynamics. Typically,
these are possible during initial design and as modifications to existing plants.

The third feature of design is the sequence in which the decisions can be con
sidered. In previous chapters, relatively straightforward analysis methods were
presented for, among other topics, controller tuning, cascade design, and multi
loop pairing. Each procedure could be represented in a flowchart or table, with a
fixed sequence of steps without iteration. This is not the case for control design,
where iterations are frequently required. The order is an especially important is
sue, because the initial decisions will place limitations on future decisions, and the
limitations may not be easily predicted when the initial decisions are made. Thus,
the engineer must be ready to rethink previous decisions and be willing to iterate
by changing some decisions and repeating the design.

The fourth feature is the ambiguity in determining the conclusion of the design
procedure. One would have to evaluate most or all possible designs to be sure that
the final design is the best. To respond quickly to market demands and limit total
cost, the time for design is limited, and judgment must be used in deciding when
the design is good enough. The typical procedure is to develop approximate bounds



on the achievable performance and find a low-cost design that approaches the best
performance.

Also, situations arise in which the initial objectives lead to unacceptable de
signs that are very costly and unreliable; in such cases, it is the engineer's task
to alter the objective statement to meet the initial intent (e.g., make high-quality
product safely), thereby preventing an unsatisfactory design. In fact, very restric
tive objectives may not be achievable in the situation defined. For example, for a
specified disturbance in the feed composition and flow rate and available sensors,
it may not be possible to control the product quality of a chemical reactor within
very narrow bounds. Clearly, a major change in the process design or performance
specification is required.

The fifth feature of process control design is the concurrent application of pro
cess engineering and automatic control technologies. Automatic control principles
may indicate that the feedback dynamics of a chemical reactor should be faster;
then the chemical engineering principles can be used to select a process change
(e.g., increasing the temperature or relocating the sensor). This tight coupling of
process and control is the main reason why chemical engineers must learn con
trol and why a "control specialist," without understanding of the process, cannot
adequately perform the control design tasks.

The previous material in this book has prepared us well for the design task by
providing an understanding of fundamental principles. For example, we can deter
mine the relationship between the flow rate and the dynamic response of a process,
and we can determine the manner in which the process dynamics affects feedback
control system stability and performance. In addition to basic understanding, analy
sis provides methods for establishing quantitative relationships between adjustable
factors (e.g., parameters and structures in control systems) and the behavior of the
system. Thus, analysis directly provides methods for selecting cascade control
or an inferential variable. The key point is that the fundamental analysis methods
provide the foundation for design and thus are employed throughout these chapters.

It must be said at this point that control design—in fact all engineering
design—is very challenging and requires considerable practice to master. Top
ics covered in previous chapters, such as single-loop controller stability analysis
and tuning or feedforward controller design, can be learned quickly because they
involve a relatively straightforward analysis. As the previous discussion indicates,
the design engineer has to master and apply all technologies concurrently. Adding
to the challenge is the lack of a single, structured procedure for control design.
This is to be expected, because design involves an element of creativity in adding
process or control equipment, altering objectives, and specifying control struc
tures. As the reader has already experienced, procedures for stimulating creativity
cannot be reduced to a flowchart. However, much can be presented and learned
about the design procedure. Certainly, general procedures can be applied to the
tasks of collecting information, defining objectives, and evaluating common check
lists of potential decisions and outcomes. Also, typical sequences for considering
control design decisions can be explained, although the best sequence is problem-
dependent. Finally, examples demonstrating the interplay between process and
control technology help the new engineer learn how to design. The chapters in
Part VI provide guidance on performing the design procedure, by addressing its
major features and supplying worked examples.
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24.1 m INTRODUCTION

Typically, the starting point for control system design and analysis is a preliminary
process design, perhaps with some initial control loops, along with a specification
of the desired process performance. This amount of initial information is realistic
for existing plants, because the equipment is already in operation when an analysis
to improve plant performance is carried out. It is also realistic for new plant designs,
because a preliminary process structure (or alternative structures) must be available
when dynamics and control are first analyzed.

The required information must be recorded concisely, and the control design
form described in the next section is proposed as a format for this record. A great
advantage for using this form, in addition to giving excellent documentation, is that
it provides a way to begin the design analysis. Often, the design problem seems
so big and ill-defined that an engineer, especially one new to the technology, is
unsure where to begin. By completing the thorough definition, the engineer begins
the problem-solving process, and important issues and potential solutions become
apparent.

Potential actions required to achieve the desired process performance include
(1) defining the control strategy designs, (2) selecting measured variables and in
strumentation (i.e., sensors and final elements), (3) specifying the process operating
conditions, (4) making minor process changes such as adding a bypass, selecting
an alternative manipulated variable, or changing the capacity of some equipment,
or (5) making major process structure changes, such as changing from a packed-
to fluid-bed reactor. The fifth possibility, involving major process alterations, is
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excluded from this discussion, because such a major decision would require an
analysis of the steady-state and dynamic behavior of an integrated plant involving
many units, which is beyond the scope of this book.

The six major categories of decisions made during the design procedure follow
in the order covered in this chapter.

• Measurements: selecting measured variables and sensors
• Final elements: providing final elements with features contributing to good

control performance
• Process operability: providing good steady-state and dynamic behavior that

enables the control performance objectives to be achieved
• Control structure: providing the proper interconnection of measured and con

trolled variables via the control system
• Control algorithms: selecting and tuning the proper algorithms for feedback

and feedforward control
• Performance monitoring: providing measurements and calculations for mon

itoring and diagnosing the process and control performance

The application of previously introduced technology to achieve a control de
sign is explained in this chapter. All key elements of control design are demon
strated through application to an example design, which is introduced in the fol
lowing section.

24.2 o DEFINING THE DESIGN PROBLEM
The first step in the design task is the definition of the "problem," which per
haps should be referred to as an opportunity to apply our skills. We will retain
the term problem because it is used commonly to describe the task of addressing
complicated issues (e.g., "problem solving"). A complete definition of the design
problem may be difficult in the beginning of the analysis, and the need for addi
tional information may become apparent as the problem is analyzed. Therefore,
the approach taken here is to provide a comprehensive form in which information
can be recorded. The use of a form has several advantages. First, it serves as a
convenient checklist so that the engineer is sure to address the important issues at
the definition stage. Second, it provides a coherent, readable statement of goals,
which can be reviewed by many members of a design team. Third, a form with
topics concisely addressed under clear headings provides a structure that is easy to
write and to use as a reference. Finally, additional information developed during
the design analysis can be added at any time to the original form.

The form used here is referred to as the control design form (CDF). It will be
introduced by discussing the initial draft in Table 24.1 for the proposed flash process
shown in Figure 24.1. The feed composition, flash temperature and pressure, and
product compositions are identical to the example in Section 17.2, and the base-
case values for all measured variables are reported in the "Measurements" section
of Table 24.1. Note that the equipment in Figure 24.1 may be incomplete and
contain errors. The control design for this process will be discussed as each major
control decision category is introduced in this chapter, and a complete, error-free
design will be developed by the end of this chapter.
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Methane 10%
Ethane 20%
Propane 30%
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FIGURE 24.1

Preliminary process and instrumentation for the flash process.

As is typical in problem solving, we will start with a definition of the con
trol objectives in the first major heading of the CDF. The control objectives are
combined into the seven categories introduced in Chapter 2. The entries in each
category must be concise but complete enough to provide the direction for the
remaining design decisions. It is especially important to be as quantitative as pos
sible regarding the performance, giving performance criteria for specific scenarios.
This type of specification provides the basis for the design, along with a way to test
the performance of the design against the objectives. Remember that the control
performance should be specified for particular operating conditions and time peri
ods; for example, (1) selected variables must remain within deviation limits from
set point for a specified step disturbance; (2) the standard deviation for a variable
must be no greater than specified over a day, week, or other interval; (3) a variable
may not exceed its limits more than once per day; or (4) very undesirable con
ditions should not occur "under (essentially) any (conceivable) circumstances."
Additional examples are given in Table 24.1 for the flash process.

The second heading contains information on the measurements provided for
the control and monitoring system, which are crucial to the success of process
control. The location of the sensor is shown in an accompanying drawing (i.e.,
Figure 24.1), and the physical principle of the sensor and range are given in the
CDF. Special features of a sensor, such as the update frequency for a discrete sensor
like a chromatograph, should also be recorded.

The final control elements are recorded under the third heading. The maximum
capacity of the manipulated variable, typically the maximum flow through a valve,
should be noted. Also, nonstandard features should be noted; for example, tight
shutoff (i.e., the ability to prevent all flow); a valve that can open quickly; or a final
element that has a restricted range (e.g., cannot be closed). The failure mode of the
final element is important but is not recorded here, because it is usually indicated
on the drawing.

The fourth heading provides a place to document important limitations that
could affect the control design. These are typically constraints on equipment and
process variables. The limiting values and whether the constraint can be measured,
along with the sensor type, should be recorded. The information should clearly



TABLE 24.1

Preliminary control design form for the flash process in Figure 24.1

TITLE: Flash drum
PROCESS UNIT: Hamilton chemical plant
DRAWING: Figure 24.1

ORGANIZATION: McMaster Chemical Engineering
DESIGNER: I. M. Learning
ORIGINAL DATE: January 1, 1994
Control Objectives

1. Safety of personnel
(a) The maximum pressure of 1200 kPa must not be exceeded under any (conceivable) circumstances.

2. Environmental protection
(a) Material must not be vented to the atmosphere under any circumstances.

3. Equipment protection
(a) The flow through the pump should always be greater than or equal to a minimum.

4. Smooth, easy operation
(a) Control all unstable variables (liquid level)
ib) All process variables should remain within reasonable ranges without undue operator actions
(c) One variable should control the production rate with little variation
id) Control loops should function well independent of manual/automatic status of other loops;
that is, the system should have good integrity

5. Product quality
(a) The steady-state value of the ethane in the liquid product should be maintained at its
target of 10 mole% for steady-state operating condition changes of

(i) +20 to -25% feed flow
(ii) 5 mole% changes in the ethane and propane in the feed
(iii) -10 to +50°C in the feed temperature

ib) The ethane in the liquid product should not deviate more than ±1 mole% from
its set point during transient responses for the following disturbances:

(i) The feed temperature experiences a step from 0 to 30°C.
(ii) The feed composition experiences steps of +5 mole% ethane and -5 mole% propane.
(iii) The feed flow set point changes 5% in a step.

6. Efficiency and optimization
(a) The heat transferred should be maximized from the process integration
exchanger before using the more expensive steam utility exchanger.

7. Monitoring and diagnosis
(a) Sensors and displays needed to monitor the normal and upset conditions
of the unit must be provided to the plant operator.
ib) Sensors and calculated variables required to monitor the product quality
and thermal efficiency of the unit should be provided for longer-term monitoring.

Measurements

768

Variable
Sensor
pr inciple

A1 Chromatograph
F1 Orifice
F2 Orifice
F3 Orifice
F4 Orifice
F5 Orifice
L1 A pressure

P1 Piezoelectric

Nominal value
and sensor range Special information
10,0-15mole%
100, 0-200
120,0-150
100,0-200
45, 0-90
55,0-110
Range is lower
half of drum
5000-15000 kPa

Update every 2 minutes



TABLE 24.1

Cont inued

Measurements

Variable
Sensor
pr inciple

Nominal value
and sensor range Special information

T1
T2
T3
T4
T5
T6

Thermocouple 0, (-)50-100
Thermocouple 25, 0-100 °C
Thermocouple 90, 0-200 °C
Thermocouple 45, 0-200 °C
Thermocouple 25, 0-100 °C
Thermocouple 25, 0-100 °C

Manipulated variables
I.D. Maximum capacity (at design pressures)

v1
v2
v3
v4
v5

(%open, maximum flow)
100%, 100
53%, 189
50%, 200
14%, 340
52%, 106

Variable

Constraints

Limit values
Measured/
inferred

Hard/
soft Penalty for violation

Drum pressure 1200 kPa, high P1, measured Hard Personnel injury
Drum level 15%, low L1, measured Hard Pump damage
Ethane in F5 ±1 mole% A1,, measured, and Soft Reduced selectivity in
product (max deviation) T6, inferred downstream reactor

Disturbances

Source M a g n i t u d e D y n a m i c s

Feed temperature (Ti)
Feed rate(Fi)
Feed composition

-10 to 55°C Infrequent step changes of 20°C magnitude
70 to 180 Set point changes of 5% at one t ime
±5 mole% feed ethane Frequent step changes (every 1 to 3 h)

Dynamic responses
(Input = all manipulated variables and disturbances)

(Output = all controlled and constraint variables)

Input O u t p u t G a i n Dynamic model
v1
v2
v3
v4
v5

(see Example 24.6}

Additional considerations

Liquid should not exit the drum via the vapor line.
769
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indicate whether the constraint is soft or hard, along with the penalty for exceeding
the constraint (e.g., yield loss, energy consumption, or equipment damage). A soft
constraint can be violated for a short time and thus does not require the process to
be shut down when the constraint is approached. An example would be a stream of
material that, when not observing quality specifications, can be recycled or diverted
to waste. Naturally, this is to be avoided but can be tolerated. The violation of a
hard constraint causes severe safety or environmental hazards or costly equipment
damage. Thus, a hard constraint must not be violated, and extreme measures, such
as shutting down the process, are appropriate when a hard constraint is approached
too closely.

Since the main reason for control is to respond to input changes (disturbances
and set points), proper design depends on a good definition of these changes, which
are recorded under the fifth heading. Recall that the importance of disturbances
was recognized and included in methods presented in previous chapters, such as
cascade, feedforward, gain scheduling, inferential control, and multiloop pairing.
Therefore, each source of disturbance should be identified, along with its frequency
of occurrence and magnitude; this information is useful in evaluating the potential
need for and success of various design options. If the disturbance can be measured,
that should be noted for possible feedforward and gain scheduling control.

The sixth heading covers dynamic responses between all process inputs (dis
turbances and manipulated variables), and all outputs (controlled variables and con
straints). Naturally, this information is essential for control design. The models at
the design stage might be very qualitative (fast, slow), semiquantitative (dominant
time constants), or reasonably accurate (transfer function). The level of modelling
performed should match the accuracy required for the decisions made during the
control design; this design step might be less demanding than control implemen
tation, which can be based on empirical models when the controllers are tuned.

The seventh and final heading provides a location for special information that
does not fit under the other headings. For example, perhaps a particular flow should
not be adjusted rapidly because of the sensitivity of product quality to flow rate.
These special items, which require sound chemical engineering analysis of the
process, must be considered in process control design.

This form may seem a bit pedantic, requiring excessive documentation for
every decision; in fact, most control designs are performed in practice without
such extensive documentation. The form is used here because it provides an ex
cellent structure for beginning engineers who, after gaining proficiency, will often
be able to perform the analysis without the form. However, even the most experi
enced engineers benefit from this type of documentation for complex designs. It
is important to recognize:

Experienced engineers can sometimes bypass the control design form (CDF) docu
mentation, but they must perform a thorough analysis involving all information and
issues included in the CDF.

An excellent example of a control design definition is given in the 'Tennessee
Eastman Industrial Challenge Problem" (Downs and Vogel, 1993). While not or-



ganized in the same format as Table 24.1, this definition contains essentially the
same information and is sufficiently complete to enable independent teams to de
sign controls and compare results. Again, the definition in this realistic industrial
design is complex, and a clear, written presentation is essential.

The subsequent sections of this chapter discuss issues related to the six ma
jor design decisions made in control engineering based on the information in the
CDF. During the design, the engineer may find that the initial information is not
complete and may have to return to enter additional information or enhance the
measurements and final elements provided. In fact, the initial performance objec
tives might not be achievable with the initial process equipment and disturbances,
in which case the engineer must reevaluate the objectives and either relax the spec
ifications, alter the process design, or, if possible, reduce the disturbances. Such
iterations are a natural part of the design process and do not necessarily indicate
poor initial definition and analysis.
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The success of automatic process control, real-time monitoring, and long-term
performance tracking in improving plant performance depends crucially on mea
surements. The engineer must first determine the process variables to be measured
and select a sensor for each. In this section, several important issues in selecting
variables and sensors are discussed.

Measurement Feasibility
When the value of a variable is needed, it can be obtained from at least two real
time methods. First, it can be measured "directly" by a sensor; as an example, a
temperature can be measured by a thermocouple, although the actual value sensed
is the voltage generated for a bimetallic connection with nodes at two tempera
tures: the reference and process temperatures. This sensor is called direct because
the physical principle underlying the measurement is independent of the process
application, and the relationship between the sensor signal and process variable is
reasonably accurate. Examples of variables that can usually be measured directly
are level, pressure, temperature, and flows of many fluids. Also, the compositions
and physical properties of some process streams can be determined in real time
with on-stream analyzers.

In the second method, the variable cannot be measured, at least at reason
able cost, in real time, but it can be inferred using other measurements and a
process-specific correlation. Inferential control is covered in detail in Chapter 17,
so procedures for designing inferential variables will not be repeated here, except
to emphasize that the acceptability of inferential control must be evaluated on a
case-by-case basis. Examples of variables that are often inferred are composition
of vapor-liquid equilibria (from temperature and pressure) and chemical reactor
conversion (from temperature difference).

Not all variables can be measured or inferred in real time. These variables have
to be determined through analysis of a sample of material in a laboratory. When
the sample and analysis can be performed quickly, the laboratory measurement
value can be used for feedback control. There are many industrial examples of

Measurements
• Feasibility
• Accuracy
• Dynamics
• Reliability
• Cost
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controllers that use laboratory results and are executed every few hours, such as
the one described by Roffel et al. (1989). While not providing control performance
as good as would be possible with on-stream analysis, this approach usually gives
much better performance than not using the laboratory value.

Accuracy
As explained in Chapter 12, the term accuracy refers to the error between the true
process variable and the sensor signal. The error is a property of the sensor and,
usually, its range; thus, the range should be maintained only as large as needed
to measure the expected variation of the process variable about its normal op
eration. An associated property of the sensor is reproducibility, which indicates
the differences in the sensor signal at different times for the same value of the
true process variable. Often, sensors that provide good accuracy cost more than
those that provide only good reproducibility; therefore, it is important to recognize
which property is most important in a process control design and select the sensor
accordingly.

For example, consider the process and control design in Figure 24.2, which
includes cascade and feedforward. In determining whether accuracy or repro
ducibility is required, the key question is, "What is the purpose of the sensor?" For
example, the objective of the feedforward controller is to adjust the manipulated
variable for changes in the measured disturbance; therefore, it acts only on changes
in the measured disturbance. In this situation, reproducibility of FI (i.e., reliable
indications in the change of the disturbance variable) is more important than ac
curacy of the actual value. Similarly, the objective of the secondary controller in
the cascade, FC, is to respond quickly to disturbances; therefore, reproducibility
is again more important than accuracy. In contrast, the objective of the primary
feedback controller in the cascade, Al, is to maintain the key output variable at the
desired value; therefore, accuracy is required for this measurement. Analyses of

FIGURE 24.2

Example of feedforward-feedback control of a
distillation tower product quality.



TABLE 24.2

Measurement objectives for various control structures

Control design Measurement accuracy required
Only measurement
reproducibility required*

Single-loop feedback

Cascade
Feedforward-feedback

Gain schedule

Inventory

Production rate

Product quality or other key
variable

Primary controller
Measured variable for
feedback controller
Measured variable used in
correlation to determine tuning
Vapor: control must prevent
violation of pressure limits for
equipment

(1) The exact flow rate control
is required
or
(2) The measurement is used
to determine the sales volume

This is for control purposes; monitoring may require accuracy.

Tight control not important;
proper set point can be adjusted
infrequently by a person to attain
the desired operating condition
All secondary controllers
Measured disturbance for
feedforward

Liquid: reproducibility is
acceptible if the inaccuracy is
small with respect to the level
range
(1) Constant flow is important
and
(2) The goal is the proper average
production over a day
and
(3) The production can be
determined by accurate inventory
measurement
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sensor applications yield the summary of measurement objectives in Table 24.2,
which readers should verify for themselves.

Some sensors have inherent inaccuracies that, if significant for a particular
application, can be compensated in the input processing phase of the controller
execution. As an example, the relationship between the pressure drop across an
orifice and the volumetric flow rate is given by the equation

F = K.
AP

(24.1)

When the density of the fluid is not constant, both the density ip) and the pressure
difference across the orifice plate iAP) could be measured and the appropriate
calculation made in the control system to yield the corrected "measured" flow rate.

Dynamics
The dynamics of the process and sensors are present in the feedback loop and
therefore influence control performance. The first step to improve control is to
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select a location for the sensor that results in the fastest process dynamics in the
feedback system. For example, the analyzer Al in Figure 24.2 samples the vapor
before the large first-order system that would have occurred if the analyzer had
been downstream of the liquid inventory.

An estimate of the effect of sensor dynamics can be obtained by performing
either a dynamic simulation or a frequency response analysis of the closed-loop
system with and without the sensor dynamics. These analyses in Chapter 13 con
cluded that the sensor dynamics should be fast, certainly much faster than the
process dynamics. For common flow, level, pressure, and temperature sensors, the
dynamic response of the sensor is not usually a limiting factor in control perfor
mance, except for control of fast machinery systems. However, many analyzers
are slow, because of (1) their sampling systems, which extract material from the
process and transport it to a remote analyzer, and (2) the time for analysis. Thus,
these sensors often contribute substantial dynamic delay to the closed-loop system
and degrade the control performance. When this situation occurs, a common step
to improve the control performance is to use a fast sensor as an inferential variable
that can be reset in a cascade design by the slower analyzer controller.

Reliabil i ty
Sensors used in control systems must be very reliable, because the failure of a
sensor incapacitates the control loop and could lead to an unsafe situation. For
example, a failure of the reboiler flow sensor in Figure 24.2, if not identified
during input processing, could result in a zero value being used as the value of the
controlled variable in the controller calculation. Since the measurement would be
below the set point, the controller would rapidly open the reboiler valve completely,
which could cause a pressure surge that might damage the trays. Some sensor
characteristics that lead to lower reliability are (1) sensors contacting process
fluids, (2) poorly designed sample systems that plug or extract an unrepresentative
sample, and (3) complex chemical or physical analyses (Clevett, 1986). In many
designs these characteristics cannot be eliminated, and the engineer should expect
lower reliability.

Cost
The cost of a sensor is the total of equipment purchase, installation, maintenance,
and operating costs. Most sensors have small operating costs, perhaps a small
amount of electrical power for heating in cold weather; however, a sensor can
occasionally contribute substantially to plant operating costs. An example is a flow
sensor for gas in a pipe, where the standard orifice meter can be used to measure
the flow, but the nonrecoverable pressure drop across the orifice can be large. If
compression costs are significant, a sensor that has very low pressure losses (e.g.,
a venturi meter or pitot tube) could be used. The purchase and installation costs
of the alternative meter would be greater than for the conventional orifice, but its
total cost over several years would be lower.

Finally, the primary use of the measured value should be considered in se
lecting a sensor. Fast dynamics would be an important concern for sensors used in
feedback control. However, measurements for monitoring, especially longer-term
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process performance, may be satisfactori ly suppl ied by sensors that are slower or 775
of lower cost.

EXAMPLE 24.1.
In this example, the sensors in the preliminary flash design in Figure 24.1 are
considered. First, we notice that the sensors T2 and T5 are redundant and that
redundancy is not needed, because this is not a critical measurement. Therefore,
sensor T5 is removed. Second, it is noticed that the feed flow measurement F1
is located after the flash valve, where the material is composed of two phases.
However, the pressure drop across an orifice meter, which is the sensor principle,
does not accurately or reproducibly relate to the actual flow when the fluid has two
phases. Therefore, the flow meter location is moved before the first heat exchanger,
where the material is always one liquid phase in this example.

Third, the temperature indicating the flash, T6, is in the liquid inventory and will
not rapidly respond to changes in the drum inlet temperature. Since this tempera
ture will be used as an inference of composition, minimum feedback dynamics is
desired. Therefore, T6 is relocated in the vapor space, which has little inventory.
To provide a reliable indication regardless of the flow patterns in the drum, the
sensor is located in the pipe leaving the top of the drum.

EXAMPLE 24.2.
For the flash drum example, relate the sensors to the seven categories of control
objectives. Present the results in a table similar to the presentations in Chapter 7.

The following table summarizes the relationship between the control objec
tives and the sensors for the flash process:

Control objective Process variable Sensor

1. Safety Pressure in the closed vessel P1
2. Environmental protection
3. Equipment protection Liquid level in drum L1
4. Smooth plant operation Pressure in the closed vessel P1

and production rate Liquid in the drum L1
Feed flow rate F1

5. Product quality Liquid composition A1
Flash temperature (inferential) T6

6. Profit optimization Flow of steam F3
Flow of process fluid F2

7. Monitoring and diagnosis Flow rate of vapor product F4
Flow rate of liquid product F5
Process fluid exchanger duty and UA F1,F2,T1,T2,T3,T4

Additional sensors will be added in this chapter after new issues related to safety
have been introduced.
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FIGURE 24.3

Example of use of final
elements with small
and large capacities to
expand total range.
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FIGURE 24.4

Example of final elements that
allow in or out flow.
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FIGURE 24.5

Example of the use of final elements with
large and small capacities to improve
accuracy in manipulations.

All final elements that are adjusted by an automatic controller or adjusted frequently
by plant personnel must be automated. The automation of a final element requires
a power source that changes the final element's value, usually the percentage valve
opening, as determined by a signal transmitted from the control system. Many
other final elements whose values change very infrequently are not automated and
require a person to change their values manually at the equipment; thus, plants
also contain many "hand valves." Some of the important features for an automated
final element are discussed here.

Capacity and Precision
The final element should have the capacity to influence the manipulated process
variable over the required range. As an initial guideline, a control valve should be
60 to 70% open at design conditions, so that the valve has considerable additional
capacity to allow increased flow during disturbances or operation at increased
production rates. However, each control system should be evaluated individually
to ensure that the proper capacity exists.

Special designs are required when the range of the manipulated variable is
large. For example, the feed to the flash drum in Figure 24.3 can vary from a small
to a large amount of light, vaporized material. To accommodate the small, normal
flow, a valve with a small capacity could be provided. However, a valve with a much
larger capacity is provided to satisfy the infrequent, large vapor flow. The control
design, using split range, is shown in the figure. Another example demonstrates the
need to consider the sign of the manipulated variable as well as the magnitude. The
drum in Figure 24.4 normally has a small vapor product; however, sometimes there
is no vapor. To ensure that the pressure can be controlled for both cases, the pressure
controller must be able to manipulate the outflow of product vapor or an inflow of
a compatible gas. The control design, using split range, is shown in the figure.

A final element has a range over which it can accurately influence the manip
ulated process variable. For a typical control valve, the range of lowest to highest
flows would be on the order of 1:20; thus, the range is quite large. In special cases,
the control system might need to make quite small changes accurately when the to
tal flow is relatively large. A two-valve arrangement that achieves this objective for
strong acid-strong base pH control is shown in Figure 24.5. Normally, the larger
valve is held constant, and the much smaller valve is adjusted by the controller.
The larger valve is adjusted only when the smaller valve has reached a maximum
or minimum limit. Finally, cascade principles can be employed to improve the
valve performance by including a valve positioner, as explained in Chapter 14.

Dynamics
Again, slow dynamic elements in the feedback system degrade control perfor
mance. Therefore, the final element response should be much faster than that of
other elements in the system. Most valve percent openings are achieved within a
few seconds of a change in the signal to the valve, so that the valve dynamics are
negligible for all but the fastest process control systems.
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The failure position is selected to reduce the hazard to people and environment and
damage to equipment when the signal to the final element is lost (i.e., when the
signal to the valve attains its lowest value). Most valves are specified to go to either
fully open or fully closed upon loss of signal. The proper failure position of a valve
must be determined through an analysis of the integrated plant to determine the
proper manner for relieving, storing, and venting material during an emergency.
Naturally, the integrated plant must have the capacity to process (i.e., condense,
combust, or store) material that cannot be vented to the environment.
EXAMPLE 24.3.
In this example, the final elements in the preliminary flash design in Figure 24.1 are
considered. First, the valve in the liquid stream, v4, appears to be oversized, since
its capacity is about seven times the design flow. Therefore, the valve specification
should be changed so that the maximum flow through v4 is changed to 53%
opened at design for a maximum flow of about twice its design value.

Second, the valve v2 is located in the condensate line, which means that the
heat exchanger is behaving as shown in Figure 24.6a. In this design, the heat
duty depends primarily on the area for condensation, which has a much higher
heat transfer coefficient than the liquid-liquid film. As the valve is closed slightly,
the liquid flow decreases, the area for condensation decreases, and the heat duty
decreases. This is acceptable from a steady-state perspective; however, the dy
namic response of the process depends on the direction of change. Increasing
the duty is rapid because the liquid can flow quickly from the exchanger, but de
creasing the duty is slow, because the liquid must condense and accumulate in the
exchanger to reduce the area. A faster-responding design for both increasing and
decreasing the duty is shown in Figure 24.6b, in which the steam flow is adjusted.
Manipulating the valve in Figure 24.65 rapidly influences the steam pressure, and
thus the temperature difference for heat transfer, to provide the amount of conden
sation needed. To complete the water material balance, the liquid condensate is
collected in an inventory outside of the exchanger (in a steam trap), from which it
is returned to the steam generators. The design in Figure 24.6b is preferred and
will be used for the flash drum example.

Final Elements

Final Elements
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• Precision
• Dynamics
• Failure position

Steam Steam

Condensate
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FIGURE 24.6

Alternative process designs for condensing
heat transfer.
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24.5 n PROCESS OPERABILITY
One of the most important lessons in this book is that the process design and
operating conditions have the most significant influence on control performance.
Some processes are easily controlled; others require sophisticated algorithms to
achieve satisfactory performance; and some processes cannot perform as required
regardless of the type of control technology used. Thus, good control performance
is one of the important goals of process design. Often, the ease with which a process
is operated and controlled is referred to as operability. Some of the important
factors that influence operability from the perspective of control performance are
discussed in this section. The first topics address the possibility of control, and
later topics address the quality of control performance.

Degrees of Freedom
The process must have sufficient manipulated external (independent) variables
to control the specified (dependent) variables; if sufficient manipulated external
variables are not provided, the desired control performance will not be achievable.
Since the transient behavior is of interest, the degrees of freedom are determined
by analyzing the dynamic model of the process. As presented in Chapter 3, the
degrees of freedom of a system are

DOF = NV - NE (24.2)
with DOF = number of degrees of freedom, NV = number of dependent variables,
and NE = number of linearly independent equations. In modelling, we checked to
ensure that the degrees of freedom were zero so that the model was consistent with
the exactly defined problem statement. However, an essential part of the design task
is to provide a process that can achieve the specified control objectives; therefore,

The process without the controllers must have zero degrees of freedom when all
external variables have been specified, lb satisfy the control objectives, the number
of manipulated external variables in the process must be equal to or greater than the
number of dependent variables to be controlled.

The reason for the first requirement—zero degrees of freedom for the model—
was presented in Chapter 3. The second requirement is a minimum requirement so
that the process has the flexibility needed to satisfy the control objectives. If the
number of manipulated variables, i.e., control valves, is smaller than the number
of controlled variables, the system is overspecified and cannot achieve all objec
tives. In other words, an attempt is being made to control more variables than is
physically possible for a specific process design. Corrections include reducing the
number of variables controlled or adding flexibility to the process by increasing the
number of manipulated variables by, for example, adding heat exchangers, bypass
flows, and so forth. When the number of manipulated variables is greater than the
number of controlled variables, the system is underspecified; it is possible that the
control objectives can be achieved by many combinations of manipulated-variable
values, subject to further analysis of controllability and dynamic performance.



Since the plant should have a unique operating policy, additional objectives, such
as minimizing expensive fuel flows, can be added to the performance objectives.

When the controllers are added, the number of manipulated variables that are
externally determined does not change, but the external variables change from
the final element positions (for the open-loop system) to the set points (for the
closed-loop system).
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Selecting Controlled Variables
Process performance is defined in the control design form and generally depends
on many variables. It would be the best situation if we could measure and control
all of these variables; however, we often cannot. For example, the flash process
has two product streams and up to six components in each stream; therefore, the
product qualities and profitability of the process depend on many variables. We
generally do not measure all components in all streams and usually do not have a
sufficient number of manipulated variables to control all of these important vari
ables independently. Therefore, we must recognize that we are often implementing
partial control, in which only a subset of the process variables are measured and
influenced by the manipulated variables.

Partial control involves the measurement and control of a subset of the variables
important for satisfactory product quality and high plant profitability.

An important control design decision is the selection of variables to be mea
sured and controlled. This selection requires detailed knowledge of product quality
specifications and likely plant disturbances, as well as a thorough understanding
of process behavior. The selected variables should conform to the description of
dominant variables given in the following summary.

When dominant variables are maintained at their set points by automatic control,
the process achieves acceptable product quality and profitability for the expected
range of disturbances.

Many variables are influenced by the manipulations that are made to control the
dominant variables. For example, changing a reactor temperature changes all reac
tion rates, and changing a flash temperature changes all equilibrium compositions.
Naturally, the control of dominant variables cannot provide satisfactory process
performance over an unlimited range of disturbance types and magnitudes. Thus,
the engineer must evaluate candidates using fundamental and empirical models of
the process and knowledge of reasonable disturbances.

Two important design decisions are required for successful partial control.
The first decision is the choice of dominant variables that can be measured or very
accurately inferred from measurements. Since onstream analyzers are costly and
less reliable that sensors measuring temperature, pressure, flow, and level, some
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effort is directed toward finding process environment variables; however, onstream
analyzers are often required and can perform well when designed and maintained
properly. The second decision is the manipulated variables in the process. These
should yield a feedback system that provides controllability, rangeability (large
operating window), and good dynamic performance, as discussed in the next few
subsections.

This discussion of partial control concentrates on closed-loop automatic con
trol of processes. However, we must also recognize the importance of feedback
compensation that is effected through analysis and actions performed by plant per
sonnel at a much lower frequency than automatic control. Thus, the design should
provide sufficient measurements, online or laboratory, and adjustable variables
for this slow feedback correction. In this case, adjustable variables could be feed
composition (through changes to feed-type purchase), catalyst properties (through
gradual withdrawal and addition in fluidized beds), and equipment performance
such as heat exchanger duties (through mechanical cleaning).

Additional discussions of partial control and dominant variables with many
process examples are available (Arbel et al., 1996; Luyben et al., 1998).

Controllabil i ty
A process design with the necessary number of manipulated variables is able to
satisfy the proper number of objectives, but this circumstance is not sufficient to
ensure that satisfactory control can be implemented. An additional requirement is
that the process must be able to achieve the objectives for the specified controlled
variables by adjusting the specified manipulated variables. The requirement to test
this feature of the process is controllability, which was introduced in Chapter 20
for a multivariable process. The definition of controllability used in this book is
repeated here:

A system is controllable if the controlled variables can be maintained at their set
points, in the steady state, in spite of disturbances entering the system.

Recall that the system is deemed controllable when the steady-state gain matrix
relating the manipulated to controlled variables is nonsingular, that is, when its
determinant is nonzero. (If the number of manipulated variables is greater than
the number of controlled variables, the gain matrix must have a rank equal to or
greater than the number of controlled variables. This means that a subset of the
manipulated variables can be selected for which the square gain matrix including
all controlled variables is nonsingular.)

The controllability criterion was derived using the final value theorem, which
requires some limitations to be placed on the process transfer functions Gyis),
basically that each be stable. The use of the final value theorem precludes most
liquid levels, which are pure integrators and have transfer functions of the form
Gis) =k/s. Since most process plants have liquid levels, the method for determin
ing controllability should be extended to levels. To include integrating processes
and maintain a simple analysis, we choose to consider the rate of change of the



level as the controlled variable for the controllability analysis. Thus, the controlled
variable is sLis), and the transfer functions between the rate of change of level
and the manipulated and disturbance variables are constants and thus stable. Then
the final value theorem can be applied, and the test for controllability is valid. In
this case, the definition of controllability is modified to include the rate of change
of level being returned to its desired value of zero.

781

Process Operability

The analysis of degrees of freedom and controllability evaluates whether the speci
fied variables can be controlled by adjusting the specified manipulated variables in
the region for which the linearized model is valid.

This analysis does not indicate the control structure required to achieve stable
control or the range of disturbances that can be corrected; nor does it predict the
variability of controlled variables from their set points.

Operat ing Window
The degrees-of-freedom and controllability requirements ensure that for at least
some disturbances of very small magnitude, the control system can return the con
trolled variables to their set points. For practical control performance, the process
equipment must have the capacity or range to satisfy the control design objectives
for disturbances of expected magnitudes. When analyzing the steady-state perfor
mance of a process, the capacity is often represented by an operating window, as
presented in Chapter 20. The coordinates are important process variables, and the
region of acceptable performance is indicated as a "window" that is surrounded
by an "infeasible" region, which represents operation that is either undesirable
or not possible. The boundary or "frame" of the window is defined by the con
straints in the control design form, and an important function of the control design
is to maintain the process operation within the window. To achieve this goal, the
manipulated variables must have sufficient capacity.

Equipment sizing is often determined by a steady-state analysis that chooses
equipment designs (e.g., heat exchanger area, pump capacity, and distillation tower
diameter) to maintain operation within the window for a defined set of expected op
erating conditions, including disturbances. However, a steady-state analysis is not
always sufficient, because a process can exceed the steady-state limits of possible
operation during transients, as demonstrated by the following example.
EXAMPLE 24.4.
Consider the nonisothermal, continuous stirred-tank chemical reactor described
in detail in Section C.2. The nominal design operating conditions are the same as
given in Appendix C, Case I except for the inlet concentration, which in this exam
ple has an initial value of 1.0 and experiences a step change to 2.0 kmole/m3; thus,
this exercise investigates a dynamic response returning to the initial conditions.

The dynamic response of the system for the step in inlet concentration is
evaluated through numerical solution of the differential equations, and the results
are given in Figure 24.7, which shows underdamped behavior. The same data is
plotted in Figure 24.8 with concentration and temperature as the coordinates, and
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FIGURE 24.7

Dynamic response for Example 24.4.
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FIGURE 24.8

Steady-state operating window (solid) and dynamic
trajectory (dashed) for Example 24.4.

the solid line defines the steady-state operating window: that is, the entire region
of possible steady-state operation with Fc - 0.5 to 16.0 m3/min and CAin = 1.0 to
2.0 kmole/m3. The trajectory in response to the step in CAin from 1.0 to 2.0 is shown
as a dashed line with the arrows indicating the progression of time. Note that the
transient begins and ends within the steady-state window, which it must, but that it
violates the window by a considerable amount during the transient. This example
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Given the importance of maintaining the process variables within an acceptable
region and the fact that designing for a steady-state region does not eliminate the
possibility of violations during transients, some equipment may have to have a
greater capacity than required to meet steady-state demands in order to maintain
all variables inside the window during transients (Rinhard, 1982). Failure to con
sider dynamics could lead to process designs that cannot perform properly during
dynamic operation.

After the feasibility of control has been determined from the steady-state
analysis, the effect of process dynamics on control performance is evaluated. The
dynamic performance of control systems has been addressed throughout the book;
here a few of the major conclusions are reiterated. However, this is not a com
prehensive summary of important prior results, which would be very lengthy. The
highlights are separated into discussions of feedback and disturbance dynamics.

Feedback Dynamics
The first three items in this section addressed the possibility of control; now, the
performance issues are addressed. The process typically contributes the dominant
dynamics in the feedback system; therefore, improving the process dynamics is
especially important in improving control performance, as presented thoroughly
in Chapters 13 and 21. Feedback process characteristics that contribute to good
control performance include the following:

1. The process should be self-regulatory and open-loop stable, if possible.
2. The process dynamics should be relatively constant as operating conditions

change.
3. The process should have fast dynamics with a small dead time and no inverse

response.
4. The multivariable process should have favorable interactions.

The first characteristics are not required for good closed-loop control performance;
however, stable, self-regulating processes are easier to operate in open loop (i.e.,
manually). Since all processes are operated manually on some occasions, they are
included as good characteristics. The second characteristic of unchanging dynam
ics allows a controller with constant tuning to provide good control performance.
If the dynamics change significantly, methods in Chapter 16 may be applied to
compensate partially.

Fast feedback dynamics can be achieved by reducing transportation delays
through shortening pipes, reducing (numerous) time constants through decreas
ing inventories, and speeding thermal processes through lessening the accumula
tion terms associated with heat exchangers, tank walls, and so forth. These steps
improve feedback dynamics and usually also reduce equipment size and cost.
However, there is a limit beyond which process equipment cannot be modified,
and other approaches are required to improve dynamics. For example, additional
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improvements can be achieved by selecting the proper manipulated variable from
several available; an example of this approach is discussed here with respect to the
two temperature control systems in Figure 24.9a and b. The dynamics between the
cooling (or heating) fluid flow and the temperature in Figure 24.9a is slow, because
the temperature of the fluid and metal in the heat exchanger must be changed to
affect the controlled variable. The design in Figure 24.9b allows the ratio between
the flow through the exchanger and the flow bypassing the exchanger to be adjusted
to control the temperature. Thus, the design using the bypass would be preferred
when good control performance is required, although the equipment cost would
be slightly higher. Note that the engineer must be creative in adding flexibility in
the equipment for improved control.

Disturbance Dynamics
The basic objective of process control is to compensate for disturbances; there
fore, the process should be designed to reduce the occurrence and effects of distur
bances. Previous analysis has established that feedback control is improved when
disturbances have (1) small magnitude, AD, (2) small gain magnitude, Kd, (3)
favorable directions or interaction (small relative disturbance gain, |RDG|), and
(4) frequencies much higher than the bandwidth of the disturbance process (where
the open-loop amplitude ratio, \Gdija))\, is small) or much lower than the critical
frequency of the closed-loop feedback system.

Many disturbances originate externally, such as from feed composition and
cooling water temperature. However, the increased use of material and energy
integration in process designs has increased the likelihood that variation in the
process will negatively affect the dynamic performance of an associated process.
As a simple example, consider the chemical reactor with a feed-effluent heat ex
changer and exothermic chemical reaction in Figure 24.10a. With no temperature
control, an upset in the feed temperature affects the reactor inlet, which affects
the reactor outlet, which again affects the reactor inlet. Thus, an energy recycle
structure is created, which heightens the sensitivity to disturbances and could lead
to instability for highly exothermic systems. Naturally, the recycle structure could
be eliminated by using two exchangers with utility fluids: one to heat the feed and
a second to cool the effluent. However, that design modification would lose the
energy efficiency advantages of the design in Figure 24.10a.

ia)
FIGURE 24.9

ib)

Alternative heat exchanger control designs.
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FIGURE 24.10

Example of control design to reduce the effects of process integration.

An alternative way to improve the disturbance response and retain most of the
energy savings is to control the inlet temperature so that it is nearly independent of
the reactor outlet temperature. The approach requires an additional manipulated
external variable, which can be supplied with a bypass placed around the feed-
effluent heat exchanger. An additional heat exchanger—which would likely be
needed for startup anyway—may be needed to provide the heat duty lost due to
the bypass. As shown in Figure 24.10/?, the reactor temperature could be controlled
by adjusting the bypass around the feed-effluent exchanger, and the duty of the
utility exchanger could be adjusted so that most of the feed preheat is supplied by
the (inexpensive) heat integration.

Two general points demonstrated by this example can be applied to most mate
rial and energy recycle systems. First, feedback effects of disturbance propagation
due to a recycle can be attenuated by adding an alternative path or source/sink
where the recycle occurs. Second, the maximum steady-state benefit of process
integration cannot always be achieved because of the poor dynamic behavior; how
ever, most of the benefit can be realized by using the control methods demonstrated
here while maintaining good control performance.
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Inventory and Flow
Naturally, control of production rates and inventories is essential to good plant per
formance. The process should have sufficient inventories to ensure uninterrupted
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FIGURE 24.11
Use of inventory to improve
control performance: (a) flow
rate attenuation; ib) flow
property attenuation.

flows to pumps and smooth flow rate variations throughout the plant as shown in
Figure 24.11a. Good performance depends on the proper combination of inventory
size and level control, including a nonlinear feedback algorithm where warranted.
A straightforward manner for reducing the effects of disturbances in stream prop
erties, such as temperature and composition, is to locate an inventory between the
disturbance source and the controlled variable, but not in the feedback path, as
shown in Figure 24.llb. However, inventories have disadvantages such as cost
and hazards and large inventories are included sparingly—only when absolutely
necessary to improve dynamic operation.

The following examples evaluate the possibility of control for the flash exam
ple by analyzing the degrees of freedom, controllability, and operating window.

EXAMPLE 24.5. Degrees off freedom
To perform the quantitative aspects of the design analysis in this chapter, a model
of the flash process in Figure 24.1 is required. The goal of the model is to repre
sent the dynamic input-output behavior of the system with accuracy adequate to
make the design decisions correctly within the mathematical methods consistent
with this book. Therefore, the model presented here is simplified to involve al
gebraic and ordinary differential equations (not partial differential equations) and
approximate physical property data. The model is reported in Marlin (1995), and
the analysis of the model for control system design is presented in this example.

The physical system in this example is shown schematically in Figure 24.12.
The changes in sensors and final elements proposed in previous examples have
been included.

Assumptions 1. All volumes are well mixed. 2. Densities, heat capacities, and
heat transfer coefficients are constant. 3. Heat losses are negligible. These as
sumptions are common to all sections of the models.
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FIGURE 24.12
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Approximate system used for modelling the flash process.



TABLE 24.3

Degrees of freedom for the flash process
S e c t i o n 1

Number of equations
Number of dependent variables
Number of external manipulated variables

Total

11 13 24 18 65
12 13 24 17 65
1 1 1 2 5
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Analysis. The analysis begins with a summary of the degrees-of-freedom anal
ysis of the mathematical model, which is summarized in Table 24.3. The table
presents the analysis of each section separately; however, the condition of zero
degrees of freedom is required only for the complete process, not for any subsec
tion. With all sections considered, the degrees of freedom for the entire system can
be determined by summing the variables and equations to give DOF = 65-65 = 0;
thus, the system is exactly specified. Also, the total number of manipulated ex
ternal variables (valves) is 5; thus, no more than five dependent variables can be
controlled.

EXAMPLE 24.6. Controllability
Next, the controllability of the flash system is evaluated. Since five manipulated
variables exist, the possibility of controlling five variables is investigated. Con
trolled variables are selected so that the control system achieves the specified
objectives. Typical variables are the process feed flow (Fi) and the liquid product
quality (Ai measures the mole% ethane in the liquid product). The pressure of the
flash drum (Pj) should be controlled for safety and product quality, and the unsta
ble liquid level (Li) should be controlled for smooth operation and to prevent an
overflow into the vapor line. Recall that the controllability of the rate of change of
level, sLxis), is determined, because the level process is an integrating process.
Since this system is the same as the flash example in Chapter 17, which demon
strated that the flash temperature is a good indication of the liquid composition,
the temperature (T6) is provisionally selected as a fifth controlled variable.

The linear gains needed for the controllability check could be determined
analytically for simple models. In this example they were determined numerically
by introducing small changes in each manipulated variable and determining the
steady-state value of the variables FXtP\,AXt and T6 and the rate of change of the
level, Li. The resulting equations are as follows:

with K =

rFi i ry,iT6 V2
Ax = K «3
P
dL U4

L dt ^ Lu5J

detK = -6.7x 10"7 « 0.00

0 0 2.00 0 0 " I
0.0708 0.85 -0.44 0 -0.19
0.00917 -0.11 0.132 0 0.043
0.567 6.80 1.39 0 -5.86
0.0113 -0.136 0.31 -0.179 -0.0265 J

(24.3)
(24.4)

The result indicates that this 5x5 system is not controllable. The reason becomes
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FIGURE 24.13
Block diagram of effects of v\ and v2.

apparent when the values of the coefficients in the linearized models for vx and v2
are compared. The first and second columns in the matrix in equation (24.3) are
different by only a multiplicative constant, which indicates that these two manipu
lated variables have the same effect on all of the controlled variables. The lack of
independence can be seen clearly in the block diagram of the effects of vx and v2
on the controlled variables in Figure 24.13. Note that both manipulated variables
affect the flash temperature, and it is only through the effect on flash temperature
that they influence the other controlled variables. Therefore, it is not possible to
achieve independent steady-state values for any two controlled variables in equa
tion (21.3) by adjusting vx and v2. As a result, it is concluded that it is not possible
to control the five variables by adjusting the five manipulated variables in equation
(24.3).

However, it is possible to control a different selection of five controlled vari
ables in this process. For example, it is possible to control variables F\, Pi, A|,
and T2 and the rate of change of the level, sLx, with the five valves vt through vs.
This can be seen in Figure 24.13 by the fact that T2 is affected by vx but not by v2,
thus introducing an independent relationship.

Since T2 is not related to the control objectives, the decision is made to reduce
the controlled variables to four and eliminate one manipulated variable. Since no
control objective requires a specific behavior for T6, it is eliminated; also, one of the
two manipulated variables in Figure 24.13 must be eliminated: here, v2 is retained
and vx is eliminated. When this is done, the 4 x 4 system is controllable, as follows:

with K =

r Fi -I ru?iA i
P.
dL

= K "3
»4

— _ l ^ _L dt J

detK =-0.126 #0.00

r ° 2.0 0 0 1
-0.11 0.132 0 0.043

6.8 1.39 0 -5.86
L-0.136 0.31 -0.179 -0.265 J

(24.5)
(24.6)

EXAMPLE 24.7. Operating window
In addition to ensuring that the system is controllable, which is exact only in a
small (differential) region about the steady state, the operating window should be
analyzed to ensure that sufficient flexibility exists for expected changes in external
disturbances and set point changes. A sample operating window is given in Figure
24.14 for the flash process with the product composition (A1) and pressure (P1)
controlled at their set points and the design values for the other external variables,
such as feed composition. In this example, the limits to the window are from

1. The minimum external feed temperature, T2 = -10
2. The minimum feed flow, Fi = 60
3. The maximum heating (u2 fully opened)
4. The maximum flow of product (v4 fully opened)
5. The minimum heating (u, fully closed)

In all of these cases, the frame of the window was selected so that all control valves
are at least 5% from their limits of 0 through 100%; thus, all controlled variables
can be regulated, at least for small disturbances, within the window and on the
frame. Additional cases demonstrate that the process can satisfy the requirements
specified in objective 5a in the CDF. The large operating window involves the cost
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of purchasing larger equipment, and the capital costs must be balanced with the
advantages of flexibility.

Further development of the control system, including the proper utilization of
the T6 sensor and a strategy for adjusting the additional manipulated variable (u2),
is given in the next section on control structure.

The operating window depends to some extent on the control design. In Exam
ple 24.7 the window is determined assuming that both heating valves are adjusted
(by the control system) in response to the feed rate and temperature disturbances.
After the control design has been completed, we must ensure that this assumption
is satisfied; if not, we should reevaluate the operating window actually achieved
with the control system. For example, if only one heating valve were manipulated,
the size of the operating window would be smaller.

In conclusion, the process design and operating conditions have important
effects on control performance that should be carefully analyzed by the control
engineer. First, the possibility of control is determined by evaluating the degrees
of freedom, controllability, and operating window; if the results indicate that the
control objectives cannot be achieved, equipment sizing and process structures
would have to be modified. Second, those processes that satisfy the preliminary
criteria are evaluated for control performance, which depends on the feedback and
disturbance dynamic behavior. Quite simply, feedback dynamics should be fast,
and disturbance dynamics should have a small gain and long time constants.

24.6 ® CONTROL STRUCTURE

The control system should be designed to give the best performance possible for
the process. The comments here refer to multiloop control technology.
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Controlled-Manipulated Variable Pairing
The variable pairing should yield a loop with a significant process gain. If the
process gain is too small, the controller will not be able to return the controlled
variable to its set point when disturbances occur. If the process gain is too large,
the controller will be required to adjust the manipulated variable with great accu
racy; since such accuracy is usually not possible (for example, because of valve
sticking and hysteresis), oscillations will occur. The process gain can be expressed
in dimensionless form (scaled), iKp)s, by relating the variables to their ranges.

iKp)s = Kp
range of M V
range of CV

(24.7)

The typical range of values for this dimensionless process gain is 0.25 to 4.0.
Values outside this range are possible but should be evaluated carefully so that
satisfactory manipulated-variable capacity and sensor reproducibility are provided.
Note that this evaluation requires an estimate of the expected disturbances. The
control systems in Figures 24.3 to 24.5 demonstrate approaches to loop pairing
with extreme demands on valve range.

The loop pairing should be selected with regard to the effects of interaction
in multiloop systems. Analysis methods for multiloop systems were presented in
Chapters 20 and 21 (which the reader might review at this point) and are briefly
summarized as follows:

1. Automatic control should be provided for all non-self-regulatory or open-loop
unstable variables, because if they are not controlled, they will drift out of the
acceptable operating region. Manual regulation of such variables is difficult
and time-consuming for plant personnel; reliable process operation requires
automation.

2. Normally, variables are not paired when their relative gains are negative or
zero. This will make the tuning process easier and will result in better per
formance when some control loops are not functioning (i.e., are in manual or
have manipulated variables at their upper or lower limits).

3. The dynamics of the feedback loop pairings should be fast, with small dead
times and little inverse response. The most important controlled variables
should be paired to give fast feedback loops, even though this might somewhat
degrade the performance of some variables of less importance.

4. The pairings should be selected to reduce unfavorable interaction and increase
favorable interaction. The relative disturbance gain (RDG) can be used as an
indication of how a pairing might affect the control system performance.

Finally, when the system has an unequal number of controlled and manipulated
variables, the control structure should be able to alter the pairings to ensure that the
objectives are attained. Methods for decentralized multiloop control are split range,
signal select, and valve position controllers, which were presented in Chapter 22; a
method for centralized multivariable control is Dynamic Matrix Control, presented
in Chapter 23.
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The effects of disturbances should be reduced through good control design. Two
very effective designs that reduce the effects of disturbances are cascade and feed
forward control, covered in Chapters 14 and 15.

EXAMPLE 24.8.
In this example, the control structure in the flash process is considered. First, the
inventories should be controlled, and the natural pairings are the drum pressure
with the vapor exit valve (u5) and the drum liquid with the liquid exit valve (u4).
Also, the feed flow rate should be controlled, and valve u3 should give fast control.

Second, the measurements to be controlled are selected with considera
tion for the goal of partial control. The performance of this process depends
on concentrations of all six components in the two product streams, but all of
these compositions cannot be controlled with the process equipment provided.
The statement in the control design form indicates that not all variables are re
quired to be constant; only the concentration of ethane in the liquid must be
controlled. Therefore, ethane liquid concentration is a dominant variable for this
process, and we select this as a measured variable to be controlled. Since the
onstream composition sensor requires two minutes to analyze each sample, feed
back control will be rather slow. We recognize the close relationship between
the composition and the process environment variables pressure and temper
ature, and evaluate each for possible inferential/cascade control. Adjusting the
flash drum pressure to achieve acceptable composition would generally require
excessive pressure variation (and expensive vessels, pipes, and pumps); there
fore, we select temperature. The good inferential relationship between tempera
ture and composition in this process has been thoroughly analyzed in Section
17.2.

This cascade observes the design rules introduced in Chapter 14: the sec
ondary variable is measured, indicates important disturbances, depends in a
causal manner on the manipulated variable (uO, and has faster dynamics than
the primary, because of the slow primary measurement. Recall that adding this
controller does not change the degrees of freedom, because one external vari
able (the T6 set point) becomes a dependent variable, one equation (the con
troller) is added, and one external variable (the analyzer set point) is added.
Also, since the process equipment is unchanged, the operating window is not
affected.

Third, the control objectives state that the process fluid flow to the first heat
exchanger should be maximized before the steam is used to heat the feed. This is
a system with one controlled variable and two manipulated variables with a fixed
priority of adjustment. Therefore, a split range control design can be used. The
resulting design for the product quality control is shown in Figure 24.15. Again, the
split range controller does not violate degrees-of-freedom requirements, because,
as discussed in Chapter 22, only one valve is adjusted at a time. The controllability
of the system is ensured when either vx or v2 is manipulated, as indicated in Figure
24.13 and as can be verified by evaluating the appropriate gain matrix.

The loop pairing can also be analyzed using methods introduced in Chapters
20 and 21. For example, the relative gain array (RGA) can be applied to ensure
that the design does not violate guidelines such as not pairing on negative RGA el
ements. Following the suggestion of McAvoy (1983), the relative gain is calculated
using the self-regulating variables and the rate of change of the integrating level.
Thus, the steady-state gains for this 4x4 control system are those in equation

Control Structure
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Process
fluid Steam

FIGURE 24.15
Control design to speed feedback disturbance
response and optimize the use of heating
sources.

(24.5). The relative gain array is
v2 "3 u4 v5

F, 0 1 0 0
RGA = Ai 1.83 0 0 -0.83

P\ -0.83 0 0 1.83
dLx/dt 0 0 1 0

(24.8)

Based on selecting pairings with positive relative gains, the analysis recommends
the pairings Fl -» u3,Al -▶ v2 (which we have selected via T6 as a cascade),
PI _» „5i and Ll -» u4. The analysis confirms the "common sense" selections
based on semi-quantitative reasoning.

In conclusion, design of the proper control structure requires considerable knowl
edge of process dynamics, dominant disturbances, and equipment capacities. The
control structure is tailored to satisfy the performance objectives for the process
using the appropriate methods in Parts III through V.

24.7 n CONTROL ALGORITHMS

After the control structure has been selected, the algorithms and tuning can be
selected to give the best performance for that structure.

Feedback and Feedforward

Feedback control should be used extensively, because it corrects for all distur
bances, even unmeasured disturbances, that influence the measured controlled
variable. All of the feedback single-loop enhancements, such as cascade and gain
scheduling, should be considered to improve the control performance of a feedback
system. Feedforward control should be considered as an enhancement to feedback
control when the feedback process is difficult to control because of long dead time
and unfavorable interaction.
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The control algorithm should be matched to the application. In particular, most mmmmmmmmmmmmmam
feedback systems desire zero steady-state offset; therefore, this requirement should Control Algorithms
be satisfied by including the integral mode in the PID controller or by appropri
ate considerations in a model predictive controller. Based on its generally good
performance and widespread acceptance, the PID controller should be used for
most multiloop feedback control systems. Only when another algorithm provides
demonstrably better performance should it be chosen over the PID. There are
some cases, such as loops with inverse response or very long dead times [and large
B/iQ + xj\, where a predictive controller might give better performance.

The feedback controller should be selected to be relatively insensitive to mod
elling errors, and the associated tuning errors, for the expected range of errors.
Most single-loop feedback control algorithms satisfy this requirement. However,
sensitivity analysis showed that some multivariable control designs (e.g., decou
pling and centralized DMC control) are sensitive to certain model errors when the
process has strong interactions (i.e., large elements in the relative gain array).

Tuning
Tuning parameters for all algorithms should be based on a careful analysis of the
desired performance of all process variables. Typically, empirical methods are used
for determining models for tuning. However, fundamental models are very useful
for (1) verifying empirical results, (2) determining how model parameters depend
on process operation (e.g., throughput), and (3) providing models for complex,
nonlinear processes.

It is important to remember that the manipulated variable in a control system
(e.g., steam flow) is another plant variable. The engineers involved with plant
design and operations are responsible for ensuring the availability of appropriate
utility systems that can be varied to control the process. However, extreme variation
in the manipulated variable can cause disturbances in other units in the plant.
The typical relationship in feedback systems was covered in Chapter 13, where
it was shown that in the region of good tuning, the variability of the manipulated
variable increases as the variability of the controlled variable decreases. In most
cases, tuning can be selected to reduce the variability in the manipulated variable
significantly, with only a small increase in the controlled-variable variability. For
this reason, as well as for robustness, the controller is normally tuned to eliminate
extreme variability in the manipulated variable.

Often, the tuning parameters do not have to be modified in response to mod
erate changes in process operation, because the dynamic responses do not change
significantly over the range of operation. Recall that 10 to 20% errors in parameters
are common. However, if the changes in process operating conditions are large or
the process is highly nonlinear, the controller tuning should be adjusted in real
time to maintain stability and acceptable performance. Approaches for adapting
the tuning, having the goal of maintaining the same stability margin (and relative
control performance), were explained in Chapter 16.

Finally, the tuning of multiloop controllers must be performed with consid
eration of the interaction among loops. This issue, along with tuning guidelines,
was discussed in Chapters 20 and 21, where it was shown that the relative gain
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gives some indication of the extent that tuning must be adjusted to account for
interaction. Also, the relative importance of the controlled variables is considered
when tuning the controllers, with the tuning selected to reduce the deviation of the
most important variables from their set points.
EXAMPLE 24.9.
In this example, a few issues related to tuning the controllers for the flash process
are discussed. First, the order of the tuning is important. The level controller tuning
can be determined without experimental modelling using the vessel size, and
because the level is non-self-regulating, it should be tuned first. No specification
is placed on the variability of the liquid leaving the drum, and a proportional-only
controller with tight level tuning is selected because of the importance of not having
liquid carry over. Also, the pressure in the drum could easily exceed its limits and
should be tuned next using the standard methods. Then, the split range controller,
T6, will adjust t>i and v2. The dynamics between the valves and the temperature
sensor can be expected to be different, and the gain matrix in equation (24.3)
shows that the steady-state gains are different by a factor of about 12. Thus, the
tuning of the T6 PI controller should be adapted based on the condition of the split
range. Finally, the analyzer measurement is updated only every two minutes; this
long execution period for the feedback controller will require some detuning using
the guidelines from Chapter 11 (0' = 0 + At/2).

Control for Safety

• Basic process control system
• Alarms
• Safety interlock system
• Safety relief valves
• Containment

24.8 D CONTROL FOR SAFETY

Before completing the discussion on design decisions, safety must be discussed.
Safety is addressed in the first control objective, and some control decisions, such
as controlling the pressure in the flash process, have been made to satisfy safety
requirements. However, special control system features are required, because of
the importance of this objective. These features are often implemented in multiple
layers, with every layer contributing to the safety of the system by taking actions
only as aggressive as required for the particular situation (AIChE, 1993; Crowl
andLouvar, 1990).

Basic Process Control System (BPCS)

The first layer involves the basic process control approaches discussed in prior
sections, which employ standard sensors, final elements, and feedback control
algorithms. This first layer maintains the process variables in a safe operating
region through smooth adjustment of manipulated variables; this action does not
interfere with, but rather usually enhances, the profitable production of high-quality
material. However, the basic control system relies on sensors, signal transmission,
computing, and final elements, which occasionally fail to function properly. In
addition, the process equipment, such as pumps, can fail. Even if all elements are
functioning properly, the control system may not maintain the system in the safe
region in response to all disturbances; for example, a very large disturbance could
cause a deviation of key variables into an unacceptable region.

The basic process control layer can employ standard techniques to improve
its response to a fault. For example, the use of several sensors with a signal select
reduces the effect of a sensor failure. (An example is the temperature control system



in Figure 22.10, which can reduce the likelihood of a temperature excursion due to 795
the failure of a single temperature sensor.) Also, the use of split range control allows mhmmm^mmmmm
a controller to manipulate an additional (e.g., larger-capacity) valve in response Control for Safety
to an unusual circumstance. An example of this approach is given in Figure 24.3.
However, these techniques do not reduce the likelihood of injury or damage to
an acceptably low probability; therefore, additional layers are implemented to
improve safety.

Alarms
The second layer involves alarms, which are automatically initiated when variables
exceed their specified limits. These alarms involve no automatic action in the
process; their sole purpose is to draw the attention of the process operator to a
specific variable and process unit. The person must review the available data and
implement any actions required. A great advantage of involving operators is their
ability to gather data not available to the computer. For example, an operator can
determine the values of instruments that display values locally and can check the
reliability of some sensors as part of the diagnosis. The operator usually takes
action through the process control system; these actions could include placing a
controller in manual status and adjusting the manipulated variable to a new value.
Since the final element may not be functioning, the operator has the option of
going directly to the process and adjusting the valve manually (or having this task
performed by another person).

It is good practice for the alarm to be based on an independent sensor, because
using the same sensor for alarm and control prevents the alarm from identifying
the failure of the sensor to indicate the true value of the process variable. An alarm
is shown on a process drawing with a three-letter identification; the second letter is
"A" to designate alarm and the third letter is either L (low) or H (high). For example,
PAH indicates an alarm when the pressure measurement exceeds its high limiting
value. The alarm is usually annunciated by activating a visual indicator (e.g., a
blinking light) and an audio signal, beeping horn. These signals continue until the
operator acknowledges the alarm; thereafter, the visual indicator remains active
(e.g., a nonblinking light) until the variable returns within its acceptable limits. The
blinking light indicates the variable involved, its current value, its alarm priority,
and whether the variable has exceeded its high or low limit. Alarms can be arranged
into three levels, depending on the severity of the potential consequences of the
process fault or upset:

LEVEL 1 (HIGH). These alarms are designed to indicate conditions requiring
prompt operator action to prevent hazards or equipment damage. Special color
and visual displays and a distinct audio tone should be used to alert the operator.
Examples of level 1 alarms are high pressure in a reactor; low water level in a
boiler; and activation of a safety interlock system that has stopped operation of
some processes (see next topic).

LEVEL 2 (MEDIUM). These alarms are designed to indicate conditions re
quiring close monitoring and operator action to prevent loss of production or other
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costly (but nonhazardous) situations. The operator typically has some time to an
alyze the alarm, along with other measurements, and make corrections that can
maintain the process in an acceptable region of operation. These alarms should
be annunciated in the same general manner as the level 1 alarms, although with
distinct colors and tones.

LEVEL 3 (LOW). These alarms identify conditions that are not critical to the
operation of the process and require no immediate action by the operator. These
can be entered directly into a database for occasional review by the operators and
engineers. These alarms should not be annunciated.

Some care must be taken in designing alarms. The major issue is the overuse of
alarms. Kragt and Bonten (1983) report that an operator in an industrial processing
plant experienced an average of 17 alarms per hour and that the operator took an
action after only 8% of these alarms! Most of the alarms were not necessary and
needlessly distracted the person. Such poorly designed alarm systems lead to lack
of attention by the plant personnel to the occasional, but critical, important alarm.

Safety Interlock System (SIS)
The third layer involves automatic feedback control for situations when process
variables approach "hard" constraints that should not be exceeded; these could
cause injury to people or the environment or damage to expensive equipment.
Because of the importance of preventing such situations, the actions taken are
extreme and disrupt the process operation; usually, they stop all or part of the
process operation by immediately closing (or opening) key valves to move the
process to a safe condition. These control systems are termed safety interlock
systems (SIS) or emergency shutdown systems (ESS).

As with alarms, this control layer should use a sensor independent of the
basic control system; in addition, this automated system should use a final ele
ment independent of the basic control system. The equipment selected for this
purpose must be of the highest reliability possible. Depending on the severity of
the consequences, this layer may use several sensors and final elements. In some
applications, three sensors are used, and the feedback control system bases its deci
sion on the majority of the three; this approach prevents an occasional (individual)
sensor failure from stopping process operation, while identifying an actual dan
gerous condition with high reliability. The control action taken is straightforward
and simple to implement. Typically, a solenoid valve, which is normally closed to
hold the air pressure to the pneumatic valve at a high value, opens and vents this
pressure to atmospheric upon receiving a failure signal, allowing the pneumatic
valve to attain its failure position. If this action is taken on a valve that is also
used for basic process control, the solenoid valve is placed between the controller
output and the valve; thus, under normal circumstances, the controller adjusts the
control valve without alteration, whereas a failure signal disconnects the controller
output from the valve, which goes to its failure position.

The valve selected for use in an SIS should have a capacity large enough to
handle the largest expected flow. For example, a valve to vent a distillation tower
may be based on a situation in which the condenser fails. Also, the manipulated
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to maintain the process in the safe region; thus, dead times and time constants i^-v.^Vv^^r.^^a,:.^,^.^,;^1,',-.!
should be small. The limiting value for the initiation of the SIS is selected to be in Control for Safety
the safe region and far enough from the undesired value that the largest expected
disturbance will not cause an unsafe condition.

The manner in which a safety interlock system is shown on a process drawing
depends on the complexity of the logic. If only one measurement is compared with
its low or high limit, a two-letter designation is used, with the second letter being
"S" for switch; for example, LS is a switch that changes state based on a level
measurement. If the logic is complex, perhaps using many sensors, all measured
signals are connected to an "SIS" symbol, and the SIS is connected via signal lines
to all manipulated valves (or motors, etc.). Separate documentation is required for
the more complex SIS systems.

Safety Valves
The fourth layer involves feedback systems that are self-actuating, that is, which
do not require electrical, pneumatic, or hydraulic power sources and have no sig
nificant distance of signal transmission. These features contribute to very high
reliability. The major application at this layer is the safety valve, which is a valve
normally held closed by a spring. When the pressure reaches the preset limit, the
force due to the process pressure is high enough to overcome the force of the spring,
and the valve begins to open. When the process pressure decreases, the safety valve
is designed to close. The engineer must be sure that the material flowing through
the safety valve can be either (1) released to the environment safely (e.g., steam),
(2) processed to eliminate hazards (e.g., combusting hydrocarbons), or (3) retained
in a containment vessel for later processing (e.g., wastewater storage and nuclear
plant containment building).

These layers should be carefully designed, properly installed, and meticu
lously maintained. Through good or poor practices, the high level of safety may be
enhanced or compromised. A few of these good practices are given in Table 24.4.

TABLE 24.4

Good Practices in Control for Safety

1. Never bypass the calculation (logic) for the SIS; that is, never turn it off.
2. Never mechanically block a control valve so that it cannot close.
3. Never open manual bypass valves around control and shutdown valves.
4. Never "fix" the alarm acknowledgment button so that new alarms

will not require the action of an operator.
5. Avoid using the same sensor for control, alarm, and SIS.
6. Avoid combining high- and low-value alarms into one indication.
7. Evaluate the selection of alarms critically. Do not have too many alarms.
8. Use independent equipment for each layer, including computing equipment.
9. Select emergency manipulated variables with a fast effect on the key process variable.

10. Use redundant equipment for critical functions.
11. Provide capability for maintenance testing, because the systems are normally in standby.

mawkmMmm
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The final layer involves containment, such as dikes, for major incidents. This layer
may not prevent major hazards, but it can prevent their propagation to other sections
of a plant and to the surrounding community. Other design issues, such as reliable
electrical power supply, are also important for safety control; these are covered in
the references.

EXAMPLE 24.10.
In this example, safety controls for the flash process are considered, and the
results are shown in Figure 24.16.

There are several issues at the basic process control system layer. First, the
pressure in the closed vessel should be controlled, and the valve in the overhead
vapor line is a natural choice for the manipulated variable, because it has a very
rapid effect on pressure. Second, the liquid level should be maintained within rea
sonable limits, and the valve in the bottom exit is a natural choice for manipulation.
To prevent the liquid flow through the pump from falling below the minimum, the
level controller could reset the flow controller set point, with the set point bounded
to always be above the limit. Third, the use of a temperature cascade improves
the reliability of the product quality control, because the analyzer would be much
more likely to fail than the temperature sensor. Finally, the failure positions of the
valves are selected to reduce the likelihood of high pressure, high temperature,
and an overflow of liquid in the vapor line.

The alarm layer could conceivably include high and low alarms on every
variable, but this would lead to excessive interruptions for the operator. Here,
alarms will be placed on high pressure and high and low level. The analyzer
measurement would normally not be alarmed unless composition variation led to
unsafe conditions.

An SIS system would not normally be employed in this process. However, as
an example, we will assume that the objective of preventing a liquid overflow in
the vapor line from the drum is critical [see Kletz (1980) for an industrial example].
A different type of sensor is used for the SIS; this sensor provides redundancy

To flare
^ — & * ~

FIGURE 24.16

Safety-related controls for the example flash process.



and d ivers i ty at the SIS level . This level sensor is used to determine when the 799
level approaches the limiting value and to activate the emergency action to re- vummmm^msm^^mm
duce the feed flow to zero. Both the control valve and an independent valve are Performance
used to enforce this SIS. When the safety interlock system activates, the process Monitoring
will experience a major disturbance, and the product will not observe the quality
specifications.

The drum can be closed by the (improper) operation of the control valves;
thus, a safety valve should be included, as shown in the figure. The combustible
material must be contained or processed; typically, it would be diverted to a plant
fuel system or combusted in a flare.

The multiple-layer approach described in this section provides excellent pro
tection for most chemical processes. The reader must be aware of the importance
of excellent detailed design and construction of equipment for safety control. This
section simply presents some introductory concepts and is not meant to teach the
practice of safety in design. The novice should refer to the many industrial stan
dards and engage experienced consultants when designing safety control systems.

24.9 n PERFORMANCE MONITORING

Monitoring should be considered at the design stage to ensure that the important
performance measures are identified and that the sensors with required accuracy
are provided. The most important purpose of short-term monitoring is to enable
the plant operator to diagnose incipient problems, preferably before the problems
worsen and cause major upsets. The purpose of longer-term monitoring is not
only to record the performance but also to diagnose the reasons for good and poor
performance. The results of this diagnosis can be used by the engineer as a basis
for improving product quality, equipment performance, and profit through changes
in operating conditions, control designs, and process equipment.

Real-Time Monitoring for Process Operation

The plant operators are part of the overall "control system"—that is, they are re
sponsible for many feedback control tasks that are not automated, such as switching
from one feed tank to another. Also, they are responsible for supervising the pro
cess equipment and automatic control system. To perform these tasks, operators
require a thorough understanding of the process, along with rapid access to many
measured values. The system designer must recognize that because the diagnosis
of the control system, including sensors, is an important task, the operators need
parallel information on key variables provided by independent sensors. The alarm
feature of control systems, discussed in the previous section, can help the operator
monitor hundreds of variables by drawing attention to variables that are outside of
their normal operating ranges.

Variabil ity of Key Process Variables
Individual measured variables can be analyzed as part of a longer-term monitoring
program. The average values of most important variables provide a quick indication



800

CHAPTER 24
Process Control
Design: Definition and
Decisions

of the process performance, and when the average is not close to the desired value,
improvement is clearly in order. However, good performance is not ensured when
the average conforms to the desired value, as demonstrated in Chapter 2. The vari
ability is important in determining the plant performance, because average process
performance depends on the length of time each variable spends at values in the
distribution. This concept is shown in Figure 24.17. The average performance
can be calculated from the empirically measured distribution without making as
sumptions concerning the normality of the distribution, and a broad distribution
indicates considerable operating time far from the best conditions, even if the
average conditions seem acceptable.

The total number of incidents also gives valuable insight into performance.
One type of incident is the activation of alarms, with each important alarm moni
tored separately. Care should be taken in monitoring alarms, because one process
disturbance can cause numerous alarms before the plant operation is returned to
normal conditions. Other incidents include the number of times important con
straints are violated, such as products outside specified quality limits, and the
activation of safety interlock systems. Each major incident provides valuable in
formation on the performance of the process and controls, which can be used in
designing improvements.

Calculated Process Performance
In many cases, the performance of important process units can be estimated from
measured variables. Some of these variables indicate the overall performance of
the plant (e.g., energy consumption per kilogram of product sold). These are useful
in indicating the overall performance but not usually complete enough to direct

wvV

-C&H-

y-»-Q-D%r- -D%H.

Process
variable

FIGURE 24.17

Schematic of the procedure relating a key process
variable to performance.
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individual units provides very useful information. For example, the efficiency of a hM^^w^aai^M«aWi
boiler gives insight into the performance of the excess-air control system, as well The Flash Example
as other factors such as the heat transfer coefficients. Commonly monitored calcu- Revisited
lated variables are compressor and turbine efficiencies, heat transfer coefficients,
fired-heater efficiencies, and the selectivity of chemical reactions to desired versus
undesired products.

Util ization and Performance of Control

The fraction of time that each control system is in operation in automatic should be
monitored. Although this information cannot be used to diagnose control perfor
mance, a low service factor (time used/time should be used) is a clear indication
of unsatisfactory performance, at least in the opinion of the process operators.
More information can be determined from dynamic plant data on the performance
of the control system. Methods are available for estimating (1) the best possible
feedback control, (2) the improvement possible with feedforward control, and (3)
likely deficiencies in the existing control system (e.g., feedback controller tuning
or feedforward disturbance model). These methods rely on mathematical analysis
that is beyond the level of this book, but they require only simple interpretation of
graphical results by plant personnel after they are implemented (see the Additional
Resources in Chapter 9).

EXAMPLE24.i l .
In this example, monitoring for the flash process in Figure 24.1 is discussed. First,
the averages and standard deviations of important process variables should be
calculated from real-time data. Typically, the most important variables would be
the flow rates, the flash temperature, and the liquid composition. The loss of heavy
material in the vapor could be monitored through infrequent samples analyzed in a
laboratory. Second, an appropriate sensor should be selected if an accurate mea
surement of the vapor flow rate is needed, perhaps for a record of sales. If an orifice
meter is used in a stream with changing pressure, composition, or both, the den
sity and the pressure drop are required to measure the mass flow rate accurately.
Finally, the process performance would depend on the heat transfer coefficient in
the process fluid heat exchanger. This could be monitored using measured tem
peratures and flows. A low value of the heat transfer coefficient, based on process
data that satisfied material and energy balances (and thus is considered accu
rate), along with high steam use would indicate poor performance. Performance
could be improved by taking the heat exchanger out of service for a short time to
clean the surface.

24.10 ® THE FLASH EXAMPLE REVISITED

The original design in Figure 24.1 has been discussed in the examples in this
chapter, where the improvements summarized in Table 24.5 were proposed. The
final design, which incorporates all improvements except the SIS on high level, is
shown in Figure 24.18. This design satisfies the objectives in the control design
form and is typical for industrial systems.
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TABLE 24.5
Summary of design decisions for the original flash process

Design decision
Measurements

Final elements

Process

Control structure

Algorithms

Safety

Monitoring

Fi moved to one-phase flow region
T5 redundant measurement removed
r6 moved to vapor space for faster response
v2 changed to steam flow
u4 reduced maximum flow
Analyzed degrees of freedom; five manipulated variables exist
Analyzed controllability to determine that only four (meaningful)
variables can be controlled
Operating window large enough to satisfy objectives
Cascade from Ax to T6 inferential variable
Split range to adjust both heating valves
Standard PI control except for P-only level controller
Adaptive tuning for T6 when changing the split range
Basic regulatory control of inventories with minimum liquid flow
Valve failure modes
Alarms on pressure and level
Safety interlock system for high level
Correct vapor flow for density
Monitor heat exchanger UA
Monitor product quality iA{) variance

QS±U
FIGURE 24.18
Modified design for the flash process incorporating improvements in
Table 24.5.

EXAMPLE 24.12.
In this example, the dynamic responses for the flash process in Figure 24.18 with
recommended control is evaluated for a step change in feed composition, with the
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Transient response for final flash process and control design for the feed composition
disturbance.

ethane increasing 5 mole% and the propane decreasing by the same amount. The
transient behavior is shown in Figure 24.19. The ethane in the liquid is maintained
within the specified limits of 10 ± 1 mole% during the transient and returns to its
set point; if the analyzer feedback were removed, the ethane concentration in
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the liquid product would exceed the acceptable limits during the transient and at
the steady state. Other cases demonstrated that the design, including analyzer
feedback, could maintain the ethane in the liquid within the limits for the other
disturbances defined in the control design form in Table 24.1. Thus, this process
and control design is deemed acceptable.

24.11 ® CONCLUSIONS

Many issues must be considered in control design. Assuming that the principles
in the previous parts of this book have been mastered, the challenges in design are
to (1) recognize the issues important for control along with potential results and
(2) develop a method for addressing the design task.

This chapter addressed the first challenge by presenting issues in the six cate
gories of control design decisions: sensors, final elements, process design, control
structure, control algorithms, and monitoring. Naturally, the issues discussed were
not a complete listing of all possible items, but they included the most important
issues in typical systems. The analysis of degrees of freedom and controllability
were reviewed and their applications to control design demonstrated. Again, we
see the importance of the process equipment design and operating conditions on
process control, since these determine the operability of the system.

The control design form (CDF) was introduced in this chapter to address the
second challenge. By completing the CDF, the engineer can begin the problem-
solving task with a complete problem definition without prejudging possible de
signs. The format provides a helpful checklist with sufficient memory aids to enable
the engineer to address all of the important topics.

In addition, the engineer would benefit from a road map for the analysis and
decision making during the design process. Is it best to start with the sensors, with
the process, or with the algorithms? This important topic is covered in the next
chapter, where a sequential design method, with checks for iterations, is presented
along with some additional examples.
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Process and control designs are based on analysis of process behavior and con
trol structure performance. This analysis may be analytical, numerical, or semi
quantitative, depending on the type of information available and the necessary ac
curacy of the results. The problems in this chapter give opportunities for all three.

QUESTIONS
24.1. id) When pumping or compression costs are high, incentive exists for

controlling flows at minimum cost. Suggest approaches for controlling
flow rates with low pressure drops across sensors and valves.

ib) Discuss the response of systems when the sensor, rather than the valve,
fails to function properly. How can safety be ensured in such situations?

(c) Discuss a quick method for determining the maximum number of vari
ables that can be controlled for a completed process design. Assume
that a detailed process schematic (piping and instrumentation drawing)
is available, but a detailed mathematical model is not.

id) Discuss why controllability is analyzed with a linear model whereas
the operating window is determined based on a nonlinear model.

ie) If a system is controllable and has a sufficient operating window, will all
possible loop pairings provide stable dynamic performance (assuming
proper constant tuning)?

if) If the process dynamics are overdamped, would variable values be
tween two steady states within the operating window remain within
the window during the transient response?

24.2. id) Generalize the controllability test for non-self-regulating systems.
ib) The definition for controllability employed in this chapter is appropri

ate for many, but not all, processes. Discuss other definitions (e.g., for
batch processing) and define appropriate tests.

(c) The test for controllability requires a "square" system (i.e., one with
the same number of manipulated and controlled variables). What if
the number of manipulated variables is greater than (or less than) the
number of controlled variables?

24.3. The design for the mixing process without reaction in Figure Q24.3 is to
be analyzed. Additional information is

(1) The inlet stream consists of two components A and S with equal
densities.

(2) The pressures P\, P2, and P4 are determined externally.
(3) Pressure P3 is constant.
(4) All pressure drops occur across the control valves.
(5) The tank is well mixed.
(6) The installed characteristics of the valves are linear.

ia) Develop a dynamic model for this process and analyze the degrees of
freedom.

ib) Based on this drawing, determine the maximum number of variables
that can be controlled (without equipment changes).
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(c) Determine whether the system is controllable when controlling the
feed flow rate and the tank level with the valves shown. Add sensors
and sketch the design.

id) Determine whether the system is controllable when controlling the
tank level and tank concentration (jca) with the valves shown. Add
sensors and sketch the design.

ie) Reconsider part id) above with the following process modification. A
new pipe and valve (V3) are added to inject a flow of pure component
A into the feed stream. All three valves are available for manipulation.

24.4. Review the excellent design problem published by Downs and Vogel (1993).
Transfer this problem statement into a specification in a control design form.
Can you completely translate the statement into the form? Is it easier to
read in this form than in the original paper?

24.5. The chemical reactor in Figure Q24.5 has the following properties: well
mixed, isothermal, constant volume, constant density. The chemical reac
tion occurring is A -»• B with the reaction rate r& = —kC^. The concen
trations of the reactant and the product can be measured without delay.
id) The total feed flow (F) and the feed concentration (Cao) are the poten

tial manipulated variables for the reactor effluent composition control.
Construct a regulatory control scheme that will control these two vari
ables (F, Cao) simultaneously to independent set point values, and
sketch it on the figure. You may place the sensors and final elements
for these variables anywhere you think appropriate.

ib) Derive a dynamic model for Cr(.s)/Cao(-s)- Analyze the model re
garding (i) order, (ii) stability, (iii) periodicity, and (iv) step response
characteristics.

(c) Derive a dynamic model for Cb is)/Fis). Analyze the model regarding
(i) order, (ii) stability, (iii) periodicity, and (iv) step response charac
teristics.

id) Based on the results in ib) and (c), which of these two manipulated
variables would provide the best feedback control for Cb for a set point
change using PI feedback control?

24.6. Part of a proposed control design for a blending process is given in Figure
Q24.6. In addition, the composition of A is to be controlled by adjusting one
or more flow set points. The objectives are to control the product flow tightly
and the composition as tightly as possible; disturbances are in component

Solvent

U*

FIGURE Q24.5
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compositions and changes to the product flow set point; no constraints are
encountered. Critically evaluate the proposed control, make any changes
to provide closed-loop flow control, and design the composition feedback
control.

24.7. Discuss the need for accuracy or reproducibility for the sensors in the
control designs in the following figures: 15.12,15.13,17.16, V.2, and 22.10.

24.8. The level process with control design in Figure Q24.8 is proposed to you.
Evaluate whether the system can maintain the levels within their limits for
changes in the flow from tank 2. Estimate the control performance and
make changes, if required, to provide satisfactory performance.

PI controller

t % =
P-only controller

FIGURE Q24.8

24.9. The well-mixed, constant-volume chemical reactor with separator and re
cycle in Figure Q24.9 is considered in this question. The reactor has a
single reaction A ->• B with rA = —kC&. The separator makes a perfect
separation of the product and the pure reactant, which is recycled to the
reactor feed, and the separator dynamics and transportation delays are very
fast and will be assumed at quasi-steady state.
id) Assume that the fresh feed rate (Fi) is controlled constant. The ma

jor disturbance is temperature, which can be taken to be a change
in the reaction rate constant. Based on a dynamic model of the pro
cess, determine an analytical relationship between the disturbance
and (1) the recycle flow and (2) the reactor concentration. Determine
how the dynamic behavior is affected by the steady-state conversion,
(Cao — Ca)/Cao-

ib) Discuss the factors that would influence the choice of the best reactor
conversion in a typical industrial process.

ic) Determine a simple change to the control design that substantially
reduces the effect of the disturbance (without controlling temperature).

24.10. If you have not completed questions 15.2 and 18.13, it would be worthwhile
to do them now.



Fx F

V

uPure A [

Product\
. 1

PureB

Fr
Pure A

809

Questions

FIGURE Q24.9

24.11. The design in Figure Q24.ll is proposed for an isothermal, well-mixed
CSTR with a single reaction, A -» B with rA = -kC\. The main distur
bance is a steplike disturbance in the feed flow rate, and real-time measure
ment and control of the compositions is not possible. Evaluate the control
performance (i.e., the deviation of the composition) for (a) perfect PI con
trol of the level (the level exactly remains at its set point at all times) and ib)
P-only control of the level. Which approach gives a smaller deviation for
the compositions from the initial conditions at the final steady state? Does
your answer depend on the tuning of the P-only controller? If so, what is
the best value of the controller gain?

24.12. Given the process schematic in Figure Q24.12 and the following data,
determine the heat transfer coefficients for the three heat exchangers, and
explain the assumptions you made in performing the calculations. If you
performed this analysis over a long period of time, what useful information
would you determine?

Tx = 20, T2 = 42, T3 = 45, T4 = 68, T5 = 76, T6 = 88, T-, = 71,
T% = 75, T9 = 31°C

Fx = 50, F2 = 50, F3 = 56, F4 = 150 m3/h
p = 0.8 x 106g/m3 and Cp = 0.75 cal/(g °C) for the streams measured

by Fj and F2
p= l.Ox 106g/m3 and Cp = 1.00 cal/(g °C) for the stream measured

byF3
p = 0.75 x 106g/m3 and Cp = 0.1 \ cal/(g °C) for the stream measured

by F4

h-©-

^
-C&r-^

FIGUREQ24.il

24.13. Expand the following designs by adding (i) alarms, (ii) safety valves, (iii)
final element failure directions, (iv) emergency safety controls, and (v)
sensors for monitoring process performance. You may add sensors or final
elements as necessary; also, specify whether each sensor should provide a
signal that is highly accurate, or merely highly reproducible.
ia) The fired heater in Figure 17.17
ib) The distillation column in Figure 21.14

24.14. The CST mixing process in Figure Q24.14 is proposed. The goal is to con
trol the effluent composition and temperature. Evaluate the design, suggest
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a proper loop pairing, and suggest process or control objective modifica
tions, if necessary.

24.15. A gas distribution system for a chemical plant is shown in Figure Q24.15.
Several processes in the plant produce gas, and this control strategy is not
allowed to interfere with these units. Also, several processes consume gas,
and the rate of consumption of only one of the processes can be manipu
lated by the control system. The flows from producers and to consumers
can change rapidly. Extra sources are provided by the purchase of fuel gas
and vaporizer, and an extra consumer is provided by the flare. The rela
tive dynamics, costs, and range of manipulation are summarized in Table
Q24.15.
id) Complete the blank entries in the Dynamics column in Table Q24.15.
ib) Design a control strategy to satisfy the objectives of tight pressure

control and minimum fuel cost. You may add sensors as required but
make no other changes.

ic) Suggest process change(s) to improve the performance of the system.
(Hint: Before designing the controls, determine the correct response
for all valves as the ratio of producing to consuming gas flows changes
from much greater than 1.0 to much less than 1.0.)

24.16. The dynamics of an isothermal, constant-volume, constant-feed flow rate,
well-mixed CSTR are to be evaluated for feedback control in this question.
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TABLE Q24.15

Flow Manipulated Dynamics Range (% off total flow) Cost

Producing
Consuming
Generation
Purchase
Disposal

No
Only one flow
Yes
Yes
Yes

Fast
Fast

0-100%
0-20%
0-100%
0-100%
0-100%

n/a
Very low
Low
Medium
High

The feed consists entirely of component A, the chemical reaction is

A # B

and the rates are first-order for both directions.
ia) Derive the dynamic model of the input-output system between CAo and

Ca- What conclusions can be determined regarding stability, periodic
ity, and either overshoot or inverse response for a step input? Describe
the expected control performance for a step set point change. What tun
ing method could be used for a PID controller? Would you recommend
feedforward control to improve the performance for a disturbance in
temperature?

ib) Answer questions ia) for the input-output system Cao and Cb.
ic) Would you expect that the control performance between Cao -> Ca

would be better, the same, or worse than Cao -> Cb , assuming that the
feedback controllers were tuned on the same basis? Base your answer
solely on the relative dynamics for the two possible systems. Consider
a step set point change.
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24.17. The process in Figure Q24.17 is a simplified head box for a paper-making
process. The control objectives are to control the pressure at the bottom of
the head box tightly and to control the slurry level within a range.
id) Derive a model for the effects of the two inlet flows on the controlled

variables.
ib) Design a control system by pairing the controlled and manipulated

variables. Use the methods introduced in Chapters 20 and 21 as well
as this chapter. Discuss the performance of your design and any special
features that should be included in the implementation.

~ ^ >
f r

Partially opened valve

-c^d—-

FIGURE Q24.17

24.18. The process in Figure Q24.18 includes a fired heater, chemical reactor, and
heat exchangers to recover energy by heat transfer to other processes in
the plant. The goals are to have tight flow control (Fl), tight control of the
reactor outlet temperature (T2), and good control of temperatures T3 and
T4 in the integrated processes. The sensors and manipulated variables are
shown in the figure. Disturbances are set point changes to the process flow
and changes in the heating requirements of the heat-integrated processes.
id) Without changing the instrumentation and process equipment, design a

control system to achieve the objectives. Discuss whether all objectives
can be achieved and if not, why.

ib) By making the minimum changes to the process equipment and instru
mentation, design a system that improves the result in ia).

24.19. The mixing process in Figure Q24.19 involves a tank to mix components
A and B without chemical reaction. The effluent from the mixing tank is
blended with a stream of component C, and the flow of this stream is wild;
that is, it cannot be adjusted by this control strategy. Note that waste is to
be minimized.
id) Using only the equipment shown in the figure, design a control system

to tightly control the percentages of A, B, and C in the blended product.
Can you achieve this and also control the total flow of blended product?
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ib) Improve your result in (a) by adding an analyzer that can measure
compositions in one stream. Decide the proper location and use it
in the control system. Discuss why the analyzer would improve the
performance.

24.20. A heat exchanger is shown in Figure Q24.20. The temperature measured
by the sensor is to be controlled. Design four different control strategies to
control this temperature and discuss the differences. Select the design that
would give the best control performance, and discuss the reasons why.
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24.21. Apply the Niederlinski criterion to the flash control system presented in this
chapter. Discuss your results and the interpretation of the control system
design.

24.22. Control of the flash process analyzed in this chapter involved partial control.
All six components in both product streams would influence product quality
and profit, but only one dominant variable, mole fraction ethane in the
liquid, was controlled.
(a) Discuss the final steady-state deviations of all compositions from their

initial steady-state values for the control system developed in this chap
ter. Consider each of the disturbances in the control design form sep
arately.

ib) An alternative dominant variable, the flash temperature iTe) could
have been selected rather than liquid mole fraction ethane. Discuss the
advantages and disadvantages of Te as a dominant variable (not reset
byAO.

ic) Discuss process and control modifications needed to control the per
cent propane in the vapor product in addition to all controlled variables
in the original control design.

24.23. The dynamic responses of the heat transfer process in Figure Q24.23 are
considered here. The medium in the coil and jackets is heating the fluid in
the tanks. The tanks are well mixed, and all transportation delays are small
compared with the time constants.
id) Describe the dynamic responses of each temperature to a step change

in each valve.
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ib) Discuss the likely control performances for each input-output pair for
multiloop control,

(c) Assume that one feedback PI controller, with pairing T2 -> v2, is in
operation and that a step change is made to v\. Describe the dynamic
response of both temperatures.

id) Discuss the likely control performance if the other control loop, TI -»•
ui, is closed.

24.24. The series of well-mixed stirred-tank chemical reactors for a first-order
chemical reaction with negligible heat of reaction is shown in Figure
Q24.24. Each reactor has a mass in the tank, which has the same tempera
ture as the liquid and represents substantial energy accumulation. (This is
a simplified representation of a packed bed, with the masses being the cat
alyst.) The concentration of the effluent from the last reactor is controlled
by adjusting the heating medium valve.
ia) Discuss the effect of the masses on the control performance in response

to feed stream temperature variations.
ib) Discuss the effect of the masses on the control performance in response

to feed stream concentration variations.
ic) Draw general conclusions about the effects of the masses on the dis

turbance responses in ia) and ib) and on set point changes.
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24.25. A two-product distillation tower with a single feed is considered in this
question.
id) Sketch two types of condensers (showing equipment and valves), de

scribe their physical principles, and be sure to explain how the duty is
adjusted for process control.

ib) Repeat id) for reboilers.
(c) Discuss why distillation towers typically have an overhead liquid ac

cumulator.
id) Discuss why temperatures and pressures are measured on selected

distillation trays.
ie) Where would you place safety valves and for what maximum flow

should they be sized?
(f) Identify possible constraints (i.e., items that define the frame of the

operating window).
ig) Identify potential disturbances.
ih) The composition sensors often provide new measurements only every

two minutes. Give a reason why this might occur.
(/) Identify all inventories in the distillation process, determine which are

non-self-regulatory, and describe potential control strategies for each.
(/') Discuss options for product quality control and the interaction between

inventory and product quality controls.
24.26. The process in Figure Q24.26 involves the chemical reaction with the over

all stoichiometry of 3A + B -+ C taking place in a packed-bed reactor.
The inlet temperature has a strong effect on the rate of reaction, and there
is no limit to any reasonable value for the bed temperature. The unreacted
A is separated in a flash drum and sent to fuel at considerable cost because
it cannot be recycled. Also, high temperatures tend to degrade the catalyst.
The liquid product has a target of 80% product C. Design a control system
to achieve the objectives just described, specify sensors, and sketch the
design on the drawing.

Essentially
pure A

ĉ o—̂
Band
product C

FIGURE Q24.26



24.27. For the fired heater in Figure Q24.27 (i) no change is allowed for the final
elements, (ii) sensors must be added, and (iii) the feed rate and product
outlet temperature must be controlled. Briefly state a reasonable set of
control objectives and design a control strategy.
id) Briefly give the algorithm and purpose for each controller.
ib) Sketch the strategy on the diagram.
ic) Give the failure positions for the final elements.

817

Questions

Fuel

FIGURE Q24.27

24.28. The series of two chemical reactors described in Example 1.2 is the initial
process upon which this question is based. You may use all results from
the modelling in Example 1.2 without proving; simply cite the source of
the equations.
id) The solvent flow and composition at the inlet to the first reactor are

to be controlled by two single-loop controllers. Add sensors and final
elements as required and sketch the control system.

ib) Given this strategy is functioning perfectly (maintaining CAo con
stant), determine the model between the solvent flow and the con
centration of the reactant in the second reactor, Ca2» and comment
on the expected composition (Ca2) control performance using this
manipulated-controlled variable pairing,

(c) Compare with the control performance in Example 13.8.
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25.1 m INTRODUCTION
To this point, the control design problem has been defined, and the range of deci
sions has been presented. It becomes clear that tens to hundreds of decisions are
made during the control design of an industrial process. One would expect, as is
shown later in this chapter, that the sequence in which these decisions are made
can influence the time required to complete the design and, perhaps, the quality of
the control performance provided by the final design. Thus, the engineer is faced
with the challenge of managing a large quantity of information and a large set of
possible design decisions during the design procedure.

There is no single, correct way to manage this procedure. Different skilled
engineers perform tasks in different sequences to reach equally good solutions,
and different problems can be solved more easily by different sequences. However,
the procedure presented here provides a structured problem-solving approach that
is tailored to the control design task. The procedure represents, to the ability of the
author to document such a fuzzy entity, the approach used by many practitioners.

There are several advantages to the novice engineer for using this procedure.
Since the most difficult aspect of the design is often starting this ill-defined task,
the first advantage is that a prescribed procedure provides a way to begin the de
sign task. Second, the procedure provides a step-by-step approach that ensures
that many important issues are addressed. Third, the procedure decomposes the
problem in a manner that determines whether control is possible before continuing
to detailed decisions on control strategies. Finally, the procedure provides some
guidance on managing the interactions among the numerous design decisions.
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Interactions occur because some decisions made to satisfy specific control objec
tives affect the possible control performance with respect to other control objec
tives. Therefore, the engineer must try to make each decision with full recognition
of its impact on the entire design and all control objectives. This thought process is
demanding and not always possible, so the engineer often has to iterate by returning
to initial decisions, changing some, and proceeding from these modified decisions
to the completion of the design. The successful design engineer has the foresight
to make (generally) good initial decisions, identify improper initial decisions early
in the procedure, and minimize the iterations to the final design.

25.2 □ DEFINING THE DESIGN PROBLEM

We begin again with the definition of the problem provided in the control design
form (CDF) because of the crucial importance of this step to the quality of the
design. In this section, some guidance is given on how an engineer goes about filling
in a blank CDF. The CDF provides a useful checklist of the information needed
in designing control systems and gives an organized manner for documenting the
information.

Typically, people need some stimulation when defining problems; that is, they
need some questions and issues to consider when beginning the design procedure.
To stimulate the thought process, abbreviated tables of sample questions are pre
sented here for the various control objectives. The first three objectives—safety,
environmental protection, and equipment protection—are combined in Table 25.1
because they all address major deviations from normal operation, many of which
could have common causes that influence all three objectives. Smooth operation,
product quality, efficiency and optimization, and monitoring and diagnosis are ad
dressed in Tables 25.2 through 25.5, respectively. The issues raised in the tables
should be considered for each design, and issues relevant to the plant should be

TABLE 25.1

Checklist for safety, equipment, and environment

Limitations on operating conditions due to equipment, material, e.g.
• Composition
• Flow
• pH
• Pressure
• Temperature

Explosion
• Fuel source
• Oxidizing source
• Energy source

Release of hazardous material
Failure of process equipment
Failure of control equipment
Human mistakes and their consequences



T A B L E 2 5 . 2 g 2 1
C h e c k l i s t f o r s m o o t h o p e r a t i o n ' * M ™ « w i ^ ^
7 1 ~ r , 7 \ ~ T ~ j ~ ~ D e fi n i n g t h e D e s i g nU n s t a b l e p r o c e s s e s ( d o n o t r e a c h s t e a d y s t a t e w i t h o u t c o n t r o l ) P r o b l e m

• Levels
• Chemical reactors

Single controller that influences the production rate
Processes that are very sensitive to disturbances

• Gas pressures
• Liquid pressure

Process integration that either propagates or attenuates disturbance
(especially recycle systems)
Manipulated variables that are easily interpreted by operating personnel
Disturbance sources

TABLE 25.3
Checklist for product quality

Target average value and variability
• One or multiple specifications
• Average value
• Variability
• ± deviation from target at which product is unacceptable

Variability in a property that affects future use by customer
• Standard deviation or other measure
• Nonlinearity between measurement and quality in future use

Disturbances that affect quality
• Magnitude
• Frequency

Factors affecting control performance
• Availability of on-stream measurement
• Degrees of freedom
• Controllability
• Feedback dynamics
• Modelling errors

noted in the control design form, thereby developing a comprehensive statement
of control objectives.

An additional way to identify control issues is to pose the following question
for every stream or important location (e.g., the volume of a reactor or flash drum)
in the process.



822

CHAPTER 25
Process Control
Design: Managing the
Design Procedure

TABLE 25.4
Checklist for efficiency and optimization

External manipulated variables not used for control, potentially for optimization
Changes in targets or inputs (disturbances)

• Frequency
• Need for optimization
• Complexity of optimizing strategy

Parallel units
• Different product quality
• Different yields
• Energy consumption

Recycle flows
• Composition of recycle

Separation units
• Energy-yield tradeoff

Chemical reactors
• Conversion
• Yield

Operating condition
• Internal optimum
• Operation at a constraint

TABLE 25.5
Checklist for monitoring and diagnosis

Performance that changes rapidly
• Alarms
• Emergency shutdowns
• Constraint violations
• Product quality
• Inventories

Performance that changes slowly
• Heat transfer coefficient
• Catalyst activity
• Corrosion
• Coking or fouling

Performance requiring complex calculations
• Fired heater efficiency
• Turbine and compressor efficiency

Utilization of control
• Percent of time in automatic

Temporal correlation of good or poor operation with external
disturbances (feed type, equipment operation, and so forth)



What is the effect on A if the B in this stream or location C?
where A = each control objective (safety, environmental protection,

equipment protection, smooth operation, product quality,
efficiency, yield and profit, and monitoring and diagnosis)

B = property word indicating key operating variables (e.g., flow,
temperature, pressure, composition, inventory, and so forth)

C = guide word indicating direction of changes in operation (e.g.,
increases, decreases) and rate of change (e.g., rapidly,
slowly, periodically).

The application of this question to the process will help the engineer identify
the significant effects on the objectives. When a significant effect is identified,
the engineer should determine the cause of the effect and how it can be retained
(if the effect is beneficial) or prevented or compensated (if the effect degrades
performance). This is a simplification of an approach that has been developed in
much greater detail for hazards and operability (HAZOP) studies, which consider
a broader range of issues influencing the safety of a process. Detailed descriptions
of the procedures followed in HAZOP studies are available (AIChE, 1992).

The methods described in this section are intended to generate information on
all major headings in the CDF, not just objectives, although the tables of questions
are organized by objectives. When considering the objectives in such detail, infor
mation on the constraints and disturbances should also be identified and recorded
in their proper locations. It is important to recognize that the CDF cannot be com
pleted with only a cursory understanding of the process and quick review of a
process sketch; a thorough understanding of the physics, chemistry, product qual
ity, and economics is required.

At this preliminary design stage, the engineer should concentrate on deter
mining the needs of the plant and not attempt to define the solutions. The control
objectives and other critical issues should be clearly and quantitatively stated even
when no solution is initially apparent, and the definition procedure should not be
delayed by lengthy analysis of a particular issue, since too much attention to detail
during the initial "brainstorming" activity tends to slow the flow of ideas. Also, it is
important that the engineer not be overly concerned about the initial location for an
element of information in a CDF. It is expected that the CDF will be reviewed and
rationalized before the design procedure continues to the decision-making step.

25.3 u SEQUENCE OF DESIGN STEPS
There is almost an infinite number of ways in which the numerous design deci
sions can be reached. There is no one best sequence for all control designs; in
fact, various skilled practitioners use different sequences to arrive at equally good
designs. However, there are certainly some sequences that are better than others,
and some simple sequences can be used by novice engineers until they gain enough
experience to modify the sequence to take advantage of their special insights. The
sequence given in the flowchart in Figure 25.1 is recommended for control design
and discussed further in this and the next sections.
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Sequence of Design
Steps

Start

(1) Form definition of design problem

(2) Determine feasibility

(3) Obtain overview of problem

(4) Specify control structure
and algorithms

(5) Determine optimization

(6) Provide monitoring and diagnosis

I
End

FIGURE 25.1

Overview of control design sequence.
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Step 1: Definition
The first step involves the collection of information appearing in the control design
form and, for especially complex problems, the formal preparation of the form. At
this step, the objectives are translated to specific variables, either directly measured
or calculated using measurements, which are to be controlled.

Step 2: Feasibility
The second step determines the feasibility of the control objectives for the equip
ment design, operating conditions, and disturbances given in the problem defini
tion. An analysis of degrees of freedom and controllability determines whether
it is possible to control the proposed controlled variables with the proposed ma
nipulated variables. Since controllability rigorously addresses only the base-case
operating point, the operating window is determined to ensure that the process
can be maintained within specified limits for the defined disturbance magnitudes.
Thus, this step ensures that the system has sufficient capacity as well as degrees
of freedom and controllability. As noted in Chapter 24, a dynamic analysis may
have to be performed to evaluate the operating window fully. Also, the ability to
measure or infer important variables is evaluated. If any of the results of these
steps indicate that control is not possible, the design procedure must include an
iteration in which an engineer alters the process so that the control objectives can
be achieved.

Step 3: Overview
The third step establishes an integrated view of the plant operation, concentrating
on the most important variables. The goal of this step is to obtain an overview
of the feedback process dynamics, the disturbance dynamics, the interaction in
the process, and the types of measurements and manipulated variables available
for control. This overview is essential because the design engineer makes one
decision at a time and needs this overview to be able to "look ahead" so that all
decisions form a compatible design. Objectives that are easily achieved or likely
to be difficult to achieve are noted. Also, potential changes to the instrumentation
and process are identified for future use, if needed. However, no control designs
are decided at this step.

Step 4: Control Structure
The fourth step involves specific decisions on control structure, algorithms, and
tuning. Here, if single-loop control technology is used, the single-loop controlled
and manipulated variables are paired, and the modes of the PID controllers are spec
ified. In addition, special requirements for the tuning are made in conjunction with
the pairing. For example, level controllers are specified as tight or averaging. Also,
tight and loose tuning of interacting loops is specified, to reduce the effects of un
favorable interaction while retaining the beneficial effects of favorable interaction,
as required. The next sections of this chapter provide additional guidance on this
step, discussing a hierarchy and decomposition for managing the design decisions.
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The fifth step determines whether optimization opportunities are available after
consistently high product quality has been achieved and, if so, whether additional J?r«»La«i"l«.a^!
manipulated variables, not used for control at previous steps, exist. It may be nec
essary to add sensors to provide information for optimization and to automate
additional manipulated variables for optimization. If opportunities exist, an analy
sis is performed to determine the economic benefits which can be realized through
optimization, as explained in Chapter 26. If significant benefits are available and
can be realized through real-time control, the strategy is designed at this step.

Step 6: Monitoring and Diagnosis
The sixth and final step evaluates monitoring and diagnostics. At this step, the
major analysis is the sensors required for this function. In addition, any calculations
required for the monitoring are defined.

The sequence of steps is selected to maximize information gathering and
understanding at the early steps and to reduce the need for iterations. The first two
steps identify the capabilities of the process and instrumentation and the control
objectives. Inconsistencies between process capability and objectives are identified
so that they can be resolved soon in the design procedure, because inconsistencies
should be resolved before further design steps are performed. Next, the overview
of the process in the third step enables the engineer to understand the process
responses before attempting to design controllers. The design of the controllers,
up to and including product quality, is performed in the fourth step to give the best
performance for the more important variables. Special controls for safety should
be designed at this stage in an integrated manner. In the fifth step, the remaining
degrees of freedom, which are not used at the previous stages (perhaps because
they have the poorest dynamic responses for control of key variables), are used for
profit maximization. Finally, the monitoring and diagnosis is designed.

25.4 n TEMPORAL HIERARCHY OF CONTROL
STRUCTURE
In this section the activities in the fourth step in the sequence, addressing con
trol structure, are presented in greater detail. Proper design relies on an integrated
analysis of the entire process or plant under consideration; however, the integrated
design may involve too many variables and processes to be analyzed by currently
available methods. Therefore, the engineer temporarily separates the design prob
lem into smaller segments, and if the interactions among the segments are small,
each can be analyzed individually to develop provisional control designs. Two ap
proaches for selecting segments are discussed: temporal hierarchy in this section
and process decomposition in the next section. It is important to recognize that
these methods are used only when required by the large scope of the problem and
that the methods employ approximations to simplify the analysis. It is essential
that each decision contribute to the good performance when considering all factors
in the integrated process.
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A common approach for decomposing the design decisions is based on a
temporal hierarchy, as originally suggested by Buckley (1964) and expanded here:

In hierarchical decomposition, the control decisions are usually made in the follow
ing order.

1. Flow and inventory
2. Process environment
3. Product quality (and safety)
4. Efficiency and profit
5. Monitoring and diagnosis

This hierarchy has the advantage of designing control loops in the order of the
fastest to the slowest; the possible exception are the liquid and solid inventories,
which may employ averaging controllers (see Chapter 18). In addition, the hierar
chy is commonly used because it is difficult to design controllers for product qual
ity without first defining how feed and product flows and process environments
are controlled. Thus, the sequence makes sense from the viewpoint of control
structure.

Flow and Inventory
Here, the flows and inventories considered are for the "process" materials, which
are used to make the product. The flows of utility streams, such as fuel, cooling
water, and steam, are not specified here, because they are manipulated to achieve
other control objectives. The structures that control the process flows determine
how the feed and production rates are specified and whether flow rates are nearly
constant or are likely to vary significantly. Note that the inventories—liquid and
solid levels and gas pressures—must be designed in conjunction with the flow
controllers, to ensure that requirements for inventories and product deliveries are
satisfied concurrently.

The goal is to provide a design in which the overall material and component
compositions are stable without further control. Naturally, this does not imply that
satisfactory performance is achieved with only these controls, only that all material
entering the process leaves the process at steady state, which is a reasonable basis
for further analysis. One controller should influence the production rate; this is
usually a flow controller at the beginning (feed) or end (product) of the plant,
although other designs are possible. Then, the liquid levels and gas pressures are
controlled in a manner to achieve a self-regulatory process.

Particular attention should be paid to the compositions in recycle processes.
Because of the economic value of materials, material that is not reacted or not of
sufficient purity is typically recycled to an upstream position in the process. If no
method is provided for impurities (e.g., inerts) to exit the system, they will accu-



mulate in the process and ultimately lead to major upsets. One common technique
to improve dynamic behavior is to provide a small purge to allow inerts to behave
in a self-regulatory manner; this design is common in spite of the economic losses
due to valuable materials also leaving in the purge. Control designs should ensure
that feed components are self-regulating, so that they do not accumulate in the
process. The reactor in Section 25.7 demonstrates the unique dynamic responses
associated with compositions in a process with recycle.
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Process Environment
The second level addresses the process environment variables: pressure, temper
ature, feed ratios, catalyst addition, and so forth. These variables have a great
influence on the product quality and are often manipulated, in a cascade structure,
by the product quality controllers. Thus, this level provides tight control of the
environment by compensating for many disturbances, and it can be adjusted by
cascade feedback from higher levels.

Product Quality (and Safety)
The third level provides the essential product quality regulation. This is typically
achieved by adjusting set points of controllers at the lower levels in a cascade
structure, but it may adjust final elements directly. Control for safety should be
addressed at this level of the decision hierarchy, because control strategies up to
this level can influence the safe operation. As discussed in the previous chap
ter, the safety controllers will normally be implemented in a lower level of the
implementation hierarchy.

Efficiency and Profit
The fourth level capitalizes on additional flexibility to improve profitability of the
plant. These controllers perform their function slowly so that smooth operation and
excellent product quality are not sacrificed. It is good practice for the optimizing
controllers to influence the process through the lower levels in the implementation
hierarchy; this ensures that higher-priority objectives such as safety and product
quality are not compromised.

Partial Control
Partial control is not a separate level in the control hierarchy, but concepts related
to partial control influence decisions in levels 2 to 4 of the hierarchy. Recall that
partial control involves selecting of a subset of variables that can be measured and
controlled, so that all key variables remain within an acceptable range as distur
bances occur. To achieve partial control, the engineer seeks dominant variables
that strongly influence the process behavior, and when regulated, yield good pro
cess performance. Some examples of typical dominant variables are given in the
following summary.
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Typical dominant variables for partial
control

Unit operation

Process
environment sensors
(T,P,F,L) Analyzers

Typical product
qualities

Chemical reactor

Distillation

Heat exchange

Temperature
Pressure (gas phase)
Liquid level
Flow rate

Tray temperature(s)
Pressure
Reflux ratio
Boilup ratio
Coolant flow rate
Coolant temperature
Level of boiling
refrigerant

Reactant concentration
Product concentration

Heavy or light key
component
concentration

All concentrations in the
product stream
Product properties, e.g.,
octane or average
molecular weight
All concentrations in the
product streams
Product properties, e.g.,
vapor pressure
Effluent temperature

It is important to recognizethat detailed knowledge of the specific process behavior
is required to select proper dominant variables.

For example, the coolant flow rate usually has an effect on the hot-side effluent
temperature from a shell and tube heat exchanger. However, if the heat exchanger is
"pinched," i.e., the hot effluent temperature is essentially the same as the entering
coolant temperature, an increase in the coolant flow will not have an effect on
hot stream exit temperature. In this situation, the inlet coolant temperature could
serve as a dominant variable. There is no alternative to good process knowledge!
For further discussion of partial control and dominant variables, see Luyben et al.
(1998) and Arbel et al. (1996,1997).

Monitoring and Diagnosis
The fifth level involves monitoring and diagnosis of process and control perfor
mance. This includes rapid monitoring and reporting to plant operating personnel,
as well as longer-term monitoring for periodic analysis. Plant operations are influ
enced by decisions made at this level through actions of plant personnel, usually
after detailed analysis of likely causes of unusual process performance. These de
cisions may not be implemented through the control strategies, because they may
involve variables, such as feed purchases and reactor regeneration scheduling, that
are outside of the purview of the continuous control system.

This analysis hierarchy conforms to the way many control systems are imple
mented. A typical implementation hierarchy is shown in Figure 25.2. The lowest
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FIGURE 25.2

Schematic of the typical process control hierarchy.

level of the continuous control involves the flow and inventory loops and provides
the basis for higher levels in the hierarchy. Note that the interaction between levels
in the hierarchy is primarily through cascade control principles; this approach has
several advantages:

1. It uses conventional technology.
2. It satisfies the requirements for relative dynamics so that good disturbance

response is achieved.
3. It does not create conflicts in degrees of freedom (see Section 14.2).
4. The system is easily commissioned or decommissioned by changing controller

cascade status between closed and open.
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Although this hierarchical approach has many advantages and has been found
easy to apply by many engineers, it does not remove one of the most challenging
features of the design procedure: the need for iteration. When making decisions
at each level, the engineer attempts to look ahead to the completed design and
determine the effects of the current decisions on the control performance. However,
looking ahead is not always simple, or even possible, in complex plants; thus, the
engineer may find that the final design is not satisfactory. When such a situation
is encountered, the engineer should investigate whether the performance could be
improved by another design that starts with different decisions at the previously
designed, lower levels in the hierarchy.

EXAMPLE 25.1.
Consider the flash process in Figure 25.3, which is similar to the process previously
analyzed in Chapter 24. The case considered here involves two different initial
flow and level control decisions, shown in Figure 25.3a and b. The first level of the
hierarchy in Figure 25.3b has resulted in the control design in which the feed is
on flow control, and the level is controlled by adjusting the heat transferred to the
feed by adjusting the steam, which affects the amount of liquid vaporized. These
initial decisions satisfy the relevant control objectives. However, given these flow
and level decisions, the product quality controller has only one degree of freedom
to adjust: the product flow rate. Therefore, the lower-level design decisions have
dictated the higher-level control strategy.

To understand how the quality controller in Figure 25.3b would function, con
sider the case in which the light key in the liquid product component is too high.
In response to the disturbance, the product quality controller would decrease the
product flow rate, which would cause the level to increase; the level controller
would increase the steam flow rate, which would increase the percentage vapor
ized; and the light key in the liquid product would decrease. Therefore, this quality
control design is feasible, but it has slow dynamics, because the level control
process and controller appear in the product quality feedback path. In fact, this

ia)
FIGURE 25.3
Two different flash control designs discussed in Example 25.1.
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-0.136 -0.179][:] (25.1)

design is another example of pairing single-loop controllers with a relative gain of
zero. This can be verified using the following steady-state model, which has been
extracted from equation (24.5) for the flash process in Chapter 24:

Ax
dL

L dt J
The relative gain for the Ax -» v4 pairing is zero, because the steady-state process
gain between the product flow and the composition is zero, when all other loops are
open. The relative gain for this system has ones on the diagonal and zeros on the
off-diagonal elements. However, since the system is controllable for either pairing,
a pairing on a zero relative gain would function, albeit with poor performance in
this case.

Thus, the initial flow/inventory control design decisions have resulted in rel
atively poor product quality control. During the iteration, the engineer would be
looking for a faster-responding manipulated variable for product control, because
the cause of the poor performance is slow feedback dynamics. Another goal would
be to find a pairing with a nonzero relative gain. After the iteration, the control de
sign should be as shown in Figure 25.3a.
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Process Decomposition
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How does the engineer properly perform the "look-ahead" to satisfy the control
objective under consideration while preventing, as much as possible, an undesirable
effect on other control objectives? The effect of "keeping in mind" is to ensure
that the initial control design, in addition to meeting its control objectives,

1. Leaves unallocated some manipulated variables that can give good control
performance for important controlled variables appearing at higher levels in
the hierarchy.

2. Attenuates disturbances and does not introduce unfavorable process control
interactions.

3. Provides good integrity, if possible, so that critical controllers can perform
their tasks properly even if some other controllers are not functioning (e.g.,
are in manual) without retuning.

This look-ahead requires an overview of all control objectives, which again rein
forces the importance of a good problem definition and process overview in steps
1 to 3 of the sequence. Then the engineer must keep all of the key controlled
variables in mind when designing the lower levels of the hierarchy.

When performing the control design procedure, the engineer continually looks ahead
to predict the effects of current decisions on later control objectives at higher levels
in the hierarchy.

25.5 o PROCESS DECOMPOSITION

Large plants may have hundreds or thousands of manipulated and controlled vari
ables. Although the entire plant must be considered in designing controls, it is
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essentially impossible to analyze all aspects of the plant simultaneously while mak
ing each control decision. Therefore, the plant is often decomposed into several
process units that have only weak interactions, if possible. The proper decomposi
tion is particularly easy for the series process design structure of chemical process
plants, shown in Figure 25.4a. For this process structure the upstream units affect
the downstream units, but the downstream units do not affect the upstream units.
Since the interaction among the units is in only one direction, upstream units are
simply sources of disturbances to the downstream units. Thus, the general goal
is to reduce the disturbances that leave one unit and propagate to downstream
units, with special care to isolate units that are highly sensitive to disturbances.
The controls within each process unit can then be designed using the standard
procedures.

Process plants often have recycle streams, as shown in Figure 25.46. These
plants do not strictly allow such a simple decomposition, because two-way interac
tion occurs between processes. As demonstrated in Chapters 20 and 21, two-way
interaction can significantly affect dynamic behavior and control performance.
Usually, the control system is designed to reduce the effects of recycle on the
overall plant dynamics. This is often achieved by providing alternative sources of
the material or energy provided by the recycle, so that short-term variation in the
recycle can be compensated by the alternative source. (This is the same concept
used in Figure 24.1 la and b for energy recycle.)

Two examples of material recycle are shown schematically in Figures 25.4b
and 25.5. In the first, an alternative source of material is provided to ensure a
steady recycle flow; in this design, the alternative must be available immediately
to provide the total process flow required. In the second example in Figure 25.5,
the recycle system includes an inventory so that the level in the inventory can vary
while the material supplied to the beginning of the process remains undisturbed.

jp^5f3>
ia)

' P^Tp£
■i%-

*
Alternative

source or sink

FIGURE 25.4
ib)

Typical structure of process plants: (a) series;
ib) recycle without storage.
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FIGURE 25.5

Typical recycle process with storage.

Note that the level-flow pairing directs all recycled material to the storage tank,
regardless of the current recycle flow returned to the process. Naturally, the storage
tank must be large enough for the level to remain within acceptable limits during
expected short-term transients, whereas the net flow in or out must compensate for
longer-term accumulation. This concept is discussed by Buckley (1974), where he
describes the principle that recycle level-flow systems should generally be paired
in the manner shown in Figure 25.5.

Integrating the
Control Design

Methods

25.6 ia INTEGRATING THE CONTROL DESIGN METHODS
Several methods for organizing information and making design decisions have
been presented in this and the previous chapter. In this section, the methods are
combined into an integrated design thought process that demonstrates how the pre
viously discussed methods can be combined to reach an adequate design. Novice
engineers will most likely follow this integrated approach closely for their initial
designs. As they gain more experience and learn to use their process understanding,
they will adapt the approach to suit the problem at hand.

The integrated procedure is shown in Table 25.6, which combines the concepts
of sequence, hierarchy, and design decisions. The procedure begins with a state
ment of the process design and plant requirements and ends with a complete control
structure and algorithm specification. The major steps in the design sequence—
(1) definition, (2) feasibility, (3) overview, (4) control structure, (5) optimization,
and (6) monitoring and diagnosis—provide milestones for the procedure. Several
quantitative design analyses are performed at each step in the design sequence,



TABLE 25.6

Integrated control design procedure

START: Acquire Information about the process
(a ) P rocess equ ipment and flow s t ruc tu re [Mod i f y p rocess and ins t rumenta t ion ]^ . . . ,
(b) Operating conditions
(c) Product quality and economics
(d) Preliminary location of sensors and final elements
1. DEFINITION: Complete the Control Design Form
(a) Use checklists
( b ) S a m p l e q u e s t i o n s [ M o d i f y o b j e c t i v e s ^
(c) Prepare a preliminary set of controlled variables
2. FEASIBILITY: Determine whether objectives are possible
( a ) D e g r e e s o f f r e e d o m [ I t e r a t e ] - - ■ •▶ !
(b) Select controlled variables and evaluate controllability
(c) Operating window for key operating conditions
3. OVERVIEW: Develop understanding of entire process to enable "look-ahead" in decisions
(a) Key production rate variables (e) Key product qualities
(b) Inventories for potential control (f) Key constraints
(c) Open-loop unstable processes (g) Key disturbances
(d) Complex dynamics (long delays, inverse (h) Useful manner for decomposing the analysis

response, recycle, strong interactions) (and control design), if necessary and appropriate
4. CONTROL STRUCTURE: Selection of controlled and manipulated variables,

interconnections (pairings in decentralized control), and relevant tuning guidelines
(a) Preliminary decisions on overall process flows and inventories
(b) Process segment (Unit) 1
(c) Process segment (Unit) 2

C o n t r o l h i e r a r c h y ( t e m p o r a l d e c o m p o s i t i o n ) f o r e v e r y u n i t [ I t e r a t e ] - - ♦ <
1. Flow and inventory 3. Product quality
2 . P r o c e s s e n v i r o n m e n t 4 . S a f e t y [ M o d i f y c o n t r o l ] ^

(d) Integrate control designs as needed for good overall performance
5. OPTIMIZATION: Strategy for excess manipulated variables
(a) Clear strategy for improved operation, or
(b) Measure of profit using real-time data
( c ) S e n s o r s a n d f i n a l e l e m e n t s [ I t e r a t e ] - - • + > ' ,
(d) Minimize unfavorable interaction with product quality
6. MONITORING AND DIAGNOSIS
(a) Real-time operations monitoring

1 . A l a r m s 2 . G r a p h i c d i s p l a y s a n d t r e n d s [ I t e r a t e ] - - - ^
(b) Process performance monitoring

1. Variability of key variables (histogram and 2. Calculated process performances (efficiencies,
f r e q u e n c y r a n g e ) r e c o v e r i e s , e t c . )

FINISH: Completed specification, meeting objectives in step 1
(a) Process equipment and operating conditions (e) Safety controls and alarms
(b) Control equipment, sensors, and final elements (f) Optimization
(c) Control structure and algorithms (g) Monitoring calculations
(d) Tuning guidelines as needed, e.g., level control

and interacting loops
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and the first three levels of the temporal hierarchy are performed for each process
segment at the fourth step. The engineer will encounter all major design decisions
presented in Chapter 24 in a logical order by using the procedure in Table 25.6.

Iterations are possible at several steps in the procedure. If the process does not
have sufficient degrees of freedom, lacks independent input-output relationships
to provide a controllable system, or lacks sufficient range, an iteration is required
in step 2 to change the process. Also, if an analysis of the dynamics identifies poor
control performance, an iteration in step 4 is appropriate. Further iterations may be
needed to provide all sensors necessary for optimization and monitoring in steps
5 and 6. During each iteration, the control objectives should also be reevaluated
to be sure that the quantitative performance targets are proper and that the cost
associated with achieving the demanding goals is justified.

As previously discussed, the engineer makes every effort to reduce or eliminate
iterations by making the sequential design decisions with due consideration for
future decisions. Information in steps 1 through 3 enables the engineer to identify
the likely key elements of the design (i.e., the controlled variables requiring tight
control). This enables the engineer to "set aside" manipulated variables that may be
used for the control of the key variables. The integrated control design procedure
is demonstrated in the following example.

835
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Example Design:
Chemical Reactor

with Recycle

25.7 □ EXAMPLE DESIGN: CHEMICAL REACTOR
WITH RECYCLE
The integrated control design procedure will be applied to a simple chemical
process in this section. The process, shown in Figure 25.6, involves feed of a raw
material from storage to a chemical reactor. The reaction is A -*• B with first-order

FIGURE 25.6

Chemical reactor and separator with recycle.
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rate expression —r* = k^e~EIRTC^ and negligible heat of reaction. The products
of the reactor are heated and sent to a flash drum, from which the product is taken
as a vapor flow which is predominantly component B, but contains some A. A
liquid stream consisting of unreacted feed, along with some product B, is recycled
to mix with the fresh feed and flows to the reactor. The base-case (initial) operating
variables are given in Table 25.7.

Definition Step
The control design will be developed through the procedure shown in Table 25.6.
The first step in the sequence involves a complete definition of the problem, which
is summarized in the control design form in Table 25.8. (The reader should review
the table before proceeding.) This serves as the basis for all further design decisions.

Feasibility Step
The second step determines whether the control objectives are possible with the
equipment available. This step involves the analysis of degrees of freedom and
controllability. We assume that an analytical model of the process is not avail
able; thus, the design is based on qualitative analysis from the process structure
and on linear models identified empirically. There are eight manipulated external
variables, so at most eight dependent variables can be controlled. A preliminary
selection of controlled variables is made based on the CDF: (a) feed or production
rate (1); ib) liquid and vapor inventories (3); and (c) product quality (1). Thus, at
least five controlled variables exist. The number of external manipulated variables
is greater than this minimum value. Therefore, it is concluded that the degrees of
freedom do not preclude a possible design, and the design procedure can continue.

TABLE 25.7

Operating conditions for reactor with recycle
* Final value * Final value
for Design 1 in for Design II in

Variable Symbol Initial value Figure 24.9 Fiqure 24.10
Fresh feed F1 5 5 5.0
Reactor inlet flow F2 20 34 20
Reactor outlet flow F3 20 34 20
Vapor product F5 5 5 5
Recycle flow F6 15 29 15
Reactor level L1, % 50 50 50
Flash level L2, % 50 50 50
Fresh feed temperature T3, °C 99 105 106.8
Reactor feed temperature T4, °C 92 92 93.9
Reactor temperature T5, °C 92 92 93.9
Flash temperature T7, °C 90 90 90
Reactor concentration of A A1, mole % 69.4 77.1 69.4
Vapor product concentration of A A2, mole % 10 10 10

*After response to disturbance (1) in Table 25.8.



To extend the analysis further, the controllability of the system is evaluated.
Controllability requires that linearly independent relationships must exist between
the selected manipulated and controlled variables, or, in other words, the gain
matrix must have a nonzero determinant. To perform this analysis, the model
equations have to be linearized, and the matrix of gains evaluated at the base-case
operation. Since inventory control is quite important, the level and pressure control
loop pairings are decided first. The reactor level can be controlled with either u5 or
V6, the flash drum level with u4, and the flash drum pressure with ug. The steady-
state gains with these inventories under closed-loop control were determined by
making small changes to the manipulated variable and determining the steady-state
change in the potential controlled variables. The gain matrix for this example is
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F2
T3
T5
Ax

LA2J

0.020 0.0622 0.0106"
0.45 -0.38 -0.127

-0.13 2.14 -0.13
-0.02 0.44 1.105

0.0035 -0.0063 -0.0018
0.00025 -0.0008 0.0006 _

vx
v2

LV7J
(25.2)

Note that the matrix is not square, so that control of all the potential controlled
variables in equation (25.2) is not possible.

By the completion of the design procedure, there will be a strategy for every
valve, and the system will be square, but at this point the goal is to determine
whether the selected variables can be controlled. One way to answer this question
is to select subsets of the controlled and manipulated variables until either (1) a
subset results in a nonsingular gain matrix, in which case the system is controllable,
or (2) all possibilities have been exhausted without finding a nonsingular system,
in which case the system is not controllable. A more direct approach is to find the
rank of the matrix, which gives the smallest square subset that is nonsingular. As
subsets of the variables are selected, the controllability will be verified.

Overview Step
The third step of the control design sequence, which yields an overview of the
process and control objectives, is now performed. The purpose of this step is
to gather observations about the entire system that can be used when making
sequential design decisions. The observations at this step are presented below by
hierarchy level.

LEVEL 1: FLOW AND INVENTORY.

m
Example Design:

Chemical Reactor
with Recycle

1. The feed tank has periodic deliveries of material and continuous outflow to
the process. Therefore, it is not possible or necessary to control the level. The
tank must be large enough so that it neither overflows nor goes empty for
expected delivery and outflow policies.

2. The feed to the reactor is a combination of fresh feed and recycle. The flow
and inventory design must consider this factor, to prevent oscillations caused
by interactions. Also, there seem to be several possible ways to control the
flow to the reactor, because there are valves in the fresh feed, recycle flow,
and combined flow.



TABLE 25.8

Preliminary Control Design Form for the chemical reactor and separator process
in Figure 25.6

TITLE: Chemical reactor
PROCESS UNIT: Hamilton chemical plant
DRAWING: Figure 25.6

ORGANIZATION: McMaster Chemical Engineering
DESIGNER: I. M. Learning
ORIGINAL DATE: January 1, 1994
REVISION No. 1

Control objectives
Safety of personnel

(a) The maximum pressure in the flash drum must not be exceeded under any circumstances.
ib) No material should overflow the reactor vessel.

Environmental protection
(a) None

Equipment protection
(a) None

Smooth, easy operation
(a) The production rate, F5, need not be controlled exactly constant; its instantaneous

value may deviate by 1 unit from its desired value for periods of up to 20 minutes.
Its hourly average should be close to its desired value, and the daily
feed rate should be set to satisfy a daily total production target.

ib) The interaction of fresh and recycle feed should be minimized.
Product quality

(a) The vapor product should be controlled at 10 mole% A, with deviations
of ±0.7% allowed for periods of up to 10 minutes.

Efficiency and optimization
(a) The required equipment capacities should not be excessive.

Monitoring and diagnosis
(a) Sensors and displays needed to monitor the normal and upset conditions

of the unit must be provided to the plant operator.
ib) Sensors and calculated variables required to monitor the product quality and

thermal efficiency of the unit should be provided for longer-term monitoring.

Measurements

Variable
Sensor
principle Range Special information

838

F1 Orifice 0-10
F2 Orifice 0-40
F3 Orifice 0-40
F4 Orifice 0-40
F5 Orifice 0-10
F6 Orifice 0-40
L1 A pressure
L2 A pressure
P1 Piezoelectric
T1 Thermocouple 0-100°C
T2 Thermocouple 100-200°C
T3 Thermocouple 50-150°C
T4 Thermocouple 50-150°C
T5 Thermocouple 50-150°C

Reactor residence time is 5 minutes
Drum liquid hold-up time is 5 minutes



TABLE 25.8
Continued

Measurements

Variable
Sensor
principle Range Special information

T6
T7
T8
A1
A2

Thermocouple
Thermocouple
Thermocouple
Continuous
Continuous

50-200°C
50-150°C

250-350°C
0-100 mole%
0-15 mole%

mole% A in reactor
mole% A in product

Manipulated variables
I.D. Capacity (at design pressures) I.D. Capacity (at design pressures)

(% open, maximum flow) (% open, maximum flow)
v1 50.6%, 10 v5 70.0%, 29
v2 9.6%, 100 v6 18.1%, 110
v3 50.0%, 40 v7 60.3%, 67
v4 26.9%, 58 v8 50.0%, 10

Constraints

Variable Limit values
Measured/
inferred

Hard/
soft Penalty for violation

Drum pressure High Measured Hard Personnel injury
Reactor level Low Measured Hard Pump damage

High Measured Hard Overflow hazard
Light key A in product High Measured Soft Reduced selectivity in

downstream reactor

Disturbances

Source Magnitude Period Measured?

1. Impurity in feed (influences the 10% rate Day No
reaction rate, basically affecting the reduction
frequency factor kQ)
2. Hot oil temperature ±20°C 200+ min Yes (T2)
3. Hot oil temperature ±20°C 200+ min Yes (T8)
4. Feed rate ±1, step Shift-day Yes(F1)

Dynamic responses
(Input = all manipulated variables and disturbances)

(Output = all controlled and constraint variables)

Input Output Gain Dynamic model

[see equation (25.2) for some steady-state gains]
Additional considerations

None 839
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3. There is no option for the disposition of the reactor effluent; it must proceed
directly to the flash drum.

4. The vapor product comes from a small drum inventory, and flow rate fluctua
tions can be expected. Since the control objectives allow for variability in the
product rate, this is not likely to be a concern.

5. Two liquid levels are non-self-regulatory and should be controlled via feed
back to prevent them from exceeding their limits. Also, one vapor space pres
sure, while theoretically self-regulating, can quickly exceed the acceptable
pressure of the equipment; therefore, the pressure should also be
controlled.

LEVEL 2: PROCESS ENVIRONMENT.

6. The liquid phase chemical reactor operation is influenced by several dominant
variables, temperature, volume, flow rate, and compositions. Based on the
concept of partial control, we will likely select one (or more) of these to control
the reactor. Recall that the best dominant variable will maintain all other key
variables close to the best possible operation, as measured by product quality
and profit.

Since the plant has a recycle, we should be sure that the total material and
all component compositions are self-regulating. Three categories of compo
nents are considered.

• Volatile inerts will exit the plant in the product stream. If present, heavy
inerts have no stream by which to exit the process and would accumulate
without bound in the liquid phase. Since no inerts are considered in this
problem, we will not design a liquid purge; however, at least a periodic
liquid purge controlled manually by plant personnel should be provided
for a plant of this design.

• Products will leave the plant in the vapor stream from the flash separator
and will not accumulate.

• Reactant A is not completely converted in the reactor, and the uncon
verted A will remain in the liquid phase of the flash separator and return
to the reactor via the recycle. (Note that only a fixed percentage of re
actant is allowed to exit with the product.) Therefore, the reactant will
have a tendency to accumulate in the plant. Clearly, one important con
trol objective is to provide self-regulation for the composition of reac
tant A.

Further discussion of the potential for component accumulation and designs
to provide self-regulation are available in Downs (1992), and Luyben et al.
(1998).

LEVEL 3: PRODUCT QUALITY.

7. There appear to be several manipulated variables that affect the flash product
quality, A2.



LEVEL 4: PROFIT.

8. There are no objectives specified to increase profit beyond controlling product
flow rate and quality. However, there appear to be extra manipulated variables,
or at least extra valves in the process. This inconsistency must be resolved.

We should note that the plant could have been designed without recycle,
but the high conversion of A would have required a very large (and expen
sive) reactor. Another typical reason for recycle in reaction systems is the
suppression of side reactions; for the reaction A -▶ B -+ C, a low concen
tration of B in the reactor ensures a small production of unwanted byproduct
C. A low "single-pass" conversion leads to a large recycle to achieve a high
"overall or total" conversion. However, recycles involve costs as well. Ad
ditional equipment is required to process the material and extra heating and
cooling is typically required for the recycled material. Therefore, a balance
is required in the design and operation of recycle systems. The control de
sign should maintain "moderate" changes in recycle flow rates in response to
disturbances, because very large changes would require expensive equipment
with very large maximum capacities.

Control Structure Step
Since no severe difficulties were identified in the third step, we proceed to the fourth
step, where we begin to design the control structure. Since we anticipate strong
interaction among variables because of the process recycle, process decomposition
is not applied. However, the control is designed according to the five-level temporal
hierarchy. The overall structure is first selected; then, enhancements are added;
finally, algorithms and modes are chosen.
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LEVEL 1: FLOW AND INVENTORY. The first decision is usually the flow
controller, which determines the throughput in the process. Usually, this controls
either the feed rate or the production rate. The control objectives state that the pro
duction rate does not have to be maintained invariant, which is fortunate, because
controlling the vapor flow from a flash drum would be difficult without allowing
the pressure to vary excessively. For this process and objectives, the feed rate Fx
will be controlled. Any of three valves, i>i, v3, or u4, could be adjusted to control
Fi. From the overview, it is realized that v4 may be adjusted to control the liquid
level control in the flash drum, so this is eliminated from consideration as a manip
ulated variable for controlling Fx. Either of the remaining valves may be adjusted
to control F2. Somewhat arbitrarily, we select vx as the manipulated variable; this
selection has the minor advantage that the fresh feed can be reduced to zero and
the system operated on total recycle for a short time. The remaining valve, v3, is
not needed and could be removed; in the example, we will simply maintain the
valve position constant at its base-case value.

The reactor level must be controlled, because it is non-self-regulating, and
the residence time affects the chemical reaction. The outlet flow is manipulated
to control the level, because the inlet flow has already been selected as the feed
flow controller. The outlet flow is affected by both valves V5 and v&', thus, there are
one controlled and two manipulated variables. We select valve ve, to maintain the
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highest pressure in the heat exchanger, which tends to prevent vaporization. The
redundant valve, V5, will not be adjusted.

The liquid level in the flash must also be controlled within limits, and no
objective compels tight or averaging control. Tight level control is selected, because
the level control is part of the recycle process, and the entire process would not
attain steady-state operation until the level attains steady state. The valve v4 was
allocated to control the level when the feed flow was designed.

The final issue at this level of the hierarchy is the pressure control of the flash
drum. The vapor valve v% is selected to give fast control of pressure.

In summary, the following allocation of controlled and manipulated variables
has been made at this point.

Controlled Manipulated
Ft vx
Lx H
L2 t>4
Px "8

W^M'S^t^X^^^M^^^M^&^&^liSW^^;i^lM^\

LEVEL 2: PROCESS ENVIRONMENT. Here, we will select a dominant
variable for control of the chemical reactor. In general, the temperature, flow,
level, and composition(s) are dominant for a liquid-phase reactor. In this process,
the feed flow, F2, is the sum of the fresh feed flow and recycle flow, and these
flows have been determined by level 1 controllers; therefore, they are not available
for reactor dominant controlled variables. Also, we somewhat arbitrarily decide to
maintain the chemical reactor volume constant. Therefore, the dominant reactor
variable will be either the temperature or the concentration, and either of these
variables can be controlled by adjusting the preheating valve, v2. We will evaluate
two control designs using different reactor dominant variables and select the best
design based on closed-loop dynamic performance.

LEVEL 3: PRODUCT QUALITY. The flash composition is to be controlled,
because it is the key measure of product quality; it is controlled directly, without
a temperature cascade, because the composition sensor is continuous with fast
dynamics. The proper choice for the manipulated variable would be the heating oil
valve i>7, because it gives fast feedback dynamics over a large range of operation.

In summary, the following allocation of controlled and manipulated variables
has been made at levels 2 and 3.

Controlled Manipulated

Reactor
A2

v2
l>7



A reactor variable to be control led has not yet been selected and could be tern- 843
perature or concentration. Two alternative designs will be evaluated: temperature
control and reactor concentration control.

Optimization Step
There are no optimization objectives in the control design form. The control design
to this point has allocated all manipulated variables, except for v3 and v^, which
were found to be redundant for the previous control objectives. These valves pro
vide no additional process flexibility, except that of controlling some intermediate
pressures in liquid flow lines. There seems to be no reason to control these pres
sures, and ordinarily, these valves would be eliminated to save equipment and
pumping costs. In this case, the valves will simply be retained at their base-case
percent opening.

To complete this step, enhancements to the basic structure of controller pair
ings are considered. For this simple process, the enhancements will be restricted to
cascade and feedforward, and each controlled variable is discussed individually.

Fi: The flow process is very fast, and the control design needs no enhance
ment. A PI controller is appropriate for this process, with nearly no dead time and
significant high-frequency noise.

L i: The process has little or no dead time, and the pump pressure is relatively
constant. Thus, no cascade or feedforward is required, although a level-flow cas
cade may be used. The algorithm selected is a PI with tight tuning, because the
level influences the residence time, and zero steady-state offset is desired.

L2: The process has little or no dead time, and the pump pressure is rela
tively constant. Thus, no cascade or feedforward is required, although a level-flow
cascade may be used. The algorithm is a PI with tight level tuning.

Fi: The process is fast, and the pressure should be maintained at its set point,
because it affects safety and the flash product composition. Therefore, a PI con
troller is selected.

A2: The concentration of A in the product stream is the key product quality
and is affected by the disturbance in T%. Note that a cascade is not possible, because
there is no causal relationship between the valve v-j and the measured variable T%.
A feedforward controller is possible, because the criteria for feedforward would
be satisfied. However, as a preliminary decision, no enhancement will be selected,
because of the relatively fast feedback dynamics. This decision will be evaluated
at the completion of this study. The feedback controller should have a PI or PID
algorithm, depending on the dynamics, fraction dead time, and measurement noise.

Finally, the reactor environment control options are evaluated to determine
the best control design. Each is discussed briefly as follows.

1. Design I, shown in Figure 25.7, controls T5. The reactor temperature is affected
by several disturbances. These disturbances influence other measured vari
ables before the reactor temperature measurement responds; thus, the potential
for enhancements exists. For example, the measured fresh feed temperature

Example Design:
Chemical Reactor

with Recycle
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Feed
tank

FIGURE 25.7

Control Design I.

Tx could be a feedforward variable, and the feed temperature T3 could be a
secondary cascade variable. As a preliminary decision, the single-loop design
T5 -» v2 is chosen with a PI algorithm. The resulting control of Fx, T$, and
A2 is controllable, as can be verified using the gains in equation (25.2).

2. Design II, shown in Figure 25.8, controls the reactor composition Ax. A more
direct measure of the reactor operation is the concentration of A, which can
be controlled by adjusting valve v2, although with slow dynamics. Therefore,
the cascade design Ax -▶ T4 -▶ v2 is selected, which gives good responses
to temperature disturbances. The resulting control of Fi, A\, and A2 is con
trollable, as can be verified using the gains in equation (25.2).

Since no objectives have been stated for optimization, no further design decisions
are needed at the fifth step in the sequence. Also, all manipulated variables have
been allocated to control loops, except for v3 and i>6, which will be held constant.
Thus, no further degrees of freedom remain for adjustment.

Some control strategies would be required to ensure safe operation. The en
closed flash drum requires a reliable method for venting on high pressure, and a
safety valve must be provided. Also, the objective of preventing an overflow from
the reactor could require a safety interlock system (SIS) to stop the feed flow if
a high level is detected. If this feature is included, an alternative disposal for the
liquid from the flash drum must be provided. The safety controls are not shown in
Figures 25.7 and 25.8.

Monitoring and Diagnosis
All processes should be monitored for short-term operation and longer-term per
formance diagnostics. Shorter-term issues involve alarms for critical variables such
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Control Design II.

as the liquid levels and the flash drum pressure. Some of the longer-term issues
involve the reaction rate, which is influenced by impurities in the feed; recognition
of poor feed characteristics would enable the engineer to trace the cause of the
poor feed and take actions to prevent recurrence of such conditions. To monitor
the product rate, the flow measurement F5 should be accurate. If the density of
the stream changes significantly, the conversion of sensor signal to the flow rate
should be corrected based on a real-time sensor or on laboratory data of density.
Another monitoring goal would involve the performance of the heat exchangers,
which might foul over time. The measurements of the flows, temperatures, and
valve positions enable some monitoring; for example, if the hot oil valve position
increases over time at relatively constant production rate, the heat exchanger is
most likely fouling. The lack of hot oil flow measurements prevents a complete
check on the data; thus, the addition of flow and temperature sensors might be
appropriate so that heat transfer coefficients can be calculated.

Evaluating the Designs
Designs I and II are now complete. To evaluate their performances and select a final
design, the dynamic performance of the process with each design was determined.
In both cases, the process begins at the same initial steady state and is subjected
to a change in feed impurity, which inhibits the reaction by reducing the reaction
rate (frequency factor) to 90% of its base-case value.

DESIGN I. The response of Design I is shown in Figure 25.9. The product
composition (A2) and the product flow rate (F5) experience only small deviations
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FIGURE 25.9

Transient response to feed impurity disturbance for Design I.

and return quickly to their set points. In spite of the good behavior of these key
variables, other variables experience large variations; notice that the recycle flow
rate changes dramatically. For this case, the reaction rate disturbance of only 10%
requires recycle flow changes of about 75% to achieve a new steady state.

The reason for this large change can be understood by analyzing the dynamic
behavior of the total amount of reactant in this recycle system. The amount of reac-
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volume are maintained at their constant set points (in the steady state), the concen
tration of the reactant must increase to compensate for the decrease in &n caused
by the impurity. As the recycle flow (basically, unreacted A) increases, the single-
pass conversion decreases because of the lower space time in the reactor (Fogler,
1997). As the single-pass conversion decreases, the concentration of A, Ca in the
reactor increases, and the rate of reaction increases. Ultimately, a new steady-state
operation is attained; thus, the amount of reactant in the plant is self-regulating.

Because of the low "single-pass" conversion in the reactor, a large recycle flow
rate change accompanies the change in concentration. While this behavior does
not negatively influence the product quality or rate, it will require a more expensive
plant design. For successful operation, the process equipment, heat exchangers,
pumps, pipes, and valves would have to have very large capacities, and the plant
design would be costly. The general potential for recycle systems to be highly
sensitive to small disturbances has been termed the "snowball" effect by Luyben
et al. (1998), who point out that this is fundamentally a steady-state effect.

DESIGN II. The response of Design II is shown in Figure 25.10. Again, the
product composition (A2) and the product flow rate (F5) experience only small
deviations and return quickly to their set points. As discussed above for Design
I, the accumulation of reactant A must reach zero for the plant to achieve a new
steady state. Also, the flows of A in and out are identical for both the original
and final steady states. Therefore, the reaction rates for the original and final
operations must be the same. In Design II, the analyzer controller Ai senses a
change in concentration and adjusts the feed preheat (effectively changing the
reactor temperature) to control the concentration.

After a transient, the process returns to nearly the same flow rates, with the
reactor concentration and volume at their initial values. To return the concentration
to its set point, the A1 controller increased the reactor temperature, thus maintaining
the production rate of B constant. This response returns to steady state faster,
satisfies all performance objectives for F5 and A2, and does not require excessive
equipment capacity. Based on this analysis, Design II provides better performance
for the feed impurity disturbance.

Control Design II should be evaluated for all disturbances in the CDF; these
others are discussed briefly here but not plotted. Because of the T4 temperature
controller, it performs well for the +20°C disturbance in T2, with only very small
deviations in the compositions and product flow. The system experiences a rather
large, but brief, disturbance when Fg increases in a step of 20°C. The maximum
allowable short-term variations in the product flow F5 and the product composi
tion A2 are reached or slightly exceeded. If plant experience indicated that this
disturbance occurred frequently, a feedforward compensation for changes in Fg,
adjusting v-\ could be added to Design II. Finally, the response of a change in desired
production rate, F5, is rather sluggish, because the feed flow rate is manipulated
manually, and the product increases slowly as the recycle system responds, finally
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FIGURE 25.10

Transient response to feed impurity disturbance for Design II.

attaining steady state. This is a direct result of the problem definition, because
short-term variation in the product rate was stated to have negligible influence on
the process performance in the CDF.

The IAE for the product quality variable (A2) is 7.11 for Design I and 6.62
for Design II for the feed impurity disturbance.



Since Design II has good performance for the key quality variable, has well-behaved
dynamics for all variables, satisfies the control objectives, and requires equipment
with smaller capacities, it is selected as the better control design for this process.
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In performing this analysis, process decomposition was not employed, because
of the strong integration, but temporal decomposition was helpful. The conclusion
from this section is that the control design procedure was useful in ensuring that
all important issues were considered, decisions were made in a reasonable order,
and a good control design was completed. Other paths could have led to the same
design, but proper shortcuts involve a very quick analysis of the factors covered
in this procedure; shortcuts do not involve ignoring potentially important factors.
Therefore, using the design procedure builds discipline and competence, enabling
the engineer to reach proper decisions in a less time-consuming manner.

25.8 m SUMMARY OF KEY DESIGN GUIDELINES

Many useful guidelines have been developed in the preceding chapters for mak
ing control design decisions based on fundamental principles. Some of the more
important and straightforward are summarized in this section. Before proceeding
to the summary, the concept of control performance is reiterated. Here, control
performance is defined with respect to the realistic situation of a nonlinear process
with changing operating conditions; thus, a nominal linear model of the process
used in analysis and tuning cannot be exact, and robustness under likely model
uncertainty must be considered. The behavior of all process variables must be con
sidered; this includes the controlled and manipulated variables and may include
other "associated" variables, which may become limiting when they deviate too
far from normal operation. Also, the possibility of noisy measurements must be
considered in estimating performance. Finally, the performance must satisfy the
requirements of the plant; thus, certain variables may have overriding influence on
safety, product quality, and profit. Therefore, a simple summation of the IAE for
all controlled variables often does not represent the process performance. Some
controlled variables may be maintained close to their set points, at the expense
of others experiencing large transient deviations from their set points. This rich
definition of control performance increases the difficulty of the design task, but it
represents the realistic situation in most commercial enterprises. All information
required to define control performance over specific operating scenarios is reported
in the control design form.

The design procedure in Table 25.6 would generally encounter the decisions
in the following order.

1. Degrees of freedom. A model of the system must have zero degrees of freedom
when all external inputs are specified; this is simply requiring the model to
be correctly formulated. The number of external manipulated variables (i.e.,
final elements) must be greater than or equal to the number of variables to
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be controlled. Recall that the degrees of freedom must be evaluated using the
dynamic model of the process.

2. Controlled variables. The engineer next decides which variables are to be
measured and controlled in real time. In general, the best designs will use
sensors to provide measurements of the variables whose behavior is closely
related to the control objectives. This goal is usually possible for flows, pres
sures, temperatures, and levels. In addition, onstream analyzers can provide
measurements of a limited number and type of compositions and physical
properties. In many instances, a large number of components exist in prod
uct streams and many properties are important for product quality and profit.
Even if all of these could be measured, which is not usual, a sufficient number
of manipulated variables does not exist. Therefore, the principles of partial
control are often employed. An inferential variable can be used as a surrogate
for unmeasured properties, and a subset of important measured or inferred
variables is selected to be controlled. For successful partial control, the dom
inant variable(s) selected should result in all key variables remaining within
acceptable limits as disturbances occur.

3. Operating window. This is the range of values of process variables for which
the steady-state plant operation is acceptable (i.e., physically possible and
within safety and product quality limits); it is also referred to as the feasible
operating region. The window and operating points are typically evaluated
using a nonlinear, steady-state model of the process. One or several operating
points may be selected within the window to give good plant performance. If a
process output variable appears at or near a constraint (frame) of the window,
it should be controlled to prevent violations of the limit. If a manipulated
variable appears at a constraint (frame), it should be maintained near the
limiting value, if possible. Normally, the plant conditions have to be moved
"inside" the window, or off the frame, to ensure that no violations occur during
operation with disturbances. When important variables change from internal
to on a constraint as conditions change, the engineer should anticipate the
need for variable-structure control methods.

4. Interaction and integrity. The relative gain provides one measure of process
interaction. It has limitations since it only represents steady-state behavior and
does not indicate strong one-way interaction, but when interpreted properly,
it gives useful information. Specifically, pairing control loops which involve
negative relative gains result in poor integrity, i.e., systems whose stability
depends on the manual/automatic status of the loops; thus, designs with such
pairings are selected only rarely. Also, pairing on loops with zero relative gains
results in systems whose proper functioning depends on the status of many
loops, also representing poor integrity. Pairing on zero relative gains is to be
avoided, but it may be done if it provides a substantial improvement in control
performance. Finally, control designs with loop pairings on relative gains
near 1.0 suggest that the PI multiloop tuning should not change significantly
between single-loop and multiloop.

5. Interaction and performance. The performance of multiloop control systems
depends on the type, or direction, of the disturbance. The relative disturbance
gain, RDG, was introduced as an approximate indication of whether the inter-
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6. Feedback process dynamics. Generally, feedback control performs well
when the dynamics in the feedback path are fast, with a short dead time.
Also, inverse responses were shown to degrade control performance, and,
because multivariable control systems have a parallel structure, the closed-
loop systems can experience inverse responses even though each individual
input-output dynamic response does not. Improved control performance can
be achieved in many cases by selecting from a suite of enhancements that
improve dynamic performance, such as cascade, feedforward, adaptive tun
ing, and process modifications that reduce the feedback dynamics, such as a
partial bypass around a heat exchanger.

Processes that are open-loop stable are preferred. Non-self-regulating
levels and all pressures in closed vessels are noted for feedback control when
reviewing a process. Also, processes that have significant inherent positive
feedback should be evaluated to be sure that they are open-loop stable; if
unstable, efforts should be made to modify the process design.

Processes with recycle deserve special attention because of the possibility
of positive feedback. When reactants are recovered and returned to a chem
ical reactor, the possibility of poor self-regulation or instability exists. The
control system should be designed to ensure that neither reactants nor inerts
accumulate in the system without limit.

7. Disturbance dynamics. Additional steps can be taken to reduce the effect
of the disturbance; the best action is to eliminate it at the source. Other steps
include feedforward control, inventory sizing, and averaging level control, to
modulate the rate of change in flow properties, and process operating condition
changes, to reduce the sensitivity to a selected disturbance. For multiloop
control, the influence of interaction is reduced when interaction dynamics are
much slower than the "direct" feedback path; when unfavorable interaction
exists, the interaction should be slowed by process equipment modifications
and controller detuning.

8. Tuning guidance. The control design and tuning should be selected concur
rently. For example, certain levels may require averaging or tight level control,
and interacting loops should be tuned to increase favorable interaction and
minimize unfavorable interaction. These requirements should be documented
as part of the control design; later implementation that does not adhere to the
proper tuning is likely to be unsuccessful.

The methods used for the control design procedure involve a hierarchical
analysis, in which the initial steps establish the feasibility of achieving the desired
performance with the process and control designs. These initial evaluations are
selected using "open-loop indicators" (Barton et al., 1991), which depend solely
on the process and are independent of the control structure, algorithms, and tun
ing. The operating window, controllability, integral controllability, and relative
gain are in this category. In these steps, many inappropriate design candidates are
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eliminated; also, many insights into the possible strengths and weaknesses in the
remaining candidates are developed. Note that most of these evaluations can be
based on steady-state models.

For final design of the process and selection of the best control design, the
dynamic behavior of the closed-loop system must be considered. For example,
Skogestad et al. (1990) demonstrate that reliance solely on steady-state analysis
can result in the best control design being eliminated from consideration in distil
lation control. Further, a straightforward example of the importance of dynamics
is the pairing of an important controlled variable with a manipulated variable that
gives fast feedback dynamics; this can even lead to pairing on a zero relative gain,
in extreme situations. In general, the behavior of multiloop systems can be quite
complex, with poor designs yielding inverse response even when the process dy
namics are well behaved (see Example 21.4). The frequency-dependent relative
gain was briefly introduced to evaluate complex interactions, but the best approach
is to simulate the final selection(s) to ensure good dynamic behavior. The use of
nonlinear dynamic models for this final evaluation provides additional checks on
the approximations inherent in the linear analysis methods used at earlier steps in
the evaluation.

25.9 m CONCLUSIONS
While no new technology was presented in this chapter, very important methods
for managing the design procedure were presented. They enable the engineer to
utilize information fully and effectively, to recognize when the problem is or is not
fully defined, to apply the simplest decision methods at each stage, and to conclude
the design procedure with high probability of success.
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Process Systems Engineering (PSE).

The procedures introduced in this chapter are applied using technology presented
throughout the book. Questions for testing your learning are located at the end of
Chapter 24. The questions at the end of Chapters 13 and 21 should also provide useful
exercises. A few questions are given here that relate to the methods and examples
introduced in this chapter.

QUESTIONS
25.1. Answer the following questions on the reactor with separator process.

id) Verify that selected controlled variables in Designs I and II can be
controlled with the selected manipulated variables.

ib) Check each of the Designs (I and II) to determine whether it is integral-
stabilizable.

ic) Evaluate the relative gains for the two designs and discuss the impli
cations.

id) Demonstrate that flows Fi and F& can be controlled with v\, v3, and
v4. Discuss reasons for selecting two of these three valves.

25.2. Discuss the performance of Designs I and II and propose better alternative
designs, if possible, for the following situations. Each situation is to be
considered separately, not cumulatively.
id) The reactor temperature, T$, must be maintained constant to obtain

the best product selectivity. Is there an alternative reactor environment
variable that can be adjusted? If yes, design a control strategy to meet
the objectives.

ib) The analyzer for the reactor concentration is quite expensive. Is there
another variable that can be used in its place?

(c) The control objectives are changed to include tight control of the prod
uct flow rate F5. The disturbances are unchanged. How should the
control strategy be changed?



id) The daily total production of product B must be satisfied as close to
its target as possible. How can the design be modified to satisfy this
requirement?

ie) The recycle pump has been replaced with a spare pump of smaller
capacity. Modify the control design to produce as much product as
possible.

25.3. Using the checklists in Section 25.2, prepare control design forms for the
following processes. You should note information that you would need to
determine from the plant personnel to complete the form.
ia) The distillation process in Examples 5.4, 20.2, 20.4, 20.5, and many

examples in Chapter 21.
ib) The fired heater in Figure 15.17.
ic) The boiler in Figure 2.6.
id) The gas distribution network in Question 24.15.

25.4. A series of processes is represented by the simplified system of flows and
inventories in Figure Q25.4. Design a variable structure control system
that will maximize the throughput while maintaining all levels within their
maximum and minimum limits. The constraint that determines the maxi
mum throughput could be the maximum feed target, the maximum product
flow target, or any pump-valve combination in the system. (The targets are
specified by the plant personnel.)
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25.5. An inverse response (right-half-plane zero) in the feedback process dynam
ics in a single-loop control system was analyzed in Examples 1.2 and 13.8.
Assume that a two-input-two-output process has monotonic step responses
for each input-output relationship. Discuss whether the 2 x 2 closed-loop
control system can have an inverse response in one controlled variable, and
if so, under what conditions. If yes, discuss how this situation may affect
the control performance of the system.
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ic) Is it impossible to implement feedback control for a system that is not
integral-stabilizable, as determined by the Niederlinski index?

id) If a nonzero operating window exists, is the process guaranteed to be
controllable within the window?

ie) Is it appropriate to design a multiloop control system without giving
guidance on tuning the controllers?

25.7. Discuss the following issues in control for safety.
id) Give examples of how control strategies for temporal levels 1 through

3 (flow to product quality) contribute to safe operation.
ib) Give examples of how control strategies for temporal levels 1 through

3 can negatively influence the safety of the system. For each example,
give a control design decision that would ameliorate the hazard.

25.8. For each of the processes in question 25.3, determine process performance
characteristics that should be monitored using real-time data. For each
characteristic, define the calculations and sensors required and how the
results would be interpreted, and discuss the actions taken when the process
performance becomes unsatisfactory.

25.9. A major process design change is being evaluated for the reactor-with-
recycle process. The stirred tank reactor can be replaced with a packed-bed
reactor, as shown in Figure Q25.9. A new liquid byproduct, component
C, is also produced, and it is separated from the recycle A (and B) in a
liquid-liquid separator. Sketch a control system design for this process in
the figure. You may add valves and sensors as needed.

25.10. In a monograph on plantwide process control, Luyben, Tyreus, and Luyben
(1998) discuss the potential accumulation of reactants in reactor-recycle
systems. They suggest that one flow rate in the recycle loop should be on
flow control, not adjusted by a level controller.
id) Discuss the rationale for this suggestion.
ib) Apply this suggestion to the solved example in this chapter (both De

signs I and II), and sketch the control designs on copies of Figure
25.6.

ic) Discuss the expected performance for the disturbances defined in the
control design form.

25.11. In some reaction systems, adjusting temperature can be inappropriate. For
the reaction sequence A ->• B -» C with B the desired product, high tem
perature might lead to the production of excessive amounts of undesired
byproduct C. Answer the following questions for both Designs I and II of
the solved example in this chapter.



Hot oil

857

Questions

"N L-L
' Separator

FIGURE Q25.9

id) Discuss all possible dominant variables for the reactor.
ib) Select a dominant variable different from the temperature or concen

tration and sketch the complete design on a copy of Figure 25.6.
ic) Discuss the response of the new control design to the disturbances in

the control design form.

25.12. The control design form for the worked example in this chapter specified
that the product flow rate could deviate from its desired value. Consider a
modified problem that requires closer control of the product flow to its set
point.
id) Without changing any of the existing controllers in Design I, add one

or more controllers to improve the control of the product flow rate.
Discuss the performance that you would expect from your new design.

ib) Without changing any of the existing controllers in Design II, add
one or more controllers to improve the control of the product flow
rate. Discuss the performance that you would expect from your new
design.

ic) Develop a new control design that provides very tight control of the
product flow rate, while also achieving the other control objectives.

25.13. The dynamic behavior in the worked example in this chapter was strongly
influenced by the material recycle. Consider a modified process without
recycle; two feeds are mixed before entering the reactor, and the liquid
from the flash separator goes to a tank. (This would be approximately how
the plant operated if a very large tank existed in the recycle path.)
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Design Procedure covery in the separation by replacing the flash drum with a two-product

distillation tower. In the modified process, the overhead product would be
a vapor stream of mostly component B, and the bottoms product would be
liquid recycle to the reactor of mostly component A. Sketch the process
and add sensors, valves, and controllers to yield good control performance
for the integrated product. You may assume that the separation of the two
components can be characterized by a constant relative volatility.
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26.1 ® INTRODUCTION
Decades of industrial experience have demonstrated the success of process control
in maintaining selected variables near their desired values. Essentially all process
plants apply automation, using feedback and feedforward principles to achieve safe
and profitable production of consistently high-quality product. In general, process
control is very effective when the control system has sufficient time to respond to
disturbances (i.e., the feedback dynamics are fast compared with the disturbance
frequency).

While process control, using the methods presented in this book, is required
for regulating some process variables, the application of these methods may not
be appropriate for all important variables. In some situations the best operating
conditions change, and a fixed control design may not respond properly to these
changes. In other situations, continuous feedback compensation can be too aggres
sive, leading to excessive variation in the controlled variables. Two approaches for
continually improving plant operation are introduced in this chapter to address
these situations. Both use the basic principle of feedback control: using outputs of
a system to influence inputs to the system. However, these approaches involve very
different technologies to address unique objectives. The approaches introduced in
this chapter enhance the good performance achieved through process control.

OPTIMIZATION. Optimization methods find the extremum—maximum or
minimum—of an objective. Generally, the objective function will be profit, which
we aim to maximize. When control objectives were discussed in Chapters 2,7 and
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24, profit optimization was given less importance than safety, environmental and
equipment protection, smooth operation, and product quality. Thus, these shorter-
term objectives must be satisfied before we can turn our attention to profit, although
the company will not survive in the long run without achieving profitable operation.

STATISTICAL PROCESS CONTROL (SPC). The methods presented to this
point in the book can be referred to as automatic process control (APC), because the
control calculation is executed and the final element adjusted "automatically" as a
result of the control calculation. In statistical process control (SPC) the process data
is analyzed for opportunities for improvement, and when an opportunity exists, the
data is diagnosed to ascertain an appropriate action. Thus, SPC involves statistical
analysis of the real-time data, but not necessarily an action, at each execution. This
additional analysis generally results in less frequent feedback actions, which can
improve performance in some processes.

Both of these methods appear in the process control implementation hier
archy in Figure 25.2, which shows them as higher levels in a cascade structure.
Their decisions can be implemented through lower-level process control loops.
For example, optimization systems can adjust the controller set points that regu
late operating conditions such as temperatures and production rates. Alternatively,
the highest-level decisions may involve complex manual intervention; in these
cases, the results are provided in an advisory manner to plant personnel. Examples
of such decisions are a change in feed material type and decisions on regenerating
catalyst. Also, some diagnostic results indicate only that a significant change in
process equipment performance has occurred, and further investigation by plant
personnel is required to ascertain the cause and corrective actions.

Each of these topics is quite large, and entire books have been dedicated to
their coverage. This chapter introduces some basic concepts for each approach and
demonstrates how each relates to process control. It is important to recognize that
most plants require excellent process control, to achieve safe and smooth operation,
before the approaches in this chapter can be implemented and that opportunities
for optimization and monitoring often exist. Thus, the engineer is not confronted
with an "either/or" decision: all approaches in the hierarchy can be implemented
concurrently.

26.2 d OPTIMIZATION
The control design procedure in Chapters 24 and 25 allocates manipulated vari
ables to achieve good dynamic performance, which is measured by the (hopefully,
small) variability in key variables. Often, the number of manipulated variables
exceeds the number of controlled variables. In these situations, safe operation and
good product qualities can be achieved by manipulating selected process inputs
that give the best control performance, and some manipulated variables can be
maintained at arbitrary, constant values within an acceptable range. Alternatively,
the excess manipulated variables can be adjusted to increase profit; these excess
manipulated variables will be referred to as optimization variables (Marlin and
Hrymak, 1997). Some approaches for achieving high profit with excess manipu
lated variables have already been introduced; for example, the variable-structure
controls in Chapter 22 provide the means for utilizing manipulated variables in a



specified order, with the proper order based on the process economics. In this chap
ter, additional optimization approaches are introduced that address more complex
situations, where a strategy for adjusting the excess variables is not as straight
forward to determine and may change frequently. Three methods for optimizing
process economics through adjusting optimization variables are discussed below
and demonstrated with process examples.
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I. Process Control Design
The first step in designing optimizing controls, after the regulatory controls have
been designed, is an analysis to determine the proper strategy for the optimization
variables. This analysis uses models of the process or plant data to answer two
important questions:

1. Do incentives exist for optimization? In some situations the profit will not vary
significantly as the values of the excess manipulated variables—the optimiza
tion variables—change. When the profit does not change, the optimization
variables can be maintained at constant values selected for convenient op
eration. When the profit is significantly different for various values of the
optimization variables, the next question is evaluated.

2. Is the optimal strategy constant and simple? When the profit is sensitive to the
optimization variables, the response of these variables to external changes,
disturbances, and set point changes should be evaluated. In some cases, the
optimal response to these external changes (i) is nearly the same for all ex
pected operating conditions and economics and (ii) can be implemented via
straightforward real-time calculations as part of the control strategy.

When the answers to both questions are yes, a control strategy can be designed
to approximate the best performance. Examples of this approach that have al
ready been presented include the valve position controller in Figure 22.13 and the
production maximization in Figure 22.14; in these examples, the best operating
conditions were close to limiting values of key variables (i.e., they were "pushing
constraints"). The method for process control design introduced in this subsection
may not result in as simple a policy as operating near a constraint, but the con
cept is the same: implementing an operating policy that has been determined to be
close to the best possible. The following example demonstrates the approach for
answering the two questions above and, when appropriate, building the strategy to
maximize profit via control calculations that do not explicitly involve economics.

EXAMPLE 26.1.
Steam is used in most process plants for power, driving turbines, and heat transfer.
To satisfy the large and variable plant demands, many process plants have their
own boilers and steam distribution networks. Typically, the boilers are arranged
as shown in Figure 26.1, with all boilers providing steam to a single pipe, termed
a header, from which all consumers are supplied. The total steam demand can
be provided by any combination of individual boiler productions that sums to the
total demand. The boiler productions are often termed loads, expressed in units
of fraction of the maximum steam from one boiler. This convention is used in the
example, with all boilers having the same maximum and the total consumer steam

Methods For Optimization

I. Process control design
II. Model-based optimization
HI. Direct search
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Multiple boiler and steam header.
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demand expressed as a multiple of the maximum possible steam production from
one boiler.

The basic requirement for process control is to ensure that the steam required
by the consumers is produced by the boilers; in other words, the consumers and
producers of steam are "in balance" at all times. This is achieved by controlling
the header pressure by adjusting the fuel to the boilers; any combination of steam
productions from the four boilers that sums to the required total satisfies the basic
objective. The percent efficiency for a boiler is defined as 100 x (energy trans
ferred to the water)/(total heat of combustion); note that the energy to the water
includes preheating the water, vaporization, and superheating the steam. Since
the efficiencies vary as the demand changes and are different for different boilers,
opportunity exists for influencing profit by using the minimum fuel, while satisfying
the total demand from the steam consumers. In this example, the boiler efficien
cies, from Cho (1978), are given in Figure 26.2.

Using this data, the process performance can be determined for any distribu
tion of boiler loads at any steam production, D, which is the consumer demand. As
explained in Chapter 2, the additional information required to calculate the ben
efits for automation is the distribution of plant operating conditions, which is here
defined by the variability of the consumer demand. For this example, the demand
is assumed to be uniform over the range of 0.8 to 2.5, as shown in Figure 26.3; for
a real situation, this distribution would be determined based on process data.

The fuel requirements for any steam demand, which is the direct measure of
economics, can be determined by the application of equation (26.1).

= E iFs\m)i JHq — Hsm)
AHcirji/XOO)

(26.1)

where Ff — total flow of fuel to all boilers
(^stm)« = flow of steam from boiler /

Ho = specific enthalpy of water to boiler
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FIGURE 26.2
Boiler efficiencies for Example 26.1.
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FIGURE 26.3
Data to calculate the average boiler performance.

Hsm = specific enthalpy of steam to the header
AHC = heat of combustion of the fuel

N = number of boilers (in this example, 4)
r)i = efficiency of boiler 1 (see Figure 26.2)

The total steam demand D is determined by the consuming process units and
is variable. The best boiler operation satisfies the steam demand and minimizes
the total fuel or, equivalent^, maximizes the average efficiency. Also, the best
operation is the average of the operations at the different demands weighted by
the fuel at each. The maximization is defined mathematically in equations (26.2).
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subject to

Dj = J2iFsim)i
, / = i J7

Mj = fo^stm)? + biiFstm)i + Ct]j

'/avc —

M

E F j EiFs^iirii)
J J

M N
E Fj E [(^stm),];

(26.2a)

(26.2b)

(26.2c)

(26.2d)

where Fj = frequency at interval j (0.20 for all j in this example)
M = total number of intervals (in the example, 5)

Fsttn > 0.0

The solution to this nonlinear mathematical problem requires optimization
mathematics, which are not central to this introductory coverage; this topic is
explained elsewhere (Edgar and Himmelblau, 1988), and good software exists,
such as GAMS (Brooke et al., 1992) and SPEEDUP (Aspen Technology, 1994).
Thus, the results of the numerical solution of problem (26.2) are given in Figure
26.4 without details on the optimization method used. The best operation gener
ates the required total steam by adjusting the steam produced from all boilers in
response to a change in the demand. The approach gives the highest average
efficiency, 87%. This complete optimization could be implemented as part of a
control strategy but would require an optimization problem (26.2) to be solved
frequently in real time.

The values of the optimization variables change as disturbances occur. In
Section 26.2 two questions were posed in evaluating operations optimization. First,
do incentives exist for optimization? This can be answered by determining the
plant performance (here the average boiler efficiency) under the standard type of

Optimal boiler operation
Average efficiency = 87%

1.0 1.2 1.4 1.6 1.8 2.0
Total steam demand

2.4 2.6

FIGURE 26.4

Optimal boiler load allocation for Example 26.1.



control. This base case is taken to be a load distribution for all boilers, so that the
load of each boiler at any steam demand D would be D/N. The average efficiency
for this example under the "equal loading" base case would be 86%, which is 1%
lower than the optimal operation. Since this could represent a substantial increase
in fuel consumption, incentives exist, and the second question will be considered.

The second question involved a simple control strategy that could, at least
partially, replace the complex optimization calculations for real-time implementa
tion. Since simplicity is always a goal—although not at the expense of poor product
quality or significant loss in profit—an alternative approach to achieve partial op
timization is evaluated. The simple alternative is to maintain the boiler loads at
constant ratios, with the values of the constant ratios selected to give good (but
suboptimal) economic performance. This design problem—which is solved only
once, during design, to give parameters to be used in the real-time calculations—is
the same as equations (26.2a) through (26.2of), but with the addition of equations
(26.2e) for boilers i =2,N and interval j = 1, M:

[ i F s m ) i ] j = R d i F s t m ) x ] j ( 2 6 . 2 e )

The solution of equations (26.2a) through (26.2e) determines the best values for
the load ratios at each demand Dj. Note that fl, is the ratio of the steam from the /th
boiler to the steam from the first boiler and that, once determined, this ratio does
not change when the total steam demand changes. Thus, the resulting control
strategy involves very simple calculations.

The solution of this problem is given in Figure 26.5. As expected from the
optimal results, the ratios are selected to have a high steam production from the
more efficient boilers. The average efficiency from this much simpler approach is
only 0.25% less than the exact optimum for the wide range of operating conditions
in Figure 26.3. Considering the likely accuracy of the boiler efficiency curves, this
difference does not seem to be significant, and the simpler ratio control design
would usually be selected. The ratio control could be implemented in a manner that
would not influence good performance of the very important pressure controller.
As shown in Figure 26.1, the pressure controller output influences every boiler fuel
flow directly, and the controller output is modified to allow a ratio to be adjusted.
The coefficients in the ratio calculation, dt and ex, would be determined from Figure
26.5 and would not be adjusted in real time.

An important lesson from this example is that tracking the best operating
conditions does not always require extensive real-time calculations. The proper
control calculations can be ratio control (this example), constraint pushing using
signal selects, split range, or valve position controller. The correct design often
requires careful process analysis to give a structure that closely follows the best
operation in real-time control calculations.

This first approach, using a control design to approximate optimal operation, is
appropriate when the control calculation need not change with time. For example,
the ratios in Example 26.1 do not change as long as the efficiency curves for
the boilers do not change with time. The result is a simple method that does not
calculate or estimate the profit as part of the control calculation. In contrast, the
next two approaches can respond to changes in plant performance by using process
measurements in the calculation of profit, at the cost of much greater complexity.
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Boiler Ratio Control
Average efficiency = 86.75%
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FIGURE 26.5

The best ratio boiler load allocation for Example 26.1.

II. Model-Based Optimizing Control
This second approach can be used when incentives exist for adjusting the opti
mization variables but the method for optimization cannot be implemented in a
straightforward strategy such as constraint pushing or ratio control. In this ap
proach a mathematical model of the process is used to calculate the best operating
conditions for the current situation, and inevitable model errors are corrected (at
least partially) using feedback measurements. Many technologies are available for
real-time, model-based optimization. One of the simpler and frequently employed
model-based approaches is introduced in the next example; it uses a linear model
and a simple feedback updating method. When linear models are adequate, the
model-based optimization can use the highly reliable linear programming solution
of the optimization problem. When the feedback is introduced by adjusting the
"bias" term in the linear model, the optimizing controller can be formulated in the
model-predictive structure.
EXAMPLE 26.2.
In some cases, linear models can represent a process with satisfactory accuracy
for the purpose of optimization of single process units. An industrially important
control problem is the blending of several materials into a product mixture, with
the control objectives to achieve the specified production rate and to maintain
the product qualities within their limits. In this example, several hydrocarbon com
ponents are blended to produce gasoline. The product qualities, octane number
(OCT) and vapor pressure (RVP), are important for the performance of the gaso
line in an internal-combustion engine (Stadnicki and Lawler, 1985). The component
flows can take any values from zero to the maximum amount available.

This process is shown in Figure 26.6, and the linearized model is

(RVP)Fr = £/•,/} (26.3a)
/=i
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(OCT)Fr

F j

L

(26.3b)

(26.3c)
i = i

where OCT = product octane
oi = component octane

RVP = product vapor pressure
r, = component vapor pressure

FT = product flow
Fj = component flow
L = number of component flows (4 in this example)

In this example, the same model structure is used to represent both the true plant
and the model used for control (i.e., Gm in Figure 26.6). The parameters in the
controller model are not identical to those of the plant; these differences always
occur in practice due to model error.

Note that the dynamics are so fast that the process is essentially at steady
state, so the controller model is algebraic [G„,is) = KJ. The controller in the
model predictive structure involves an inverse of the process model. However,
the process and the process model have more manipulated than controlled vari
ables; four manipulated flows and only two controlled product qualities. In this
situation many combinations of the manipulated-variable values can satisfy the
controlled-variable values. This flexibility can be capitalized upon not only to satisfy
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the controlled-variable bounds in equation (26.3), but also to maximize profit by
using the lowest-cost components. This flexibility is advantageous, but it leads to
a mathematical problem that offers more challenge than taking the inverse of a
square matrix. The statement of the problem to be solved by the controller Gc is

max profit = VTFT - J^ V/F,
F ' / = i

subject to

(RVPrciJFy < jN/F, + Fr(Fm)RVp < (RVPmax)Fr

L

(OCTmin)Fr < J^OiFi + FTiEm)ocr < (OCTmax)Fr

(26.4a)

(26.4b)

(26.4c)

(26.4d)

(26.4e)

i= i

F t - £ , F,
1 = 1

0 < Fi < (F/)max
where VT = value of the product

V/ = value of each component
Em = feedback correction defined in equations (26.5), which would

be zero if no feedback were implemented

Mathematical problems of this structure—linear equations that include both
equalities and inequalities—are well known in applied mathematics as linear pro
gramming (Best and Ritter, 1985). The solution to this problem gives the values
of the four manipulated variables (flows) that satisfy all equations under "subject
to" and also maximizes the profit. The number of equations that are equalities at
the solution is the number of original, strict equalities (26.4d) and the number of
inequalities (< or >) that are at their limits at the solution. This forms the set of
equations to be solved by adjusting the same number of manipulated variables.
In this case, the solution contains one equality (26.4d) and two inequalities due
to limits on the product quality (26.4b and 26.4c). Thus, three manipulated flows
must be adjusted to values that satisfy the equalities. Since four flows exist, one
flow is not specified, and linear programming theory demonstrates that this "ex
cess" optimization variable must be at either its upper or lower limit, depending
on which limit results in the highest profit.

Efficient computer programs are available to solve the linear program in equa
tion (26.4), which is shown as Gc in Figure 26.6. If no feedback were included, the
model would be used in a feedforward prediction of the correct flows to optimize
the operation. The feedback control system in Figure 26.6 uses measurements of
the product qualities to correct the model. Many possible methods can be used
to correct the model, and in principle, all coefficients (<?,• and rt) could be adjusted
when sufficient data is available. In this example, only the simplest feedback is
considered, in which the difference between the measured value of the product
quality and the model prediction is used to correct the model "bias" term. This is
essentially the same type of feedback used in the model predictive controllers in
Chapters 19 and 23. Thus, the Em terms in equations (26.4) are

(26.5)
(£m)RVP = RVPmeas — RVPrao(jel

(£ro)0CT = OCTmeas _ OCTmodel

with the subscript "meas" indicating the measured values in the product stream.



While this type of feedback was shown to provide zero steady-state offset for
steplike disturbances for the controllers in Chapter 19, it is not guaranteed to
provide exact tracking of the true plant optimum for all situations of model errors,
although it may under some conditions. Conditions for its success are given by
Forbes and Marlin (1994).

In this example, the model used in the controller differs from the true plant per
formance, as would essentially always occur. The component qualities are given
for the true plant and the controller model in Table 26.1. The dynamic response for
this case under closed-loop control, with the model update equations (26.5) and
the optimization problem (26.4) solved every controller execution, is given in Fig
ures 26.7 through 26.9. In Figure 26.7, the component flow rates are shown for each
controller iteration. The first iteration was performed without feedback (£m = 0),
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Component Product

System F i F2 F3 F4 H i g h L o w

Model Octane 88 64.5 92.5 98 — 8 8 . 5
Vapor pressure (psi) 5 14 138 5 1 0 . 5 —

Plant Octane 91.8 64.5 92.5 96.5 — 8 8 . 5
Vapor pressure (psi) 4 12 138 7 1 0 . 5 —

Model Value ($/bbl) 34 26 10.3 37 33
Model and plant Maximum flow bbl/d 12000 6500 3000 7000 7000 (fixed)

1 bbl (barrel) == 0.159 m3; psi = 6.89 kPa
n n a mU W l t M i l U ^ ^ I H V i HSftlHWKKSSBBSffiBKIiSKSiS*!

so these results are a feedforward prediction of the best operation. After each
controller execution, feedback measurements were taken and used to calculate
the corrected biases E,„ to be used by the controller for the next iteration. By the
completion of the eighth iteration, the control system, using the feedback model
corrections, achieved operating conditions that maximize profit in the true plant.
The actual measured product qualities are shown in Figures 26.8 and 26.9. Both
qualities should be within their upper and lower limits and, at the optimum, arrive at
a limit—the upper limit for vapor pressure and the lower limit for octane, because
this operation maximizes profit. Note that the qualities violate their limits during the
transient responses in spite of the controller containing explicit equations for these
limits, because the model errors are large enough to lead to significant, although
temporary, violations of product quality limits in this example.

In general, many decisions must be made in designing and implementing a
model-based real-time optimizer; some of these are model structure, parameters
to be updated, measurements used for updating, and the updating calculation (e.g.,
least squares). Some guidance on these decisions is provided by Forbes and Marlin
(1994) and Krishnan et al. (1993). Industrial experience indicates great benefit for
real-time optimization (e.g., Fatora et al., 1992; Larmon, 1977; Yang and Wald-
man, 1982). The best experiences are reported for plants with accurate models and
good measurements, so that the feedback model updating leads to accurate rep
resentations. Also, substantial improvements occur more often in complex plants
with many variables and changing conditions, where control structures, such as
operating close to the same constraint, are not likely to yield the highest profit.

III. Direct Search
This third approach can be used when incentives exist for adjusting the optimization
variables, but the strategy for optimization cannot be implemented in a straightfor
ward strategy such as constraint pushing or ratio control, and accurate models do
not exist. In these situations, a very simple, locally accurate model of the process



is determined empirically from plant data. This model is used to determine the 871
direction in which changes in the manipulated variables will increase profit. The i#a»y«MM^
plant operating conditions are then changed a small amount in this direction, and Optimization
a new, updated model is evaluated. The direction for optimization is determined
again from plant data, and another step is taken.

This iterative approach has been used for many years to study plant behavior
and determine improved operating conditions. When the experiments are time-
consuming and expensive, effort must be made to reduce the duration of the study;
then, only a few experiments are performed and careful statistical evaluations are
used to determine whether further improvement is likely and, if so, which direction
is the best. Infrequent application of this concept in studies or "campaigns" is usu
ally termed evolutionary operation, a term coined by Box and Draper (1969), who
provided procedures, guidelines, and statistical tests for this periodic approach.
While the periodic approach minimizes disturbances to the plant resulting from its
designed experiments, it cannot track the best operation when it changes frequently.

The concept of building a locally accurate model for determining the direction
of optimization can be extended to real-time, feedback control. Many algorithms
are possible, and one of the simplest is discussed here (Bozenhardt, 1986). The
concept is shown in Figure 26.10, where the last few values of the optimization
variable and calculated profit are plotted. Recall that the true plant profit is never
known exactly; thus, an estimate of profit must be calculated from plant mea
surements. The direction in which the optimization variable should be changed
to increase the calculated profit can be determined from the data in the plot. One
method for determining the direction is to fit some of the most recent data with
a straight line by least squares (Box et al., 1978). The slope of the line gives the
correct direction (i.e., whether the optimization variable should be increased or
decreased). The expression for the slope when there is one optimization variable is

Np

Z^(jj "~ PaveX-^i" — -^ave)
S = ^ — - ( 2 6 . 6 )

Np
Z^,iXi — -^ave)
i=l

Optimization variable, x
FIGURE 26.10

Using past data to determine the search direction.
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where Np = number of points used in calculating the slope
F,- = profit at point i

Fave = average profit (in Np data points)
S = slope

Xj = optimization variable value at point i
Xave = average value of the optimization variable (in Np data points)

In this method, the optimizing controller makes a change in the optimization
variable equal to AX[sign(5)], with the step size AX a fixed value independent
of the magnitude of the slope. Note that this algorithm can be extended to more
manipulated variables by modifying the expression for the slope. The following
parameters appear in this algorithm and their selection and tuning are demonstrated
in the next example.

CALCULATED PROFIT. The calculated variable should be directly related to
plant profit and should be relatively insensitive to measurement noise and process
disturbances.

OPTIMIZATION VARIABLE(S). The manipulated variables that yield ex
cellent feedback control of safety-related variables and product quality should be
allocated to these higher-priority tasks. The additional manipulated variable(s) that
influence profit can be adjusted slowly to improve profit.

NUMBER OF PAST DATA POINTS. Past data provides a filter that makes
the slope less sensitive to measurement noise; for this purpose, a large number
would be good. However, too long a memory has two disadvantages. First, long
memory gives importance to very old data that might not represent the current
plant performance. Second, long memory requires many points on the "other side"
of the maximum before the slope changes sign, which leads to large oscillations
about the optimum operating point.

STEP SIZE. The step size should be small so that the change does not signifi
cantly influence important controlled variables, such as product quality. However,
the step size should be large enough to cause a measurable change in the profit
calculated from noisy plant measurements.

EXECUTION PERIOD. The approach to direct search described in this section
requires the plant to achieve steady state between executions for measured values
to represent the profit properly. Thus, the minimum execution period must be long
enough for the process to achieve steady state: approximately the dead time plus
four time constants for a first-order-with-dead-time process. Other approaches
have been investigated that estimate parameters in a dynamic model and use the
steady-state gain to determine the best direction (e.g., Bamberger and Isermann,
1978; Garcia and Morari, 1981).

CALCULATED DIRECTION. This method bases the direction on the slope.
It would be possible to fit a higher-order curve to the data; however, the use of



process measurements in calculating the profit estimate introduces noise into the
method, which usually leads to unreliable estimates of coefficients of the higher-
order terms.

EXAMPLE 26.3.
The steady-state operation of the chemical reactor in Figure 26.11 is to be opti
mized in response to unmeasured disturbances. The profit is maximized by achiev
ing the highest possible concentration of product B in the reactor effluent.

Information: The chemical reactions are
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B
where

1. The rate expressions -rA = kAo exp(-£Ao/RT) and rc = fcCoexp(-£Co/RT)
with nominal values of kAo = 17748.5 min-1, kCo = 643,048 min-1, EAo/R =
3000 K, and ECo = 4000 K.

2. The temperature is constant at 330 K.
3. The heat of reaction, heat transfer, and work are negligible.
4. The volume is constant and the contents are well mixed.
5. The flow rate is 2.65 m3/min.

An optimum concentration of B (CB) exists because too low a concentration of
the desired product B is not optimal, and a large concentration of B leads to
excessive losses of B to undesired byproduct C. The conversion is influenced
by the residence time in the reactor; therefore, the manipulated variable for this
reactor is selected to be the volume of liquid in the reactor.

The optimum operating condition for the parameters in this example is V = 1.0
m3, which gives CB = 0.556. However, the plant is subject to disturbances that
require us to frequently change the operations (level) to obtain the highest CB
possible at the time. For this example, the disturbance involves occurrence of an
inhibitor that decreases the rate of the first reaction; fcA0 is decreased from 17,748.5
to 10,000 min-1 when the inhibitor is present. The steady-state behavior of the
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FIGURE 26.11
Stirred-tank reactor with direct-search optimizing

control.
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Concentration of B for two situations in Example
26.3.

reactor is shown in Figure 26.12 for two situations, no inhibitor and inhibitor present.
Naturally, many other disturbances are possible, and the real-time optimization
approach should respond well to all disturbances.

The direct search optimization approach is applied to the reactor problem
using the following parameter values:

P r o fi t m e a s u r e = C b
Optimization variable = V(with T, Cao, and F constant)
Number of points in memory = 3
Step s ize (A V) = 0 .05 m3
Execution period = to achieve steady-state
Calculated direction = slope from equation (26.6)

The performance of the direct-search optimization for the ideal situation, a plant
without measurement noise, is shown in Figure 26.13. At controller iteration 20 the
inhibitor in the feed increases in a step, and at iteration 50 it returns to its original
value of 0.0. As a result of this disturbance, the concentration CB decreases; then
the search method adjusts the reactor volume V to achieve the maximum concen
tration of B for the current situation. Note that the optimum volume is shown in the
figure only to aid in evaluating the performance of the optimizing controller; the
optimum volume would normally not be known and was not used by the search
algorithm.

The performance of the direct search for a realistic situation, in which the
measurement of CB includes noise, is given in Figure 26.14. The same scenario is
involved in this data. As expected, the optimization performance is not as good,
with some "wandering" around the optimum, but the algorithm was successful in
changing the optimization variable in the proper direction and about the correct
magnitude. Again, the true optimal value of the volume was not used by the direct-
search controller.
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Direct-search optimization without measurement noise.
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Direct-search optimization with measurement noise.
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Automatic process control (APC) using feedforward and feedback principles iden
tifies a deviation from desired operation (i.e., from the set point or points) and
makes an immediate adjustment in a manipulated variable. Thus, automatic pro
cess control does not eliminate the cause of poor operation (i.e., the disturbance);
the adjustment is selected to compensate for the effects of the disturbance and
maintain the controlled variable at its desired value. Since the sources of distur
bances have not been affected, the APC approach leaves the process susceptible
to future disturbances from the same source. In contrast, statistical process control
(SPC) has as a goal the identification and elimination of disturbances. By this
approach of removing the source of disturbances, the long-term effect of SPC is to
reduce variability in process operation and improve product quality. Since some
variability in process operations is inevitable, statistical process control alone can
not adequately control most process operations. Fortunately, SPC and APC can
provide complementary improvements and can be applied to the same process to
improve the overall performance.

Statistical process control identifies deviations in process performance using
real-time measurements. The base-case performance is established, not from a
fundamental mathematical model, but rather from experience; thus, empirical data
is used in establishing the typical variability in process variables. This variability
results from many (small) disturbances and sensor noise, which are considered to be
unavoidable. This typical variability is referred to as common-cause, which results
in consistent variability over time. As each new set of process data is collected, it
is evaluated by comparison with the common-cause variability, and the possibility
of a significant change in process operation is evaluated. Significant deviation
from the common-cause variability would then result from a disturbance that is
not typical; this is referred to as a special (or assignable) cause of variability. If a
change has occurred, the process is diagnosed to determine the proper corrective
action. The corrective action may be as simple as adjusting a final control element,
or it might be as involved as changing the source of feed material or catalyst to
prevent the cause of the disturbance.

Automatic process control compensates for deviations from set point. In contrast,
statistical process control has the goal of identifying and eliminating causes of vari
ability in key process variables.

Statistical process control is now demonstrated by way of its best-known method.

Shewhart Chart
The analysis of the process data to quickly and easily recognize changes in pro
cess performance is facilitated by the Shewhart chart, shown in Figure 26.15.
The Shewhart chart provides a visual display of recent process data of a single
measurement along with limits representing the typical, common-cause variabil
ity. The limits are determined empirically from "good" process operation and are
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typically set to include 99.7% of the data; if the data is normally distributed about
its mean, the limits are located ± three standard deviations from the mean. The
limits are referred to as the upper and lower control limits (UCL and LCL). Com
paring a measured value with these limits is essentially a statistical hypothesis test
on whether the mean of the variable has changed; this test could be calculated
in a standard manner, although the clarity provided by the visual display of data
with the limits increases the appreciation of the effects of variability (Montgomery,
1985). Also, modifications are available for variables with nonnormal distributions
(Jacobs, 1990).

When the process is experiencing typical variability, a situation often referred
to as "in the state of statistical control," most data will be within the limits. Although
there is variation of the measurement within these limits, this variation is accepted
as inevitable and no action is taken, whereas automatic process control makes a
feedback compensation for any nonzero error. If the measured value exceeds the
limits, the SPC approach requires a diagnosis to determine the special or assignable
cause and requires the implementation of the appropriate corrective action.

EXAMPLE 26.4.
Reconsider the chemical reactor in Example 26.3 without the optimizer. The liq
uid level is controlled and the concentration of component B is measured online.
Describe how the process could be monitored using a Shewhart chart.

The concentration of B is the key indicator of process performance and can be
plotted on a Shewhart chart. Historical data, not shown, has been used to establish
the common-cause variability and the control limits for the concentration. Some
data are plotted in Figure 26.15 for this example. In the initial data, the concentra
tion remains within the action limits, although it varies due to the common-cause
disturbances: small changes in the level, flow, reactor temperature, and feed con
centration. At a time indicated by an arrow, the concentration of B deviates from its
usual range and remains outside this range for an extended time, which indicates

Statistical Process
C e n t e r l i n e C o n t r o l ( S P C )I.
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a special-cause disturbance has occurred. In this example, the source of the dis
turbance is not obvious from the data, so additional diagnosis would be required.
For example, the measures of the key process variables could be checked for
errors, the reactor temperature could be determined, and the feed composition
could be measured. As noted in Example 26.3, the inhibitor concentration is an
important factor in the process performance and could be determined by labora
tory analysis. If the inhibitor concentration has caused this deviation, as is likely
for such a large disturbance, the underlying source of the disturbance should be
determined; for example, the reason could be contamination in storage or poor
quality from a supplier. Whatever the cause, the corrective action should not only
eliminate the current disturbance but also prevent future occurrences. Notice that
the optimization results in Example 26.3 can only give the best performance with
a given level of inhibitor, which can represent a substantially lower concentration
of B; only eliminating the disturbance can restore this process to its desired high
concentration of B.

Reducing Var iabi l i ty
The distinction between APC and SPC can be clarified and the strengths of each
can be demonstrated by considering two examples which could involve the same
process, but experiencing different disturbances. Consider the packed-bed chem
ical reactor in Figure 14.11. The objective is to maintain the concentration in the
effluent measured by the sensor at a desired value, and concentration can be influ
enced by adjusting the heating medium valve in the reactor preheat exchanger. The
performances of this process with and without feedback control are considered for
two different scenarios.

SCENARIO I. For this scenario, the initial data is given without any feedback
action in Figure 26.16. The cause of the variation for Scenario I is essentially
random, uncorrelated noise about the constant mean value. For example, this could
occur if (1) no (significant) disturbances occur in the reactor operating variables
and (2) the sensor experiences a random error each time a sample is analyzed.
In this situation, the proper operating policy for this common-cause variability is
to make no adjustment to the valve, since the current error cannot be corrected
by the adjustment and the current deviation does not provide an indication of the
future deviations. As shown in Figure 26.16, implementing a standard proportional-
integral feedback control calculation will increase the variability in the product
quality. Thus, the SPC approach provides better performance for regulating the
reactor in Scenario I.

SCENARIO II. In this scenario, the initial data is given without any feedback
action in Figure 26.17. The variation for Scenario II is due not only to random
sensor error but also to slower-changing disturbances in some process input vari
ables such as feed composition and heating medium temperature. We can observe
that the variability of the product composition appears correlated in time; that is,
the composition includes a slow drift along with some random noise. In this situa
tion, the current deviation provides an indication of the likely future deviations, and
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Dynamic response for Scenario I, in which feedback degrades performance.
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FIGURE 26.17

Dynamic response for Scenario II, in which feedback degrades performance.
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the feedback dynamics are fast enough that adjustments in the valve can com
pensate for the slowly changing disturbances. Thus, automatic process control is
appropriate, as shown in Figure 26.17, which shows a decrease in the variability
when a proportional-integral feedback controller is implemented. Thus, the APC
approach provides better performance for regulating the reactor in Scenario II.

The comparison of the performance of SPC and APC for these two scenar
ios demonstrates that both have many applications. When the variability without
feedback compensation is nearly random, so that feedback corrections cannot com
pensate for the deviations, an SPC approach is appropriate. When the variability
without feedback compensation is due to slowly varying disturbances, APC can
be effective in reducing the variability. For further discussion on this point, see
MacGregor(1990).

Variability off the Manipulated Variable
Another distinction between APC and SPC stems from the frequency of corrective
actions taken. APC involves an action every time the controller is executed; thus,
it must be possible to adjust the final element without disrupting the process op
eration, which is possible with standard control valves. As a result, APC reduces
the variance of the controlled variable while increasing the variance of the manip
ulated variable. This situation is sometimes described as "moving" the variability
from the important controlled variable to the less important manipulated variable,
as demonstrated in Figure 26.16. This situation has been discussed previously and
has been shown in Figures 7.8,7.9, 13.18, 23.10, and 24.19.

In contrast, SPC involves infrequent adjustments—only when the measure
ment exceeds the control limits. This is advantageous for systems in which the cost
of the control action is considerable. Examples of costly adjustments are chang
ing the reactor catalyst, changing the feed material, and stopping and adjusting
machinery. Since the special-cause disturbances occur infrequently and the action
limits are set to result in few "false alarms" (only 3 in 1000), the SPC approach,
when applied to appropriate scenarios, reduces the adjustments in the manipulated
variable required to maintain the controlled variable within the upper and lower
control limits.

This perspective suggests an approach for diagnosing process performance
for variables that are under PID feedback control. In situations with effective feed
back, the controlled variable may not deviate greatly from its set point, although
significant disturbances occur. However, the occurrence of these disturbances can
be determined by monitoring the manipulated variable, because it must be adjusted
to compensate for disturbances.

Process Capability
The discussion to this point has addressed the variability of key process variables;
now, the requirements of the market are added to the considerations. In particular,
the comparison of the variability (here, assumed normally distributed) with the
required minimum variability is an important factor in evaluating the success of
the process operation. The comparison of actual with required variability is termed



the process capability, defined as follows:

Capability index = Cp =

CPk = min

USL - LSL
6o

U S L - X m X m - L S L
3<7 3o

(26.7)

(26.8)

where Cp = process capability index
CPk = process capability index

USL = upper specification limit on acceptable variation in product
variable

LSL = lower specification limit on acceptable variation in product
variable

Xm = mean value of the variable
cr = standard deviation of the actual variability of the product

quality

The variable Cp is meaningful when the target for the product specification is
the mean of the range. The Cpk is meaningful when the target is not the mean of
the range. The best situation occurs when the variability of the process is small
compared with the variability allowed in the market:

Cpjt^C 1 Considerable "off-specification" material is produced
Cpk% 1 Most production satisfies specifications
CPk^ 1 Nearly all production well within the specifications

The capability index is a useful measure for evaluating the current process perfor
mance against the market needs. However, continual improvement efforts should
not cease when Cp and CPk are greater than 1.0.
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Conclusions

The reduction of variability should be a continual effort. The goals include die
reduction in number of times special causes occur and the reduction of the common-
cause variability.

The producer of the highest-quality product often can increase total sales or profit
margins, and experience has shown that the lower-quality producers often cannot
sell their products.

26.4 B CONCLUSIONS
Two approaches for continual process improvement have been introduced in this
chapter. Optimization is appropriate when the operating profit changes significantly
because of frequent disturbances and there are available manipulated variables that
can be adjusted to increase the profit without degrading the product quality. These
variables tend to be set points of the underlying regulatory process controls. Thus,
optimization generally functions as the highest level in a cascade control structure.

Statistical process control has as its goal the reduction of variability, primarily
in the key product qualities. In contrast to automatic process control, statistical
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process control involves actions that address the root cause of the disturbance.
By diagnosing and eliminating these causes, the number and severity of future
disturbances are reduced, and the process performance is improved.

These approaches have merely been introduced in this chapter. The reader
is encouraged to refer to the References and Additional Resources for further
information. These methods can provide substantial improvement when applied
continually to a process that is operating under excellent automatic process control.
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The concepts of SPC can be extended to multivariable processes, although the
direct, independent monitoring of many independent variables via Shewhart charts
would be tedious and difficult to interpret. An alternative method is described in

Kresta, J., J. MacGregor, and T. Marlin, "Multivariate Statistical Monitoring of
Process Operating Performance," Can. J. Chem. Eng., 69, 35-47 (1991).

QUESTIONS
26.1. Design an optimizing control strategy for the process in Figure Q26.1 to

satisfy the following objectives:
(1) Tight control of the flow rate leaving the furnace via the coil
(2) The coil outlet temperature (TC) maintained close to its set point
(3) The total fuel consumption minimized

Design a control strategy that achieves these objectives. Clearly define the
measurements, calculation of the performance function, and the control
algorithm and explain how interactions among the strategies will be con
sidered.

IQ
(£)eft-*

FIGURE Q26.1

26.2. Discuss the key elements of the single-stage refrigeration circuit in Figure
Q26.2.
(a) Design regulatory controls for this system that satisfy the demands of

the consumers. Two consumers are shown as a heat exchanger (tem
perature controller) and a condenser (pressure controller).

ib) Add necessary controls to minimize the energy consumption (i.e., min
imize the steam consumption) while satisfying the consumers' de
mands. You may add sensors and add and delete valves.

263. The plant has byproducts that can be used as fuel or must be discarded with
no value. Thus, all excess fuel should be consumed, if possible. Design a
control strategy that provides good coil outlet temperature control and that
consumes all possible excess fuel for the fired heater in Figure Q26.3. Note
that (1) the two fuels have different compositions and (2) the excess fuel
availability can change quickly and by large magnitudes.

26.4. In some plants, incentives exist to supply heat to the process via one (or a
few) large, efficient fired heaters. The energy is transferred to consumers
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throughout the plant via an oil stream with good heat transfer, heat capacity,
and thermal stability properties. Design a control strategy for the process
in Figure Q26.4 that satisfies the following objectives, listed in order of
decreasing importance.
id) Control T3 and T4.
ib) Control T6 and T7.
ic) Determine the best value for the fired-heater outlet temperature, i.e.,

the value that satisfies id) and ib) at minimum fuel.
id) Recover as much energy as possible at the highest temperature.
You may add sensors and add or delete piping and valves.

Excess fuel
(should use as much
as possible)

Adjustable fuel

FIGURE Q26.3

FIGURE Q26.4
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26.5. The control design in Figure Q26.5 is proposed for maximizing the pro
duction rate in a chemical plant. The likely equipment limitations are the
maximum reactor heating, the maximum flow of vapor from the flash, and
the maximum reboiler duty in the distillation tower. The proposed design
may not function well because of the long dynamics. Suggest enhance
ments that would ensure that id) the maximum vapor flow from the flash
is not exceeded and ib) the product quality in the distillation tower would
be controlled close to its set point.

^
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FIGURE Q26.5

26.6. Derive the general equation for the direct search algorithm in Section 26.2
for any number of manipulated variables. Also, discuss potential drawbacks
with the proposed method when applied to processes with more than one
optimization variable.

26.7. The dynamic plots in Figure 26.13 have the iteration numbers as the ab
scissa. Determine an appropriate time between iterations for this process.

26.8. Discuss additional considerations that should be included in a real-time
boiler optimization as presented in Section 26.2. How could each consid
eration be integrated into the mathematical statement of the optimization?

26.9. Some Shewhart charts include warning limits, which are between the mean
and the control limits. Discuss (a) the interpretation one could place on a
single violation (or several sequential violations) of the warning limits, ib)
reasonable values for the warning limits, and (c) types of actions which
could be based on these limits.

26.10. The equations for the process capability used in Section 26.3 were based
on normally distributed data. Describe a test of a data set to decide whether
the data is normally distributed.
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ia) Discuss the interpretation of several simultaneous data points above Questions

(or below) the mean, but within the control limits.
ib) Devise additional rules that could be used in conjunction with the

standard Shewhart chart,
(c) Specify all assumptions required for the rules in ib) to be appropriate

and when these assumptions are likely to be satisfied.

26.12. The Shewhart chart uses the data to identify a change in mean. Propose a
different chart that could identify a change in the variability, as measured
by the standard deviation or variance.

26.13. Often, the variable used in the Shewhart chart is an average of several
samples taken at the same time from the process. Discuss the advantages
and disadvantages of using the average of several samples rather than a
single measurement.

26.14. A mixing tank after a process can, in some cases, reduce the effect of pro
cess variability prior to providing the product to the customer. Discuss the
effects of product mixing on the following processes. Specifically, would
the mixing reduce the variability important to the customer when the mean
of the production is correct but the variance of the material entering the
tank is too large?
ia) The bottoms product of a benzene-toluene distillation tower is mixed

in a tank. The customer is interested in the percent benzene impurity.
ib) The ball bearings from a manufacturing plant are mixed in a bin. The

customer is interested in the diameter of each ball bearing.

26.15. Discuss the differences between the control limits (UCL and LCL) and the
specification limits (USL and LSL).
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Drawings provide a simple visual representation of process designs and automa
tion approaches. Since so many people are involved in the design, building, and
operation of a process plant, drawing standards are essential, and the Instrument
Society of America has prepared standards that are recognized in most countries
and companies (ISA, 1986). The many design decisions lead to several typical
levels of drawings; three common categories are

1. Simplified, which represents the use of measurements and calculations
2. Conceptual, which provides details on most calculations
3. Detailed, which specifies the computing resource in which each calculation

is performed

Generally, simplified drawings are used in this book, and therefore, the simplified
methods are presented in this appendix.

A . 1 □ I D E N T I F I C AT I O N L E T T E R S

Abbreviations of a few letters are used to identify the measurement types and
calculations performed using measured values. Each abbreviation is located in a
circle or "bubble," which indicates the location of the sensor in the process. The
abbreviations usually consist of two to three letters, with the first letter indicating
the variable type and the subsequent letter(s) giving some information about the
function performed.
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Some of the more common abbreviations are presented in Table A.l. Examples of
typical abbreviations are

FC Flow control calculation
PIC Pressure measurement indicated (displayed) for the operating per

sonnel and used in control calculation
LAH Level measurement used for signalling an alarm to operating person

nel when the level exceeds a high limit
TS Temperature measurement used to open/close a switch that could shut

down plant operation on a dangerous condition
AC Analyzer control calculation; the specific analysis is usually indicated

just outside the bubble (e.g., p for density)

The symbol does not give much detail; for example, the flow measurement sensor
could be an orifice plate, venturi meter, or pitot tube. Many additional details must
be provided before the equipment can be selected and installed. These details are
typically provided in tables, which complement drawings and are not discussed in
this book.

Signals
The values of measurements or results of calculations must be transmitted between
elements in a control system and ultimately to the final control element to influence
the process. Many types of signals are used in a plant, and the three most common
are shown in Figure A.l. The electric signal is represented by a dashed line in
this book and is implemented with a 4-20 mA signal to represent measurements
(e.g., 300-400 K) and final element values (e.g., 0-100% valve opening). The
pneumatic signal can be used for the same purposes, and it was the dominant
signal type until the 1960s. It remains in wide use today, because the power source
for most valves remains air pressure; typically, the electric signal is converted to
pneumatic at the valve. Finally, many signals between calculations are internal to a
digital computer, and these can be represented by the symbol in Figure A.l. Since
most of the methods in this book can be implemented in a variety of computing

TABLE A.1

Identification letters
First letter Succeeding letters

A Analyzer
F F l o w
H Hand (manual operation)
L L e v e l

Alarm
Ratio (fraction)

High
Low

P Pressure
S S p e e d
T Temperature
Y

Switch
Transmitter
General computation
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Control signals. Reprinted by permission.
Copyright ©1986, Instrument Society of

America. From Instrumentation Symbols and
Identification, ISA, 5.1-1984.

equipment, analog or digital, the electric signal transmission is used throughout.
This is common practice for simplified drawings and does not preclude digital
implementation of the designs.

The reader should be aware that the technology for signal transmission is
changing rapidly. Soon, digital computation will be available at the sensor and
final element, and most signal transmission will use digital principles. This rev
olution in signal transmission will not change the technology presented in this
book, but it will open the door to advances in sensor diagnosis and improvements
in process reliability.

Sensors
The drawing indicates the type of process variable measured and the location of
the sensor. For the most part, details of the sensor physics and chemistry are not
addressed in this book, because information is available in most books on fluid
mechanics and heat transfer. In a few cases, some information on the sensor type
is indicated in the drawing. For example, the drawings in Figure A.2 show two
different types of level sensors: a differential pressure and a float.

A.2 a FINAL ELEMENT
The predominant final element in the process industries is the diaphragm-actuated
control valve, and this is essentially the only final element considered in this book.
The valve is sketched as shown in Figure A.3. When the power (air pressure) is
removed from the valve, it assumes its failure position. Three failure positions are
shown; fail open, closed, and locked (unchanged). These positions are selected
for safety, as discussed in Chapter 12. The typical control valve has a relatively
large unrecoverable pressure drop; thus, a butterfly valve or damper is sometimes
used for control. Many valves in a process design are not automated and must
be opened or closed manually; an example of such a "hand" valve is shown in
the figure. Finally, an angle valve is used in this book to represent safety valves,
which open without an external power source when the process pressure exceeds
a specified limit.
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FIGURE A.2
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pressure
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Two-level sensors. Reprinted by permission.
Copyright ©1986, Instrument Society of America.
From Instrumentation Symbols and Identification,
ISA, 5.1-1984.
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FIGURE A.3

Angle valve

Valve symbols. Reprinted by permission.
Copyright ©1986, Instrument Society of
America. From Instrumentation Symbols and
Identification, ISA, 5.1-1984.

A.3 El PROCESS EQUIPMENT
Control design drawings also include a simplified sketch of the process, which is
included to clarify the control strategy but not to provide sufficient detail to build the
process equipment. Some of the process schematic symbols are given in Figure A.4.



These elements are combined in the process drawing. An example is given
in Figure A.5. The feed flow is maintained at the desired value using flow con
trol, and the liquid level is controlled by adjusting the flow leaving the drum. The
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FIGURE A.4

Process schematics. Reprinted by permission. Copyright ©1986, Instrument
Society of America. From Instrumentation Symbols and Identification, ISA,

5.1-1984.
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Example process drawing with instrumentation.



894 reactor effluent concentration is controlled by adjusting the heating medium valve
opening. The bed temperature is measured and used to provide an alarm to the

appendix A operating personnel when the temperature exceeds a specified value. Finally, the
Process Control other sensors are used for display to operating personnel. Each sensor is numbered
D r a w i n g s t 0 a j j o w u n a m b i g u o u s r e f e r e n c e .

REFERENCE
Instrument Society of America, Instrumentation Symbols and Identification,

ISA 5.1-1984, Research Triangle Park, NC, 1986.



Integrating
Factor

A single energy or material balance on a well-mixed system results in a first-order
ordinary differential equation. Since this equation is often linearized in dynamic
analysis, a linear first-order differential equation results. The differential equation is
useful because it provides analytical relationships between the process equipment
and operating parameters and key dynamic parameters such as time constants and
gains. Often, an analytical solution is desired for the (open-loop) system output in
response to one or more relatively simple input forcing functions. The integrating
factor can be used to evaluate the analytical solution.

The general linearized model will be of the form

ait)^-+bit)Y = cit)dt (B.l)

The functions ait), bit), and eit) are known functions of time, t. When the func
tion a{t) # 0 during the time considered in the solution, equation (B.l) can be
rearranged to give

^-+ fit)Y = g«)dt (B.2)

with git) the forcing function. This ordinary differential equation is linear and
first-order but not separable. However, it can be modified to be separable, and
directly solvable, by multiplying by a term called the integrating factor, IF.
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The integrating factor is defined as

TF = exp(j fit)dt\ (B.3)

Now, the standard equation (B.2) is multiplied by the integrating factor to give

exp (J fit) dt\ -^ + fit) exp (J fit) dt\ Y = git) exp ^J fit) dt}
(B.4)

The left-hand side of equation (B.4) can be recognized to be the expansion of the
derivative of a product:

exp (J fit) dt\ -^ + fit) exp (j fit) dt\Y = jt (y exp (j fit) dt^j

(B.5)
This can be substituted to yield a separable differential equation:

■jt (j exp (J fit) dt\\ = git) exp (J fit) dt\ (B.6)
Equation (B.6) can be separated and integrated to give the final expression for the
dependent variable.

Y = exp (- j fit) dt) j git) exp (J fit) dt) dt + I exp (- j fit) dt)

(B.7)
where / is a constant of integration to be evaluated from the initial condition.
This method is successful when the integral in equation (B.7) can be evaluated
analytically, which is possible for some simple functions git) such as an impulse,
step, and sine, which are useful in understanding the dynamic behavior of process
systems.

This integrating factor method is applied to many first-order systems in Chap
ter 3. Also, it can be applied to a system of higher-order equations in which the
equations can be solved sequentially; this type of system is referred to as a noninter
acting series of first-order systems in Chapter 5. More complex systems, requiring
simultaneous solution of equations, are addressed with Laplace transforms, as
presented in Chapter 4.



Chemical
Reactor

Modelling
and Analysis

The chemical reactor is one of the most important unit operations considered
by chemical engineers; thus, proper modelling and analysis are essential. The
engineer should be able to derive the basic balances for typical reactor designs and
to anticipate the range of likely dynamic behavior. This appendix is provided to
complement and extend the coverage in Chapters 3 through 5 by deriving the energy
balance, demonstrating linear analysis, and addressing more complex dynamic
behavior. Sections C. 1 to C.3 apply standard modelling and analysis methods to
this important chemical process and should be understood by all students. The
material in Sections C.4 and C.5 presents more complex behavior that occurs in
some chemical reactors and can be covered as enrichment material.

C.1 a ENERGY BALANCE
Material balances for reacting systems were derived in Chapter 3 and applied
throughout the book. The energy balance for a continuous-flow chemical reactor
is used, but not derived, in Section 3.5. The reactor energy balance is derived here,
beginning with the general energy balance in equation (3.5), with the following
assumptions:

1. The system volume is constant.
2. The heat capacity and density are constant.
3. APE = AKE = 0.
4. The tank is well mixed.
5. One chemical reaction is occurring.
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In this derivation the partial molar enthalpy of component i in a stream of n
components, hi, is assumed to be a function of temperature only.

f) H = hiiT) = partial molar enthalpy (Cl)
dCi

The symbol C,- is (moles/volume) of component i. The individual terms in equation
(3.5) can be expressed as

d U ^ d H v ^ d [ C t h , i T ) ]Accumulation: —— « —— = V >A t A t * - ~ id t d t
n

i = \ dt

Flow in: FH0 = F ^ C,rA (7b)

n

How out : FH^F^QhdT)
i = i

The accumulation term can be expanded to give

^ ^ d i Q h j j T ) ] [ A , d C , A ( d h i d T \
i — \ L i = \ « = 1 _

(C.2)

(C.3)

(C.4)

(C.5)

The second term of the right-hand side of equation (C.5) can be simplified by
noting that ^Cddhj/dT) = pcp (cal/[volume K]). Also, the first term on the
right-hand side can be expanded by substituting the dynamic component material
balance from equation (3.75) for dC\/dt to give

X> IV^1 = X>[FC/0 - FQ + Vpar]
n n

= F £ QohdT) -FJ2 dhdT) + VAHnnr
(C.6)

i = i / = i
The coefficients //,- represent the amount of the component i generated from the
extent of reaction r; for the example of a single reaction A -▶ B; the coefficients
are —1 for component A and +1 for component B. The sum of the products of
these coefficients times their component enthalpies is commonly called the heat
of reaction and is available in references. Combining the results gives

dT
PVCP— = Fj^dolhdTo) -hdT)]dt i = \

(C.7)

+F]TCi[hiiT).*-'hiiT)] + Vi-AH^r + Q - Ws
i = i

Clearly, the second term on the right is zero. Also, the first term can be simpli
fied, because partial molar enthalpy is assumed independent of composition, by
expressing the total enthalpy of a stream as a function of its temperature to give

dT
vpCplt = Fpcp(T° ~T) + V(-AH™> + Q~WS (C8)

Equation (C.8) is the basic energy balance for a well-mixed, continuous-flow,
liquid-phase chemical reactor. The second term on the right-hand side can be



thought of as "generation due to reaction," but it is important to recognize that
no generation term exists in the basic energy balance in equation (3.5). Also, it
is important to recognize that many approximations have been employed that are
not general. This equation is usually valid for liquid-phase systems but contains
assumptions often not valid for gas-phase reactors. For alternative presentations
and cogent discussion of reactor modelling, see Aris (1989) and Denn (1986).
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C.2 o MODELLING OF AN EXAMPLE NONISOTHERMAL CSTR
In this section, the basic material and energy balances are applied to the nonisother
mal CSTR shown in Figure Cl. Also, these equations are linearized, so that the
linearized model can be used to determine important properties of the process,
such as stability.

GOAL. The temperature of a chemical reactor is to be raised to 395.3 K, without
exceeding 395.3 K, by adjusting the coolant flow. How should the coolant flow
be adjusted? A more fundamental question is the shape of the dynamic response;
is it monotonic or oscillatory, and what design parameters and external variables
influence this response?

INFORMATION. The process is shown in Figure C1, and the system is taken
to be the liquid in the tank. The chemical reaction is first-order with Arrhenius
temperature dependence.

'AO U
do

FIGURE C.1

Nonisothermal CSTR process.

ASSUMPTIONS.
1. The tank is well mixed.
2. Physical properties are constant.
3. The shaft work is negligible.
4. The irreversible, elementary reaction is A B.

DATA.
1. F = 1 nrVmin; V = 1 m3; CA0 = 2.0 kmole/m3; T0 = 323 K; Cp = 1 cal/(g

K); p = IO6 g/m3; k0 = 1.0 x 1010 min"1; E/R = 8330.1 K; -AHnn =
130 x IO6 cal/(kmole); rdn = 365 K; (Fc), = 15 nrVmin; Cpc = 1 cal/(g K);
pc = IO6 g/m3; a = 1.678 x IO6 (cal/min)/(K); b = 0.5.

2. For this data, the steady-state values of the dependent variables are Ts = 394
K and CAs = 0.265 kmole/m3.

3. The change in coolant flow is a step of — 1 m3/min.

FORMULATION. The system is the liquid in the tank. The overall material
balance, as in several previous examples, demonstrates that the mass in the tank is
approximately constant; thus, F0 = F\ = F. The component material balance on
the reactant gives

V*£± = F(CA0 - CA) - Vk0e-E/RTCA
dt (C.9)
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The energy balance for this system is
dT

VpCp— = pCpFiTo -T)-dt
aFbc+x

Fc +
o ^ " ^

2pc^pc

+i-AHrm)Vk0e-E/RTCA

(CIO)

These two nonlinear differential equations cannot be solved analytically. The
linearized equations in deviation variables are as follows:

^ = anC'A + al2T' + auC'M + aXAF'c + a15r0' + a\eF'dt

d^r~ = «2iCA + a22r + a23CA0 + a2AF'c + a25T^ + a26F'dt

(C.11)

(C.12)

where
„ „ — £ _ * * - « / « ■ .

« 1 2 = -
RT}

k0e-E'RT<CAs

an = 0
ai5 =0

(Cao — GA)S
a\6 =

«21 =
-AHnRk0e-E'RT*

pCP

F U Aai2 = -y-'vpc
a23 =0

5 +i-AHnn)^?-koe-E/RT<CAi
pC,

a24 =
-abF"{F«+lSz)[T°-{TcM

( " F *
iVpCp) \FCS + cs2pcCpc )

a25 = -

a26 =

F
V
JTo - T)s

V

(C.13)

where UA* = a(Fc)J+1/[(% + a(Fc)J/2pcCpc]

The approximate model is derived about the steady-state operating point for the
reactor. Note that the inlet concentration CA0, the coolant flow rate F'c, the inlet
temperature T0', and the feed flow rate F' are input variables in the foregoing
linearized equations, although only the coolant flow varies in this example; this is
done because changes in other input variables will be considered elsewhere.



Time (min)

Time (min)
FIGURE C.2

Dynamic response for CSTR for step in cooling flow of -InrVmin at time = 1.

SOLUTION. The analytical solution to the linearized model requires the si
multaneous solution of equations (Cll) and (C12), because CA and 7" appear
in both equations. Since the integrating factor method cannot be applied to this
problem, the analytical solution to the linearized equations can be determined us
ing Laplace transforms. To determine the behavior of the process and answer the
specific question posed in this example, the solution of the nonlinear model will
be determined via a numerical solution using an explicit method; the result for the
Euler method with a step size of 0.005 minute is given in Figure C2. The solution
is underdamped (i.e., oscillatory) for this model and set of design parameters and
operating conditions. As a result, a single step in the coolant flow large enough
to raise the temperature to its desired final value of 395.3 K leads to a response
that exceeds this maximum value during the transient. Thus, it is not possible with
one adjustment of the cooling flow to achieve the temperature specifications, al
though the temperature could be increased very close to, without exceeding, 395.3
K through a series of smaller adjustments to the coolant flow.

C.3 Q THE REACTOR TRANSFER FUNCTIONS
The numerical solution of the nonlinear equations provides an excellent estimate
of the behavior for a specific situation, but it does not provide important analysis
of the effects of parameters on key aspects of the reactor's dynamic behavior.
These insights can be determined by analyzing the linearized dynamic model in
transfer function form. For example, the transfer function for the temperature-
coolant flow relationship can be determined by taking the Laplace transforms of
equations (Cll) and (C.12), setting the deviation variables of all but one of the
inputs (F'c) to zero, and combining equations. The resulting transfer function for



902

APPENDIX C
Chemical Reactor
Modelling and
Analysis

this example is (C.14)
Tis) a24s + ia2\ an -a24a\\)

(C.14)Fds) s2 - (an + a22).y + (^11^22 - 012^21)
When the numerical values of the data in Section C2 are substituted, the result is

an = -7.55 ai2 = -0.093 ai4 = 0.0
a2X = 852.02 a22 = 5.77 a24 = -6.07

Tis) (-6.07* - 45.83)
(C.15)Fds) is2 + 1.79*+ 35.80)

For the design parameters introduced in Section C2, the roots of the denominator,
i.e., the characteristic polynomial, are -0.894 ± 5.92j. The following important
aspects of the reactor behavior can be determined from the transfer function:

1. Since the roots of the denominator have negative real parts, the system is
stable.

2. Since the roots of the denominator have complex parts, the system is under-
damped.

The dynamic behavior of the linearized model can be determined by substituting
the step input Fds) = AFc/.s = -\/s into equation (C15) and inverting the
Laplace transform. This transform does not appear in Table 4.1 but could be found
in more complete tables. (Alternatively, the partial fractions method could be ap
plied, as shown in Example H.l in Appendix H.) The resulting expression for the
temperature response to a step in coolant flow is given in the following equation.

T\t) = 1.28 + 2e-°-894[-0.64cos (5.920 + 0.42 sin (5.92r)] (C.16)
The temperature is stable and oscillatory, results consistent with the analysis based
on the roots of the characteristic polynomial. The validity of this analysis is con
firmed by the nonlinear simulation results in Figure C2, which also show damped
oscillations in the temperature dynamics.

More complex behaviors, which occur occasionally in chemical reactors, are
introduced in the next sections.

C.4 n MULTIPLE STEADY STATES
Some physical processes exhibit multiple steady states, a behavior that is not ob
vious without careful analysis. Recall that a steady state is defined as a condition
in which all relevant balances are satisfied when the accumulation terms are zero.
For linear equations, this situation would occur at only one (if any) set of operating
conditions. However, the equations describing most chemical processes are non
linear, and multiple solutions are possible, although they do not always, or even
often, occur.

The steady-state material balance for the system with a single reaction A -> B
is determined from equation (C.9) to be

CA = [F + Vkoe-^r]CM <C17>



The second equation, the steady-state energy balance, can be separated into two
terms: Qt for energy transfer and Qr for release due to reaction, which sum to
zero at steady state.

0 = QT + Qr (C.18)

where Qt = FpCPiT0 -T)-
aF:b+i

Fc +
a Ft ■ i T- T d n )

■̂Pĉpc
QR = i-AHnn)Vk0e-E'RTCA

The steady-state solution is achieved when the two terms, - QT and Qr, are equal.
However, more than one solution can exist for this system. To check for multiple
solutions, it is convenient to graph the two terms versus temperature, remembering
that the concentration value used at each temperature is determined from equation
(C.17) at the appropriate temperature.

This procedure has been carried out for three cases of reactor designs, which
are described in Table Cl. Note that most parameters, including the chemical
reaction, are the same in all cases; they differ in only the feed temperature and the
coolant system. In addition to the design input variable values, the table presents the
steady-state output variables, C^ and Ts. Also, the linearized stability analysis,
in the form of the poles of the system (without control) at each steady state, is
presented; the poles are the roots of the denominator of equation (C.14).
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'AO u
do

r . rV m J c o u t

DATA
F = 1 m3/min, V = 1 m3, CA0 = 2.0 kmole/m3, Cp = 1 cal/(g°C), p = 106g/nr
ko = 1.0 x 1010 min-1, E/R = 8330.IK-1, -AHnn = 130 x IO6 cal/(kmole)
iFc)s = 15 m3/min, Cpc = 1 cal/(g K), pc = IO6 g/m3, b = 0.5
Case I is identical to the reactor introduced in Section C.2. The system has a single
steady state, because a graph of the terms —Qt and Qr in equation (C.18) has
only one intersection. This steady state is stable, because the real parts of the poles
are negative, and the behavior is underdamped, because the poles are complex.

Case II has multiple steady states, as is demonstrated in Figure C.3, where the
(negative of the) "energy transfer" and "release due to reaction" terms are equal

TABLE C.1

Data for continuous-flow stirred-tank reactors

Variables Case 1 Case II Case III

To(K)
Tcin(K)
a (cal/min K)/(m3/min)

323
365

1.678 x IO6
0.26

393.9
-0.89 ± 5.92;

mMMmmmmmmmmfflmmi

343
310

0.516 x IO6

323
340

1.291 x IO6
Steady-state CA(kmole/m3)
Steady-state r(K)
Poles (min-1)

1.79
330.9
-0.96 ± 0.477

1.37
350

1.94, -0.71

0.16
404.7
-1.6 ±4.67

1.06
360

0.34 ±1.417
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at three temperatures! Thus, this chemical reactor can operate at three distinct
sets of concentration and temperature for the same values of all input variables
and parameters. Next, the stability in a small region about each steady state is
evaluated, using linearized models about each steady state to determine whether
the reactor would operate at the conditions without feedback control. The results
in Table Cl indicate that two steady states are stable, whereas the steady state
with the intermediate temperature is (locally) unstable, because it has a pole that is
real and positive. This result indicates that only the two stable steady states can be
achieved in practice without control. Any slight deviation from the exact values in
the inputs in the table would result in the reactor dynamic response moving away
from the unstable steady state toward one of the stable steady states. The final
steady state achieved depends on the initial conditions of the reactor. For example,
if the initial conditions are taken (arbitrarily) as 393.9 K and 0.26 kmole/m3 (the
values from Case I), the Case II reactor does not approach the unstable steady
state, but rather approaches the steady state at the higher temperature, as shown in
Figure C.4.

The instability of the intermediate temperature in Case II can be understood
from steady-state arguments. It can be determined from Figure C.3 that as the
temperature increases slightly from the intermediate steady state, the magnitude
of the heat release increases faster than the magnitude of the heat transfer; that
is, di-Qri/dT < diQR)/dT. Thus, any small positive deviation from the inter
mediate temperature will create a tendency to increase the temperature further. A
similar conclusion can be determined for a small negative deviation in temperature.
Thus, the intermediate temperature is unstable in the region about the intermediate
steady state, as confirmed by the linearized stability analysis.

The previous analysis demonstrated that the intermediate steady state satisfies
the steady-state balances but is not locally stable. However, these operating con
ditions can be achieved by stabilizing the system through feedback control. Thus,
if a feedback PI controller is implemented to maintain temperature at 350 K by
adjusting the coolant flow rate, the system reaches the intermediate steady state
stabilized by feedback control at exactly the operating conditions given in Table
C1; the dynamic response is given in Figure C5 for this example. The occurrence
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FIGURE C.3

Steady-state analysis of Case II showing three steady states.



FIGURE C.4

Dynamic response of Case II without control.

FIGURE C.5

Closed-loop dynamic response of Case II with PI feedback control
(SP = 350 K, Kc = -l(m3/min)/K, 7> = 5 min).
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of multiple steady states and the stabilization of an open-loop unstable steady state
via feedback has been verified empirically for a stirred-tank reactor (e.g., Chang
and Schmitz, 1975ft).
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Most models of processes used in design and analysis in chemical engineering
do not exhibit multiple steady states. Typically, systems that are known to have
multiple steady states are analyzed by ad hoc methods such as the one employed
in this section, although some general correlations are available for CSTRs with
simple kinetics (Perlmutter, 1972).

C.5 ® CONTINUOUS OSCILLATIONS DUE TO LIMIT CYCLES
Some strongly nonlinear systems can exhibit dynamic behavior that is quite surpris
ing when first encountered: continuous oscillations in the output variables although
the input variables are absolutely constant! Case IH in Table Cl is an example of
a process with this behavior, which is termed a limit cycle. Notice that this system
has a single steady state that is locally unstable, as demonstrated by the positive
real part of its poles. This is a puzzle, because the only conditions for which the
steady-state balances are satisfied cannot be approached stably; thus, how does the
reactor behave? The answer is given in Figure C.6, which gives the results from the
dynamic simulation of Case III. Clearly, the concentration and temperature never
achieve their steady-state values, because they have periodic behavior that contin
ues indefinitely without damping. This is "stable" periodic behavior, because the
system will return to the same limit cycle after a pulse perturbation.

This behavior is not common but has occurred, to the surprise and conster
nation of practicing engineers in commercial situations (Bush, 1969). The be
havior has also been analyzed mathematically (Aris and Amundson, 1958) and
produced experimentally (Chang and Schmitz, 1975a). Some systems that expe
rience limit cycles can be stabilized through feedback control (e.g., Chang and
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FIGURE C.6

Dynamic response of Case in without control, showing a limit cycle.



Schmitz, 1975a), but sometimes process design changes are required to obtain
acceptable performance (e.g., Penlidis et al., 1989).

C.6 Q CONCLUSIONS
This appendix has provided the derivation of the energy balance for chemically
reacting systems and samples of complex behavior that can be exhibited by such
nonisothermal reactors. Note that all of the examples in this section involved the
same chemical kinetics; thus, a wide array of behaviors can be achieved by chang
ing the process design parameters. Generally, the occurrence of multiple steady
states and unstable steady states results from some type of positive feedback in
the system. In the examples in this appendix, the positive feedback is provided
by the exothermic chemical reaction. The analysis of steady-state multiplicity and
stability is covered in greater detail in Perlmutter (1972), and the influence of
these phenomena on design and control is reviewed by Seider et al. (1991) and
Silverstein and Shinnar (1982).
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QUESTIONS
Cl. A slightly modified version of the CSTR described and modelled in Section

C.2 is to be considered in this question. The system is the same except for
the heat of reaction, A//rxn, which is 0.0. You may use all of the results
in the example, specifically equations (Cll) to (C.13) without deriving,
and simply modify the results as appropriate. You do not have to substitute
numerical values to answer this question.
(a) The coolant flow experiences a single step change of magnitude AFC.

Derive a model that describes the response of the concentration of



9 0 8 c o m p o n e n t A , C A ( f ) . T h e r e s u l t s h o u l d b e i n t e r m s o f t h e p a r a m e t e r s
\k^&^*:™&.w*^h^;-\ of the process and can be expressed in terms of the a,;- coefficients in
A P P E N D I X C e q u a t i o n s ( C . 1 1 ) a n d ( C . 1 2 ) .
Chemical Reactor ib) Determine whether the response in part (a) of this question is stable
M o d e l l i n g a n d o r u n d e r w n a t c o n d i t i o n s i t c a n b e u n s t a b l e .
An&lvsis

ic) Describe the shape of the response to the step input for the case in
which the system is stable. Under what conditions can it be periodic
(underdamped) like the response in Figure C2?

C.2. For the nonisothermal CSTR in Section C2, determine the transfer func
tions relating CAis)/Fcis) and CAis)/CAois). These should be in terms of
the aij coefficients in the linearized model. Compare the results with the
numerators and denominators in equation (C.14) and comment.

C.3. Calculate the (open-loop) frequency response of the reactor temperature
in Section C2 for a sine input in the coolant flow rate, and discuss its
important features. [Hint: You can use the transfer function in equation
(C.15)].

C.4. Discuss the use of empirical identification of linear models for the CSTR
in Section C.2. Be sure to address experimental design and the proper
selection of parameter estimation method.



Approximate
Dynamic

Models
D.1 ii METHOD OF MOMENTS
Real processes have complex dynamic responses and require models with many
parameters to be characterized accurately. However, the engineer often seeks a
simple model with few parameters to describe the main aspects of the dynamic
behavior. Examples throughout this book demonstrate that the first-order-with-
dead-time model is adequate for the process control analysis of many, but not all,
processes. In this section a method is developed for determining a few parameters
that can be used to fit a model to the expected dynamic behavior; this is the method
of moments. The application of the method of moments described in this appendix
was demonstrated by Paynter and Takahashi (1956) and Gibilaro and Lee (1969).

The basic approach is to evaluate several moments of the output behavior and
use these to characterize the dynamic behavior. Thus, the first step is to define a
moment.

Further moments are usually defined with respect to the first moment, which is the
mean; thus, the moments of the variable Yit) about its mean are
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Tn =

/•oo

/ ( ' -JO
/•OO

Jo

Mi)nYit)dt

Yit)dt
(D.2)

Given a function Y it) or a set of data Y, the integrals in equations (D. 1) and (D.2)
can be evaluated as long as they are bounded.

The moments can also be evaluated from the Laplace transform of a variable
in a particularly simple manner, which is the application of moments in this book.
The development begins with the input-output model of a single-variable system
in transfer function form.

Yis) = Gis)Xis) (D.3)
with Xis) being the input, Yis) the output, and G(s) the transfer function, as
defined in equation (4.45). The moment of the output variable will be evaluated
for a unit impulse input, for which Xis) = 1 and all integrals in the moment
equations are bounded. From the definition of the Laplace transform and equation
(D.3),

Jo
e~stYit)dt = Yis) = Gis)Xis) = Gis) (D.4)

Now, it is shown that any moment of an output in response to a unit impulse
can be evaluated directly from the transfer function, using the result in equation
(D.4) to evaluate the numerator and denominator of equation (D.l).

Jo
Yit)dt = Gis)\s=0

£*m*-<.-*{£<*)

(D.5)

(D.6)

Equation (D.6) is verified using the results from equation (D.4).

Jo

(D.7)
t*Yit)dt

The method of moments is used in this book for one important application:
determining the characteristic time of a process. The first moment is used as
the characteristic time to "time-scale" the dynamic responses in the dimensional
analysis presented in the tuning correlations in Chapter 9. For example, the first
moment is evaluated for a first-order-with-dead-time process model to be

-9s \
(D.8)J o \ x s + \ J s = 0

fJo tYit)dt
. < - » (

. < - » (

4 = 0

d Kpe~9s
ds xs + 1
-QKpe~es -xKpe~9s
~xT+T~ + ixs + l)2 Js=0) = K P/ 5=0

(D.9)
iB + x)



KpjO + x)Mi = —*-—— = e + xAn (D.10)

This result was used by Jeffreson (1976) in performance correlations.
The sum of the dead time and time constant is also the time at which the

output response for a step in the manipulated variable reaches 63% of its final
value (*63%) for the first-order-with-dead-time model. As a rough approximation,
the first moment of many common transfer functions in the book can be used
as an estimate of t&%. The first moment for a transfer function with dead time,
multiple first-order numerator terms, and multiple first-order denominator terms
is evaluated as follows:

fJo tYit)dt = i-\)

I m \
Kpe-$sY[iridjS + \)

d 7 = 0
ds

Y\irks + \)
k=0

(Kpe-9sY\ix]djs+\)\

/ s=0

= 0

\
Y\^s +1)

/ s=0

Kpe-es Y\ixujS + 1)
+ 2̂  — 7|dr

r = l \[{ThS+\)
\

(D.ll)

/ 5=0

q r M i c k+ Y, ̂  ri(T*5+i)
k k = 0 L k = \ J s = q

Kpe-es]\ixujS + \)
I

/.v=C
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Method of Moments

= kp | ® + zZTk ~ l2 Tldj
k = 0 y = 0

K
A P V * = 0 ; = 0

(D.12)

This is the basis for the approximation given in Chapter 5 that t&% is approximately
equal to the sum of the dead times and time constants for a series of noninteracting
first-order-with-dead-time systems. This approximation is useful for estimating the
general time for a complex series system to respond, but it does not give sufficient
information in itself to design or tune controllers.
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An additional application for the method of moments is in estimating the
parameters in a simple model based on the parameters in a more complex model.
In this approach, several moments of the simple and more complex models are
determined analytically, and the unknown parameters are determined for the simple
model. Naturally, one linearly independent moment equation is required for each
parameter. This is demonstrated as follows by determining the parameters for a
first-order-with-dead-time model based on a known second-order-with-dead-time
model.

SECOND-ORDER MODEL.

Gis) = Kp2e-025

(T2iJ + l)(T22^+l)

poo
Unit impulse/ Yit)dt: Kp2

Jo
First moment: (02 + x2\ + x22)

Second moment: d\ + 20(r2i + x22) — 2x2\ x22 + 2(t2i + T22):

FIRST-ORDER MODEL:
K p i e - ^
X\S + 1

1Unit impulse / Yit)dt: Kpl

First moment: (0i + xx)
Second moment: 02 + 20\ x\ + 2x\

These equations can be applied to the second-order-with-dead-time model in ques
tion 6.5 to answer part (ft) of the question: what is an approximate first-order-with-
dead-time model? The results are summarized as follows:

Second-order:
Tds) _ 1.87g-26'
Tds) " i2s + \)i2.1s + \)

Equating the moments gives
*-„, = 1.87
Mi = Bx + x\ = 2.6 + 2.0 + 2.7 = 7.3
M2 = 62+ 20j t, + 2t,2 = 64.98

giving
01 = 3.3 xx = 4.0

Approximate first-order:
Tds) l.Sle~3-3s
Tds) 4s+ \



D.2 □ PADE DEAD T IME APPROXIMATIONS 913
Some control analysis methods are designed for process models that do not contain
dead time; i.e., the transfer function models must be ratios of polynomials in the
numerator and denominator. To meet this requirement, the dead time in a transfer
function model ie~ds) must be replaced by an approximation. One straightforward
approach would be to expand the dead time in a Taylor series. However, better
approximations are available using the Pade* approximations (Truxal, 1955). The
first-order Pade* approximation is given in the following:

Pade* Dead Time
Approximations

-0SPade" approximation: e os =
1 - jd/2)s
1 + id/2)s (D.13)

As an example, the Pade* approximation is applied to the simple first-order-
with-dead-time transfer function model.

Exact model: Y i s ) n i . l . f o r *= Gis) = (D.14)X i s ) 5 s + \
An approximate model without the exponential term can be determined by substi
tuting the Pade* approximation for the dead time to yield the following:

Approximate model: W=GW = _L0£Z | ^ ( d . , 5 )
X i s ) 5 * + 1 ( 1 + 2 . 5 $ )

The dynamic responses for the exact and approximate models are now compared.
The time-domain responses of the output, Y, to a step in the input variable, X, are
given in Figure D.l for both the exact and approximate models. The Pade* model

-0.5
10 15 20 2 5 3 0

Time
FIGURE D.1

Step responses of exact first-order-with-dead-time model (solid) and
first-order-with-Pade'-approximation model (dashed).
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Determining
Controller
Constants
to Satisfy

Performance
Specifications

This appendix presents a procedure for determining the tuning constants for feed
back controllers that satisfy robust, time-domain performance specifications. The
specifications involve the behavior of the controlled and manipulated variables
and include measurement noise and variable process dynamics, as defined in Ta
ble 9.1. Because the goals are formulated to minimize the controlled-variable IAE
subject to limitation on the manipulated-variable values, the tuning constants are
determined using optimization principles. It is not possible to derive analytical
expressions relating the tuning constants to the IAE and manipulated-variable
transient response; therefore, the control system performance is determined by
numerical solution of the model, and the best tuning values are determined using
an optimization method.

E.1 a SIMULATION OF THE CONTROLLED SYSTEM
TRANSIENT RESPONSE
The single-loop control system considered in this appendix is shown in Fig
ure E.l. The real system consists of elements that are continuous and cannot be
solved analytically. As an approximation, the closed-loop transient is determined
by numerical solution of the equations that define the system. As discussed in
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Dis) Gdis)

SPis) -^O
Eis)

_n
Gcis)

MVis)
Gpis)

Nis)

CVis)

CVis) = controlled variable
Dis) = disturbance
Eis) = error

MVis) = manipulated variable
Nis) = noise

SP(s) = set point
FIGURE E.I

Block diagram of the feedback control system.

Gpis) = process, valve, and sensor
Gdis) = disturbance
Gcis) = controller

Chapter 3, this approach can provide a set of points very close to the exact tran
sient response—certainly accurate enough for use in the optimization approach.

The model for the feedback process is assumed to be first-order with dead time.
As discussed in Appendix F and Section 6.4, this model can be approximated by
the following algebraic equation at each time step:

(CVfb)„ = Kpi\ - rA' /r)MVn.r- , + e-^CVn,), ,- , (E. l )
The dead time is simulated by a delay, V = 9/At. In equation (E.l) the dead
time must be an integer multiple of At, but advanced modelling methods using
modified ^-transforms enable modelling of systems with noninteger dead times
(Ogata, 1987). The model for the effect of the disturbance on the controlled variable
is first-order.

iCWd)n = Kd\ -e-A'/To)A,-i +e-^lXDiCWd)n.x (E.2)

The noise, (CV^)n, is based on a random perturbation passed through a dynamic
process (Ciancone, 1990). It has a standard deviation, aN. The measured value of
the controlled variable is the sum of the three effects.

CV„ = (CVft),, + (CVA + (CV*),, (E.3)

These equations determine the behavior of the controlled variable given the manip
ulated and disturbance variables. The disturbance D is a step for the disturbance
response cases and zero for the set point cases, and the set point is constant for
disturbance response cases and a step for set point response cases.

The manipulated variable is determined by the feedback controller. The digital
form of the PID controller is explained in Section 11.4 and repeated here:

T A f ( S P „ - C V „ )
MV„ = MV„_, + Kc I (SP„ - CV„) - (SP„_! - CV,,-,) + — Ti

+-^ ( -CV, I+2CV„_ I -CV, ,_2)Ar
(E.4)

Equations (E.l) through (E.4) are solved at each time step from an initial steady
state to a final time of about 6(0 + r), which is sufficient to reach essentially



the final steady state for a well-tuned system. The process equations and digital
controller are executed at a frequency that gives A//(0 + r) = 0.1, which is
sufficient to approximate the continuous system closely although not exactly. By
this method, the transient is evaluated for any set of tuning constants.
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E.2 D OPTIMIZATION OF THE TUNING CONSTANTS
The "best" values of the tuning constants are those that satisfy the performance
goals. One goal requires that the integral of the controlled variable deviation,
measured as IAE, be minimum. The IAE can be approximated using the discrete
samples of the transient response as

IAE
/ • o o M

= |SP - CV| dt*J2 |SP„ - CV„ | At (E.5)

with M the number of points in the transient. The second goal requires that model
error be considered to ensure a reasonable amount of robustness. The approach used
here is to evaluate the entire transient responses for three feedback control systems
with different process models, each with the same controller tuning constants.
Thus, the measure of the controlled-variable performance is modified to be

3 3 / m \

£ lAE,=£ £ |SP„-CV„ |AH
/ = i i = i \ / i = i / /

(E.6)

To include a range of process dynamics, the model parameters all change in a corre
lated manner as 75%, 100%, and + 125% of their nominal values. This corresponds
to changes in the feed flow rate in the example process in Figure 9.1.

The third performance goal places a limitation on the variation of the manip
ulated variable. Here, the manipulated variable is restricted in the extent to which
it may exceed its final steady-state value; the final value (with no measurement
noise) would be -AD/KP or ASP/KP for disturbance or set point response,
respectively. The region of allowable values for the manipulated variable is large
during the initial part of the transient and becomes smaller as the final steady state is
reached to prevent excessive oscillations. The final variability is nonzero, because
higher-frequency noise in the controlled variable is propagated to cause (undesir
able but unavoidable) variation in the manipulated variable. Thus, this third goal
also includes a bound on the variability of the manipulated variable because of the
measurement noise N, which is apparent at the end of the transient response. The
equations for the manipulated-variable bound select the least limiting,

- A D
(MV„), < —- +

Kp
- A D

" u v , - A Z ) - A D ] f - t M W 1

^ M V m a x ) ^ - - _ j e x p ^ - ^ - ^ j
(MV„)2 < (^T-aMV) (E.7)

(MV„)min = min[(MVn),, (MV„)2]
(MV„)min < MV„

with time ?mv measured from the initiation of the input step. The term AD is
replaced with —ASP for a set point change. Several parameters in this equation
are related to the dynamic response of the process. Other parameters are fixed

La u.
cb (5)

FB»FA
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at reasonable values selected by the author to suit the widest range of industrial
process applications, as given in Table E.l. Naturally, this definition will not be
appropriate for all systems, but it should provide good starting values for the tuning
of many feedback systems.

Some values of the tuning constants will result in manipulated-variable values
that violate the constraints defined in equation (E.7). These values will be consid
ered invalid because of the violation and will not be acceptable, even if they result
in a low value for £IAE. Only tuning constant values that result in the constraints
in equation (E.7) being satisfied for the entire transient response will be considered
when minimizing £IAE. This mathematical problem is of the general class of non
linear, constrained optimization. Determining the best tuning consistent with the
goals is conceptually straightforward; the engineer could perform many simula
tions and, by trial and error, eventually find the best values of the tuning constants.
However, the trial-and-error approach would be very time-consuming and require
excessive calculations. The approach taken here was to formulate equations (E.l)
through (E.7) for all time steps and solve them simultaneously using a method
which employs intermediate results to direct the search efficiently toward the best
values of the tuning constants (Ciancone, 1990).

The transient responses in Figure E.2a through c show the results of the op
timization for one value of the fraction dead time, the nominal 0/(0 + t) = 0.3.

TABLE E.1
Parameters used in tuning optimization

Factor Symbol Value Comment

Measurement noise oN 0.55% of scale
Maximum change in MV AMV™ 2.7

Tune the time dependence A 1.5
for the allowable change
inMV
Allowable variation in MV 0"mv 2.5% of range
at steady state, i.e., end of
transient
Disturbance time constant Td = r Depends on

case
Input step magnitude -ASP or AD

iKd = 1)
10% of scale

Model error 25% of each
parameter

Execution period At 0.1(0+ t)

±4oN = ±2.2% of scale
This allows 170% maximum
overshoot at rMv = 0 and decreases
rapidly as time increases
This value reduces the allowable
variation rapidly as time increases,
damping the response
This is approximately 4oN, the noise
propagated via the proportional
mode with KCKP = 1.0
The disturbance time constant is the
nominal feedback time constant
Should be larger than measurement
noise and must be of the sign shown
for the sign conventions in this
appendix
The errors are due to a change in
operating conditions in a nonlinear
process and thus are correlated (all
increase or decrease concurrently)
Relatively small compared with
feedback process



The "optimal" tuning for this case is KPKC = 1.4, T//(0 + t) = 0.7, and
Td/iO + x) = 0.02, using the model parameters from the nominal case. The
transient responses for the three cases, nominal (perfect) model and imismatch,
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FIGURE E.2
Transient response for 0/(0 + t) = 0.3: ia) 75% of nominal feedback model parameters (high flow); ib) 100%

of nominal feedback model parameters (nominal flow); (c) 125% of nominal feedback parameters (low flow).
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demonstrate the importance of explicitly considering model error. Note that the
feedback control is not too aggressive for the nominal case and is quite slow for
the 75% case. However, the 125% case involving a slower process dynamics and a
higher feedback process gain (i.e., smaller feed flow in the example process) is at
the limit of the allowable manipulated-variable variation and exhibits oscillatory
behavior. Thus, making the tuning more aggressive would result in unacceptable
behavior for process dynamics for the 125% case, which is considered to occur
often in this problem definition. Thus, all three goals are relevant in determining
the best initial controller tuning. Finally, model errors larger than anticipated in the
definition could cause closed-loop behavior deemed unacceptable; this situation
would be rectified during fine tuning.
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At). Then, integration of the differential equation from the initial condition Y„-x 923
can be performed to determine the value at Yn. The solution can be determined tmuumMsMMimmm
using the integrating factor or Laplace transform; here the Laplace transform is Lead/Lag
demonstrated.

x s Y i s ) - x Y „ _ x = K X i s ) - Y i s ) ( F. 3 )
v/ x KXis) xYn-xY i s ) = — ^ + — 3 - i . ( F . 4 )xs + 1 xs + 1

Note that F(/„-i) = Y„-\. The input is evaluated as Xn-x/s, and the inverse
transform can be taken to give

Yn = KU - e-A'/T)X;,_, + e-A'/Ty„_, (F.5)
Equation (F.5) gives exact sampled values if the process is truly first-order and the
input is constant over the period. If the input changes during the period, then the
use of X„_i as a constant results in an approximation. An alternative, approximate
model can be derived by approximating the derivative as a difference, dY/dt %
(y„+i — Yn)/At. This results in

Y „ = K ( ^ p j X „ _ , + ( l - * \ y „ _ , ( F. 6 )

Equations (F.5) and (F.6) give very similar results when the sample period is small
compared with the time constant. For example, when At/x = 0.05, e~At/r =
0.951 and (1 - Af/r) = 0.95.

These discrete models can be used to represent a process and to implement a
first-order filter, as described in Chapter 12. Also, the gain, dead time, and first-
order discrete models can be combined to give for first-order with dead time:

Yn = e-A'/Tr„_i + Ki\ - <rA'/T)X;,_r-, (F.7)
Equation (F.7) is employed when using least squares to determine the values of
the model parameters from discrete (sampled), empirical input-output data; it is
also used as the prediction model in the IMC and Smith predictor model predictive
control systems.

F.4 ® LEAD/LAG
The final discrete control calculation in this appendix is the lead/lag algorithm,
which is as follows for a continuous system:

Y i s ) = ^ i ± | x ( j ) ( F . 8 )
Tlgs + 1

A straightforward manner for developing an approximate discrete lead/lag is to
replace each "derivative," which is the product of the Laplace variable s and a
variable, with its finite difference approximation. This gives

Tig ( ^ j ^1 ) + y. = TU (X "~ f " - ' ) + X „ (F.9 )
This can be rearranged to give

T i g \ / T i dYn =' ̂n~71 Yn~x +1 ̂—'Xn" / Zk \
At

Tx, Xn-x (F.10)
A t / ^ A t ' \ A t f



924

APPENDIX F
Discrete Models for
Digital Control

Equation (F.10) is used in feedforward controllers, as described in Chapter 15, and
decouplers (another form of feedforward), as described in Chapter 21; it is also
used for the combined IMC filter and controller, G/(s)Gcp(s), for a controller
whose model has an invertible process factor that is first-order and with a filter
that is first-order.

The discrete models of dynamic systems are in the form of difference equa
tions, in which the current values of a variable can be expressed as a function of
the last few values of the output and the input(s). In this appendix the difference
equations have been formulated to calculate the nth sampled value. Any equation
of this form can be modified to calculate, for example, the in + l)th value. This can
be done by substituting n — 1 = m in the expressions; the result for the first-order
system is

Y m + l = K i \ - e - * l x ) X m + e ~ * " T Y m ( F. l l )

Equations (F.5) and (F.ll) are equivalent, and both formulations are commonly
used, so the reader should be acquainted with both.
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Because of the strong interplay between process dynamics and control perfor
mance, examples should begin with process equipment and operating conditions.
To this end, several process examples are introduced in the beginning chapters
and used in many subsequent worked examples and questions. This approach has
three advantages. First, the performance of different control approaches (e.g., tun
ing or control algorithm) can be evaluated on the same processes, allowing clear
comparisons of competing methods. Second, the reader can concentrate on the
learning objective applied to a familiar process. A final advantage is the reduction
in the size of the book, since each example takes considerable space to introduce
completely.

Since the reader may want to review the control approaches applied to a
process, this guide is provided. Major worked examples and questions involving
the most important processes are summarized in the tables. The symbols used in
the tables are Ex for a worked example, Q for a question at the end of a chapter,
S for a chapter section, F for a figure, and T for a table; as elsewhere, the number
(or letter) before the period indicates the chapter (or appendix).

G.1 El HEAT EXCHANGER
This is a simple model of a heat exchanger. Since the process fluid side is well
mixed and the utility side is at quasi-steady state, the basic model is first-order,
which allows some analytical solutions to be determined. See Table G.l.
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APPENDIX G
Guide to Selected Key issue addressed Key issue addressed
Process Examples

Q1.9 Possibility for feedback control F14.2 Cascade control
F3.9 Process schematic F15.5 Feedforward control
F3.10 Linearization Q15.2 Cascade and feedforward control
Ex 3.7 Derive balances and linearized F16.9 Valve characteristic

approximation Q19.6 IMC controller design
Q5.1 Multiple input changes Ex 1.1 Exchange with bypass
Q5.2 Jacketed heat exhanger QI.1 Exchange with bypass
Ex 8.5 Analytical solution for QI.2 Exchange with bypass

proportional-integral ExL8 Discrete model
feedback system ExL9 Stability with digital PI

Ex 13.13 Process design for good
performance

ExL11 Dynamics with digital PI

G.2 □ THREE-TANK MIXING PROCESS
The most often used process example is the three-tank mixing process. An impor
tant aspect of the process is its simplicity, allowing the reader to easily relate the
design and operating parameters to its dynamic behavior. However, the process
has been selected to elucidate many important factors in process control systems.
This process is third-order and can be made unstable with a proportional-only con
troller; is mildly nonlinear and can show the acceptable range of linearization; does
not conform to the first-order-with-dead-time model and can show the effects of
structural errors in a model; and has dynamics that depend on operating conditions
and can demonstrate the use of adaptive retuning.

In addition to those listed in Table G.2, the following topics address closely
associated series of tanks: Q 15.2 on multitank heat transfer and Q 21.13 on loop
pairing.

G.3 □ NONISOTHERMAL STIRRED-TANK CHEMICAL
REACTOR (CSTR)
The nonisothermal CSTR is an important industrial process that introduces the
opportunity for a diverse range of process dynamics. This example involves only a
single, exothermic chemical reaction and can have stable over- and underdamped
steady states as well as a locally unstable steady state(s). Also, important in the
presentation control technology is the opportunity to investigate different pairings
of manipulated and controlled variables in a multiloop control system.

The final sections in Table G.3 refer to Appendix C, which introduces some
advanced topics in reactor dynamics and control.

G.4 □ TWO-PRODUCT DISTILLATION COLUMN
The previous processes were of low order, so they could be represented by a
few differential equations. In addition to being an important industrial process,



distillation is a high-order system whose linearized fundamental models are not
normally analyzed. Also, the dynamic model formulation using the generalized
tray concept is a worthwhile reinforcement to similar approaches covered in steady-
state modelling. With two controlled compositions, the process offers a challenging
two input-two output control system, when the control of pressure and levels is
assumed. With no prior assumptions, the control design of a five input-five output
system is a good control design case. To maintain simplicity, the case considered
involves only binary distillation with constant relative volatility. In Table G.4, the
cases not conforming to the exact parameters in Example 5.4 are marked with an
asterisk (*).
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Two Series Isothermal
Continuous

Stirred-Tank Reactors
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G.5 □ TWO SERIES ISOTHERMAL CONTINUOUS
STIRRED-TANK REACTORS (CSTR)
Additional low-order process examples are useful to reinforce principles. A series
of two isothermal CSTRs is used throughout the book (see Table G.5) to provide
many of these examples. Only one reaction occurs in each reactor, and the reactions
are first-order. The model for this process is simple enough to enable the engineer
to determine the effects of changes in equipment and operating parameters on the
dynamics of the process and performance of the feedback control system.

TABLE G.2

Three-tank mixing process

Key issue addressed Key issue addressed
Ex 6.4 Process reaction curve Q 11.9a Execution period for digital control
Ex 7.2 Introduce the process model S13.5 Effect of model mismatch on closed-loop
S8.4 Evaluate zero offset for P-only control frequency response
S8.5 Evaluate zero offset for l-only control Q13.1 Effect of process dynamics on
S8.6 Evaluate zero offset for D-only control performance and tuning
Q8.2 Dynamic simulation Q 13.13 Repeat stability, tuning, and performance
Q8.12 Alternative process structure analysis after process change
Ex 9.2 Tuning and performance S16.2 Effect of flow rate on tuning
Ex 9.3 Effect of disturbance time constant on S16.3 Gain (tuning) scheduling

closed-loop performance Q16.1 Effect of set point on tuning
Q9.8 Dimensional analysis Q16.3 Ziegler-Nichols tuning
Ex 10.5 Roots of characteristic equation, Ex 19.3 IMC on third-order process

root locus Ex 19.4 IMC on approximate first-order-with-dead-
Ex 10.10 Ziegler-Nichols tuning time model
Ex 10.18 Effect of model mismatch on stability Ex 19.6 IMC digital implementation and simulation

analysis using Bode Ex 19.7 IMC tuning correlations
Q10.1 Effect on tuning of changing tank volume Ex 19.8 IMC robustness
Q 10.11 The effect of process and control Ex 19.9 Smith predictor tuning and simulation

structures on possible dynamic responses Q19.2 IMC tuning schedule
Q 10.17 Effect of adding dead time Q22.1 Variable-structure
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TABLE G.3

Nonisothermal CSTR

Key issue addressed Key issue addressed
S3.6 Dynamic behavior Q 20.11 Integral controllability, loop
S7.3 Selecting variables pairing, and tuning for various
Q7.1 Causal relationship sets ofdesign parameters
Q7.9 Evaluate proposed single-loop F22.5 Variable-structure control,

feedback control structures F22.6 signal select
Q7.116 Operating window Ex 24.4 Dynamic transient exceeding
Q8.17 General behavior under P-only steady-state operating window

and PD control SC.1 Derivation of energy balance
Q 10.11 Effect of process and control SC.2 Modelling linearization

structure on possible dynamic SC.3 Transfer function
responses SC.4 Possibility of multiple steady

Q12.6 Failure modes states and their stability
Ex 13.12 Selecting manipulated variable SC.5 Possibility of limit cycles
Q 13.14 Control performance QC.1 Modified process model
Ex 14.7 Cascade design QC.2 Transfer function
Q 14.11 Cascade design QC.3 Frequency response
Q20.2 The effect of AH™ on multiloop

stability and dynamic response
QC.4 Empirical identification

l̂ l&M^S!-?'̂ i3̂ m^m^MmmMmMiŝ ^mm^mmm^mim

TABLE G.4

TWo-product disti l lation column

Key issue addressed Key issue addressed
Q2.8* Effect of distribution on profit Ex 21.3 Effect of disturbance type on
Q2.9* Effect of distribution on profit multiloop control performance
S5.6 Model development Ex 21.6 Relative gain and loop pairings
Ex 5.4 Simulated dynamic response Ex 21.9 Match tuning with performance
Q6.10 Process reaction curve goals
Q 14.6* Cascade control Ex 21.10 Decoupling, perfect and with
Ex 15.7* Feedforward control model errors
S 17.5* Inferential tray temperature Q21.1* Tuning, loop pairing,
Ex 20.2 Linearized model performance and decoupling
Ex 20.4 Operating window Q21.8* Tuning, loop pairing,
Ex 20.5 Evaluation of controllability performance and decoupling
Ex 20.7 Effect of interaction on the Q21.11* Control loop pairing

changes in manipulated variable Ex 23.1 Complexity of analytical inverse
Q 20.9* Controllability, interaction, tuning Ex 23.6 DMC control
Q 20.15* Controllability, interaction, tuning Ex 23.8 QDMC control
Ex 21.2 Effect of control structure on mul

tiloop control performance
Appendix J Control Design



G.6 □ HEAT EXCHANGE AND FLASH DRUM 929
A flash drum at controlled pressure and temperature is a simple method for effecting
a physical separation of components with different vapor pressures. This process
provides the opportunity to evaluate inferential control and pair loops for dynamic
performance. See Table G.6.

Heat Exchange and
Flash Drum

TABLE G.5

TWo isothermal CSTRs

Key issue addressed Key issue addressed
Ex 3.3

Q3.14
Ex 4.6

Ex 4.8
Ex 4.9
Ex 4.11
Ex 4.12
Ex 4.16
Q4.1
Q4.7
Q4.16

Q5.4
Q7.3
Q7.11C
Q8.15

Effect of changing temperature
on tuning
Roots of closed-loop characteristic
equation (modified process)
Repeat Ex 10.4 with additional dead
time
Effect of process and control structure
on possible dynamic responses
Effect of inverse response on control
performance
Effect of an alternative manipulated
variable on control performance
Effect of dynamics on feedforward-
feedback control
Multiloop control
Model with solvent flow adjusted
Model with FA adjusted
Control design

*jailEB!K!«^

Derive process model and evaluate a Q9.10
step response
Pulse response Ex 10.4
Solve step response using Laplace
transforms (slightly modified model) Ex 10.8
Stability
Derive the transfer function Q 10.11
Damping
Block diagram Ex 13.8
Frequency response
Emergency response Q 13.18
Modified inputs
Derive model and dynamic response Q 15.11
for a different input variable
Four series reactors Q21.10
Causal relationship Exl.2
Operating window QI.3
Loop behavior QI.4

TABLE G.6

Heat exchange and flash drum

Key issue addressed Key issue addressed

Q1.6 Control system components Ex 24.5 Degrees of freedom
S2.2 Control objectives Ex 24.6 Controllability
S17.2 Inferential variable evaluation Ex 24.7 Operating window
Q17.2 Model analysis Ex 24.8 Loop pairing
Q 17.12 Controllability Ex 24.9 Algorithm selection and tuning
Q21.5 Loop pairing Ex 24.10 Control for safety
T24.1 Control design form (CDF) Ex 24.11 Process monitoring
Ex 24.1 Sensors Ex 24.12 Dynamic performance
Ex 24.2 Control objectives Q 24.22 Partial control
Ex 24.3 Final elements



Partial
Fractions

and Frequency
Response

Dynamic models involve differential equations that are best analyzed using Laplace
transform methods. In Chapter 4, the partial fraction method was introduced as a
way to invert Laplace transforms, and, more importantly, to establish a basis for
determining key system properties like stability and frequency response directly
from the transfer function. The methods were explained in Chapters 4 and 10 and
applied throughout subsequent chapters. The proofs of the methods are provided
in this appendix.

H.1 n PARTIAL FRACTIONS
The Laplace transform method for solving differential equations could be limited
by the availability of entries in Table 4.1, and with so few entries, it would seem
that most models could not be solved. However, many complex Laplace transforms
can be expressed as a linear combination of a few simple transforms through the
use of partial fraction expansion. Once the Laplace transform can be expressed
as a sum of simpler elements, each can be inverted individually using the entries
in Table 4.1, thus greatly increasing the number of differential equations, that can
be solved. More importantly, the application of partial fractions provides gener
alizations about the forms of solutions to a wide range of differential equation
models, and these generalizations enable us to establish important characteristics
about a system's time-domain behavior without determining the complete transient
solution.

The partial fraction expansion can be applied to a Laplace transform that can
be expressed as a ratio of polynomials in s. This does not pose a severe limitation,
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since many models have the form given below for a specified input, Xis).

Dis)Yis) = Fis)Xis) = Nis)
Nis)

where

Yis) = Dis)
(H.l)

Yis) = Laplace transform of the output variable
Xis) = Laplace transform of the input variable
Fis) = Laplace transform of the function Fit)',

Fis)Xis) is the forcing function
Nis) = numerator polynomial in s of order m
Dis) = denominator polynomial in s of order n,

termed the characteristic polynomial
The partial fractions method requires that the order of the denominator be greater
than the order of the numerator, i.e., n > m\ models encountered in process control
will satisfy this requirement.

The Laplace transform in equation (H.l) can be expanded into an equivalent
expression with simpler individual terms by the application of partial fractions.

Partial Fractions

Yis) = Nis)
Dis) + C2

m=c>c-imhc>c-im]
Hxis) H2is)

+ C2C~l

+

+
(H.2)

(H.3)
The Ci are constants and the Hds) are low-order terms in s which represent the
factors of the characteristic polynomial, Dis) —0.

Initially, the C/'s are unknowns in equation (H.2) and must be determined so that
the equation is satisfied. There are several ways to determine the constants, and
the partial fraction expansions and the resulting Heaviside expansion formula are
presented here for three types of factors of the characteristic polynomial; distinct,
repeated, and complex.

DISTINCT FACTORS. If the characteristic polynomial has a distinct root at
a, the ratio of polynomials can be factored into

Yis) = NjS) _ Mis)
D is )~ a s —a + Ris) (H.4)

with Ris) being the remainder. After multiplying equation (H.4) by is - a) and
setting s = a [resulting in the term is - a)His) being zero], the constant can be
determined to be M(a) = C. This approach is performed individually for each
distinct root, and the function of time, Yit), is the sum of the inverse Laplace
transforms of all individual factors. The expression for distinct factors can be
summarized in the following Heaviside expansion which is a generalization of the



t e c h n i q u e j u s t e x p l a i n e d ( C h u r c h i l l , 1 9 7 2 ) . 9 3 3

factors /

r a j x s ) " I _ _ y ^ N j s ) \ s = a . P a r t i a l ¥ n e Q o m
l D i s ) ] r m ^ £ - < d D i s ) y }

ds S=Otj

REPEATED FACTORS. A similar partial factor expansion can be applied for
"n + 1" repeated factors, i.e., identical, real roots of the characteristic polynomial
[Dis)], as shown below.

Y ( s ) = N ( s ) = M ( S ) C ] I C l I , C " + ' 1 R ( s
D i s ) i s - « ) " + ' s - a i s - a ) 2 i s - a ) n + l W

(H.6)
The coefficients can be determined sequentially by

1. Multiplying equation (H.6) by is - a)n+l and setting s = a (determining
C1+1)

2. Multiplying equation (H.6) by is - a)"+1, taking the first derivative with
respect to s, and setting s = a (determining Cn)

3. Continuing this procedure (with higher derivatives) until all coefficients have
been evaluated

The time-domain function for a repeated factor can be expressed as (Churchill,
1972)

c->\m] =_Lfil[AW]\_Dis) J repealed «! [ ds"
(H.7)

where Mis) is defined in equation (H.6).

COMPLEX FACTORS. The final possibility for the factor involves complex
factors, and the analysis for a distinct, complex factor is given for the system shown
below.

N i s ) M i s )
Yis) = -±+ = - ±r—7 + *(*) with of and o> real (H.8)Dis) is — a)2 + co2

The complex roots can be expressed as two distinct roots a a ± coj, so that by
applying equation (H.2) the Laplace transform and its inverse can be expressed as

AW = * , ( , ) + M M
Dis) s—a + coj s—01—coj

Yit)**** = mis)]^^-""' + [M2(5)L=a+w^(a+^')' (H.10)factor

The coefficients in equation (H.10) are complex conjugates and can be expressed
as Mi (+a - coj) = (A + Bj) and M2i+a + coj) = (A - Bj), respectively. These
expressions can be substituted into equation (H.10) to give

F(0 com,** = (A + Bj)eia-a,j)t + iA- Bj)e{a+a)j)lf a c t o r ( H . l l )

= eO'iAieJ0" + e-im) + jBie-^1 - e^')]
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'AO ~w
do

' t i n ' c o m
F.

Equation (H. 11) can be modified to eliminate the complex terms by using the Euler
relationships.

cos(<wO =

sin(atf) =

2

V

2cosicot) = eJa,t +e-Ja)t

2smicot) = jie-jtot-ejo)t)

(H.12)

(H.13)

The resulting expression can be used to evaluate the inverse term for a complex
conjugate pair of roots of the characteristic polynomial

Yit) complex = 2eat[A cosicot) + B sin(o>f)]
factor

(H.14)

The proof of an alternative formulation, along with expressions for repeated com
plex factors, is available in Churchill (1972).

The application of partial fractions is demonstrated in the following example
that includes real and complex roots of the denominator.

EXAMPLE H.1.
For the CSTR modelled in Appendix C, Section C.2, evaluate the inverse Laplace
transform of the reactor temperature for a step change in the coolant flow rate.

The original model involved two nonlinear differential equations for the com
ponent material and energy balances which were linearized and expressed in
deviation variables; these equations are repeated below.

= anCA+ax2T' + al3C'M + aX4F^+al5Ti + al6F'
dt

dT'— = a2XC'A + a22T' + a2ZC'M + auF'c + a^ + a26F'
at

(C.11)

(C.12)

In this example, the only input variable which changes is the coolant flow which
experiences a step, so that C'Mis) = T0'(s) = F'is) = 0. The Laplace transforms of
equations (C.11) and (C.12) can be taken to give

sC'Ais) = anC'Ais) + al2T\s) + auF'ds)
sT'is) = a2xCAis)+a22T'is)+a2AF'ds)

(H.15)
(H.16)

Equations (H.15) and (H.16) can be combined algebraically. First, equation (H.15)
is rearranged to solve for CAis) = ai2T'is)/is -au), since aH = 0; this term is then
substituted into equation (H.16) to give

T'is) = a^s + ia2\au -a^au)
s2 - (flu + 022)$ + iaua22 - a\2a2i) F'is) (H.17)

When the numerical values are substituted into equation (H.17) using the CSTR
data in Section C.2, the result is

F'is) = -\/s an = —7.55
a2l = 852.02

al2 = -0.0931
a22 = 5.77

a,4 = 0.0
«24 = -6.07

T'is) = (-1)1-6.07(5)-45.83]
sis2 + \.19s + 35.S0) (H.18)

Partial fraction expansion requires the roots of the characteristic polynomial, which
are -0.894 ± 5.92j and 0.0; thus, two factors are complex. The inverse transform



for the complex factors can be determined by using equations (H.11) and (H.14)
with A = -0.64, B = 0.42, a = -0.894, and co = 5.94.

Mxis)\s=la-ioj —
i-\)i-6.01s- 45.83) = -0.64 + 0.42 j
,is + 0.m-5.92j)is)js=_om_$92j

r(r)romp!ex = 2e~°-mt [-0.64 cos(5.92/) -{-0.42 sin(5.92r)]
factor

The single distinct factor can be inverted using equation (H.5).

(-lX-6.07.s- 45.83)Mis)\s=0 -r J.v=0
1.28s2 + 1.7895 + 35.80

nOdistinct = 1.28e°' = 1.28

The complete inverse transform is the sum of the two functions.

T\t) = 1.28 + 2eT0-894'[-0.64cos(5.92/) + 0.42 sin(5.9201

(H.19)

(H.20)

(H.21)

(H.22)

(H.23)
The solution to the linear approximation in equation (H.23) is a damped oscillation.
This underdamped behavior did not occur in the simple processes modelled in
Chapters 3 and 4. A comparison of the solutions to the linearized and nonlinear
equations in Figure H.1 shows how the linearized model represents the essential
characteristics of the true process response. Naturally, the accuracy of the lin
ear approximation depends on the size of the input change, with the accuracy
improving as the input magnitude decreases.
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FIGURE H.1

Linearized and nonlinear responses for a step of —1 m3/min in coolant flow
at t = 1 min for the CSTR in Example H.l.
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H.2 m FREQUENCY RESPONSE

Frequency response is defined as the output variable behavior resulting from a sine
input variation after short-term transients become negligible. Frequency response
is important in determining the stability and control performance of linear dynamic
systems, and it is used extensively in process control. The simplified method for
evaluating the frequency response used in process control involves determining the
amplitude ratio and phase angle from the transfer function with s = coj\ the proof
for this method is presented in this section. We begin with a general expression
for the frequency response; the following equation gives output Yis) of a linear
system with a transfer function Gis) and a sine input forcing X is) with magnitude
A and frequency co.

Yis) = Gis)Xis) = Gis) A
CO

s2 + co2 (H.24)

The transfer function is assumed to be a ratio of polynomials, so that the solution
can be analyzed using a partial fractions expansion of the right-hand side of equa
tion (H.24), as explained in the previous section. The general form of the solution
to equation (H.24) can be determined by accounting for all poles (roots of the
denominator) whether real distinct, real repeated, or complex.

,«!' ap'Yit) = Axeal +--- + iBx + B2t + Bltl + • ■ -)e

+ [Ci cosicot) + C2 sin(atf )]«"*' + • • • + D\e~iM + D2eja"
(H.25)

The final two terms in equation (H.25) account the additional poles from the sine
input. All but the last two terms tend toward zero as time increases, as long as the
system is stable, i.e., Re(a,) < 0 for all i. Thus, only the last two terms in equation
(H.25) affect the output behavior after a long time, i.e., which is the definition of
the frequency response. The constants for the last two terms can be evaluated using
the partial fractions method for distinct roots, ax = —jco and ot2 = +jco.

[ A c o 1 A G i - jD x = G i s ) - — = G ( s ) | , = - y „ — = - A - ^ 4
L i s - J O > ) } s = - j u > " 2 / 2 /

-jco)
= - J 0 >

A G i j c o )= Gis)\s=+ja)—r^ = A
s = + j a > + 2 J + 2 J

(H.26)

(H.27)

Since only these terms affect the long-time behavior, the output can be expressed
as (with the subscript FR for the frequency response)

Ymit) = ~Gi-ja>)e-*» + ^Gijco)e^ (H.28)

Any transfer function, which involves complex numbers, can be expressed in polar
form using

Gijco) = \Gijco)\e* with cf> = LGijco) = tan"1 {l™^^ 1 (H.29)[ Re[Gijco)] J
Equation (H.28) can be expressed in polar form using equation (H.29) to give

YvRit) = ~\Gicoj)\e-^^ + ^\Gicoj)\e{o>t+W (H.30)
2 y 2 j



This result, along with Euler's identity to convert the exponential expressions to
a sine, gives the final expression for the frequency response of a general linear
system.

Ypnit) = A | Gijco) | sinicot + 0) = B sinicot + 0) (H.31)

Thus, the output variable Yit) is also a sine with (1) the same frequency co as the
input, (2) an amplitude B, and (3) a phase shift of 0 from the input. The simplified
method for evaluating the output variable frequency response of a linear dynamic
system proved in this section is to set the Laplace variable s = coj in the transfer
function and evaluate the magnitude and phase, which provide the amplitude ratio
and phase angle, as summarized below.

937
cm

Reference

Amplitude ratio = B/A = \Gicoj)\
Phase angle = 0 = LGicoj)

(H.32)
(H.33)

This result proves that an amazing amount of information about the dynamic
behavior of a linear system can be determined without the effort of evaluating its
inverse Laplace transform.

REFERENCE
Churchill, R., Operational Mathematics, McGraw-Hill, New York, 1972.



Process
Examples
of Parallel

Systems
Parallel process systems were introduced in Section 5.4, where a wide range of
potential process behaviors were demonstrated. An important factor in determining
the behavior for a specific system was shown to be the numerator, that is not a
constant but contains the Laplace variable "s." Setting the numerator term (alone)
to zero and solving for s provides a method for evaluating the numerator "zero."
The possible step response behaviors are summarized below (for a stable system
with real roots of the characteristic polynomial).

1. When the zero is negative and larger in magnitude than at least one pole, the
dynamic step response of the output is an overdamped, S-shaped response.

2. When the zero is positive, the output experiences an inverse response.
3. When the zero is negative and smaller in magnitude than all poles, the output

experiences an overshoot of its final value.

Importantly, overshoot requires unique controller design and tuning, and inverse
response can be difficult to control for any feedback controller. Therefore, the
engineer should understand how the process design and operation causes these
unique dynamic behaviors. Two process examples are presented in detail in this
appendix to provide a link between process technology and parallel systems.

EXAMPLE 1.1. Heat exchanger with bypass.
Often a process stream must be heated or cooled a variable amount using a
heat exchanger. A common method for variable heating is a heat exchanger with
bypass, as shown in Figure 1.1 for a cooler; the bypass provides the parallel struc-

'M-$0&i0Sî
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exch

'by

f
FIGURE 1.1
Heat exchanger with bypass and sensor.

ture in this example. The flows through the exchanger and through the bypass are
adjusted while the total process flow is maintained constant.

The behavior of an industrial shell-and-tube heat exchanger would be difficult
to model, because it is a distributed-parameter system with complex flow patterns;
therefore, the system is approximated as a stirred-tank heat exchanger, which
retains the key properties of the system dynamics, in particular the response of
the measured temperature signal to a step change in the flow to the exchanger.

Assumptions.
1. The same assumptions apply as in Example 3.7.
2. There is no transportation delay in short pipes.
3. The total flow (exchanger and bypass) is constant: FT = Fexch+Fby = constant.

Data. Note that these parameters are not realistic for a shell-and-tube heat ex
changer, although the dynamic response is reasonable because the increased
fluid inventory takes the place of the substantial metal capacitance.

1. 7o = 100°C; p = IO6 g/m3; Cp = 1 cal/(g°C); UA = 50 x IO6 cal/(min°C);
Tdn - 60°C; z3 = 0.5 min; V = 200 m3.

2. Initial steady state: Fby = 50 m3/min; Fexch = 50 m3/min; Tx = 80°C; T2 = r3 =
90°C.

3. Input change: AFexch = -10 m3/min at t = 10 min; consequently, AFby =
+10 m3/min.

Formulations. The fundamental model of the heat exchanger is the same as
presented in Example 3.7, except that the feed flow rate, not the cooling medium
flow, is changed in this example. Thus, model equations for the heat exchanger,
bypass, and mixing are

d T \ F e x c h , - r r x U A

T _ ^exchT| + FfayTp _ Fexch T| + (Fy — Fexch)7o
F e x c h + F b y F t

(1.1)

0.2)

The temperature-measuring device is normally protected from contact with the
process fluid by a metal sleeve called a thermowell, which introduces additional



dynamic lag due to heat transfer dynamics associated with the thermowell. In this
example, the thermowell dynamics are assumed to be well modelled by a first-
order system with a time constant, xs, of 0.50 minutes (which is slower than most
commercial sensor systems).

dT3xs— = T2-T3at (1.3)

with r3 the signal from the sensor. These equations can be linearized, expressed in
deviation variables, and transformed to the Laplace domain to give the individual
transfer functions.

G« = Tds) **exch

Fexch is) TexchJ + '
(1.4)

where ju>-.ir8rr!?-pc>..-o.2o

^exch —

GFMis) =

Gritis) =

Gsis) =

iFe%cb)spCp + UA
VpCp

iFexch)spCp + UA

T 2 j s ) _ ( 7 , - 7 0 ) ,
Fexch is)

T2is)

m3/min

= 2.0 min

(Fexch + Fby).v

t* exch/j

= KFu = -0.20
m3/min

Tiis)

T d s ) = =
T2is) xss + 1 0.5s + 1

(Fexch + Fby)

1 . 0 1 . 0

= KTM = 0.50 m3/min
m3/min

(1.5)

(1.6)

(1.7)

The block diagram for this model is shown in Figure 1.2, in which the parallel
path is clearly evident, since the variable Ftxcds) influences Tds) through two
paths. Note that for a parallel path to exist, a split must occur in the block diagram.
The overall transfer function, relating the flow to the exchanger to the measured
temperature, can be derived from block diagram algebra.

Tds) = Gsis)[GFMis) + GTMis)Geds)}Fexcds) (1.8)

941
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T d s ) K F M + Kexch Ktm

Fcxchis) xss+\ ' ixexchs + \)ixss + 1)

iKFM + KexcXlKTM) I -p —p—
|_\ &FM T Aexch

(Texch-S + 1)(T,J + 1)
T - ) S + \

-0.1(45 + 1)
(25+l)(0.55 + l)

(1.9)

^exchC*)
Gtxis)

Txis)

GFmi*)

GTmis) -0-
j i

his)
Gsis)

his)

FIGURE 1.2

Block diagram of exchanger with bypass and sensor.
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From equation (1.9) we conclude that the poles of the overall system are the poles
of the individual systems. In this example the system is second-order with real,
distinct poles at -l/TexCh and -1/r,; thus, it is stable and is not periodic.

Due to the parallel structure, the transfer function has a zero in the numerator,
which for this example is at s = -iKFM + KexchKTM)/KFMxexch and is real and
negative for this example. This zero can significantly affect the dynamic behavior
of the system; therefore, the response of the system to a step input cannot be
determined using Figure 5.5, which assumed a constant numerator. The dynamic
response can be determined by inverting the Laplace transform of Tds) for a step
in Fexchis)-

Solution. By substituting the data in the problem statement into equation (1.9),
including the step input, Fexcds) = -10/5, and determining the inverse using entry
10 in Table 4.1, the following analytical solution for the linear approximation can
be found:

TdO = 1.0 - 2.333e"/0-5 + 1.333ew/2 (1-10)

Results analysis. Dynamic responses are given in Figure 1.3 for the nonlinear
and approximate linearized models. They both show that the system output, T3,
overshoots and then approaches its final value smoothly. (The occurrence of the
overshoot depends on the relative magnitudes of the numerator and denominator
time constants.) The time at which the maximum occurs can be determined by
setting the derivative of equation (1.10) to zero and solving for time, giving t = 1.3
minutes after the step. Thus, the parallel structure has fundamentally altered the
dynamic behavior of this second-order system.

I 92
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i 0.5

0.4 0

'by
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FIGURE 1.3
Nonlinear and linearized dynamic responses for Example 1.1.



The reason for this behavior can be understood by considering the two parallel
paths in the physical system. When the exchanger flow is decreased, temperature
Tx is initially unaffected, and the modified flow ratio to the mixing point results in
an immediate increase in temperature T2. However, the exchanger outlet temper
ature Tx decreases with a first-order response because of the lower flow to the
exchanger. As a result, the mixture temperature decreases from its initial peak to
its final value with a first-order response. The measured temperature follows the
mixture temperature after the sensor first-order lag. Note that the overshoot is not
due to a complex pole and that the behavior is not periodic. Rather,
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The unique behavior is due to parallel process paths with significant differ
ences in dynamics for the two paths.

Naturally, such behavior should be considered in designing and operating
the process. Imagine driving an automobile that tends to overshoot the change in
direction indicated by the steering wheel; a careful and skilled driver (or control
algorithm) would be required.

EXAMPLE 1.2. Series reactors.
This example demonstrates that the parallel paths do not have to be external
bypass streams but can be separate mechanisms within a single process. The
process considered is a series of two CSTRs, shown in Figure 1.4, with the same
vessel size, flow rate, and chemical reaction as in Example 3.3; thus, the reactor
models are identical to those derived in Example 3.3, equations (3.24) and (3.25)
(page 64). In this example the response of the reactant concentration at the outlet
of the second reactor to a step change in the solvent flow is to be determined.

Formulation. In this example the flows of the reactant and solvent can be
changed independently. Also, the solvent flow is so much larger than the com
ponent A flow (FA) that we assume that the total flow is the solvent flow; that
is, F « Fs and CAo % iCAFA)/Fs. (Note that Fs = 0.085 and CA0 = 0.925, so that
CAFA = 0.0786 mole/min.) With these assumptions, the following transfer functions

FIGURE 1.4
Series chemical reactors for Example 1.2.
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can be derived:
CaoOO CAFA
Fsis)

Cujs)
Fsis)

= Gmds) = -jf$ = KmXx = -10.9
iFs)2

= GFiis) =
[CA<-l(5)-CA,(5)],v

Fs + Vk

mole/m3
m3/min

KFi

(1.11)

\Fs + Vk)
5 + 1 T5 + 1

2 . 4 1 1 . 6 1
Gnis)= nne , , GF2is) =8.255 + 1 8.255 + 1 (1.12)

Caj(5)
CAi-Xis)

= GA|(5) = Fs + Vk KAi 0.669

\FS + Vk)
5 + 1 T5 + 1 8.255 + 1 fori = 1,2

(M3)
The linearized model is represented in the block diagram in Figure 1.5, which

shows the parallel paths. In this example, the parallel paths result from the different
effects of the solvent flow, through changes in the feed concentration and flow rate
(residence time), on the outlet concentration of the second reactor. The overall
transfer function can be derived using the block diagram to give the overall input-
output relationship.

CA2is)
Fsis)

= GF2is) + G^isWnis) + GA2is)GAXis)Gmds) (1.14)

This expression clearly shows that three separate effects of the input influence the
output concentration. The first effect, GFiis), is of the flow or residence time in
the second reactor; this effect begins instantaneously and increases the concen
tration. The second effect, GA2is)GFXis), is the residence time in the first reactor,
which increases the feed concentration to the inlet to the second reactor. The third
effect involves the decrease in the feed concentration, CAo; this effect is slower but
of greater magnitude, ultimately decreasing the second reactor outlet concentra
tion. The overall effect can be determined by substituting the individual transfer
functions into equation (1.14) and rearranging to give

Ca2(s) KF2ixs + 1) + KA2KFX + KA2KAX ̂ mix

(1.15)
Fsis) ixs + l)2

-1.66(-8.05 + l)
(8.255 + 1)2

Fsis)
Gmix(*) ■ CA0(*)

GA[ J
„ «-AlW GA2is) ^ <-A2W ^

1J
I

GFXis)

Gnis)

FIGURE 1.5

Block diagram of reactors in Example 1.2.



Again, the system is second-order and has the same poles as the individual
elements in the system, but because of the numerator dynamics the response
cannot be determined from a simple series system (i.e., Figure 5.5). Also, the
result in this example is different from the previous example, because the transfer
function in equation (1.15) has a positive numerator zero (5 = 1/8.0). This is due
to the last term in the numerator being large and negative, since KmXx is less than
zero. This result indicates a mechanism for inverse response of the output variable,
in which the initial response of the output can have the sign opposite to its final,
steady-state change.
Solution. Again, the response can be determined by solving for the inverse
Laplace transform using Table 4.1, entry 8. Substituting the data in the problem
statement, including the input step of Fsis) = AFv/5 = 0.0085/5, gives

Cpa.it) = -0.0141 + (0.0141 + 0.00337Oe-,/8-25 (1.16)

Results analysis. The response to a step change in the solvent feed flow, with
reactant flow unchanged, is shown in Figure I.6 for the nonlinear and approximate
linearized models. Note that the outlet reactant concentration initially increases,
because of the decrease in residence time, which affects both reactors, including
the last, immediately. However, the decreased feed concentration decreases the
reactant concentration, initially in the first reactor and ultimately in the final reactor.
Thus,

945

Process Examples of
Parallel Systems

The outlet concentration in the second reactor experiences an initial inverse
response, because the fast effect of the residence time influences the output
before the larger, slower feed concentration effect.
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FIGURE 1.6

Response for series chemical reactor to step in solvent flow in Example 1.2.
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Behavior similar to this example is observed in other physical systems, espe
cially tubular reactors. The series of CSTRs is selected in this example because
the mathematical analysis is simpler, but lumped systems in series can serve
as an approximation for the distributed system (Himmelblau and Bischoff, 1968).
Modelling and experimental results for inverse responses in tubular reactors are
presented by Silverstein and Shinnar (1982) and Ramaswamy et al. (1971).

The dynamic characteristics demonstrated in this example would be expected
to have great influence on feedback control. Imagine driving an automobile that
responded initially in the inverse direction to a change in steering! The most ap
propriate response would be to eliminate the inverse response by redesigning the
process, if possible.
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QUESTIONS
1.1. Determine the response of the measured temperature T3 to a step change

in the coolant flow rate in the process in Figure 1.1 and Example 1.1. Based
on the dynamics, would you prefer to manipulate the coolant flow rate or
the bypass flow to control 7*3?

1.2. Determine the response of the measured temperature T3 to a step in the inlet
temperature Tq. Discuss the similarities and differences of this behavior to
the dynamic response in equation (1.9) and Figure 1.3.

1.3. A model and dynamic response are derived in Example 1.2 for a series
of two chemical reactors. In the worked example, the solvent flow (Fs) is
changed in a step and the outlet concentration experiences an inverse re
sponse. Determine the dynamic response for a step change of AFA, with all
other inputs constant. All assumptions are the same as in Example 1.2, and
you may use relevant results without deriving. The answer to this question
should include an analytical expression for the response of CA2 and a de
scription of the dynamic response of the concentration in the second reactor.
Compare your results with Figure 1.5, and discuss whether controlling CA2
would be easier or more difficult by manipulating FA.

1.4. The series of two chemical reactors described in Example 1.2 is the initial
process upon which this question is based. You may use all results from
the modelling in Example 1.2 without proving, simply cite the source of
the equations.
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be controlled by two single-loop controllers. By adding sensors and \mmmmMmm$WMm
final elements as required, describe briefly and sketch a control system Questions
for this purpose.

ib) Given this strategy is functioning perfectly (maintaining Cao con
stant), determine the model between the solvent flow and the con
centration of the reactant in the second reactor, Ca2, and comment
on the expected composition (CA2) control performance using this
manipulated-controlled variable pairing.

ic) Compare with the control performance in Example 13.8.

1.5. The dynamic response of a CSTR is considered in this question. You are to
determine the characteristics of the response in component B in the effluent
to a change in feed flow rate. You should determine the order, stability,
damping, and effect of numerator zero from parallel paths. Based on your
analysis, discuss whether a feedback controller from effluent concentration
of B (Cb) to feed flow (F) would perform well.

Assumptions:
1) The reactor is well mixed and has a constant liquid volume.
2) The reactor is isothermal.
3) The density of the reactant and products are identical.
4) Only reactant (A) and solvent are present in the feed and the feed com

position is constant.
Data:
1) The reaction is described by the following elementary reactions.

where — rA = kxCA and —re = k2C^



Process Control
Case Study:

Two Product
Distillation

Short examples of many process control designs are presented in the solved exam
ples in the book. In this appendix, the control of a distillation tower is considered in
detail. Distillation is chosen because it is one of the most important unit operations
in the chemical industry. Also, distillation provides excellent learning experiences
for nonlinear, multivariable processes with significant interactions. The exercises
in this appendix can be completed without the aid of a simulator. However, comple
mentary simulation exercises will substantially enhance the learning experience.*

This appendix enables readers to apply their process and control skills to the
control of distillation by performing a series of exercises of increasing complexity.
Many of the exercises involve open-ended questions to give you experience in
defining and solving realistic problems. Since successful process control relies on
knowledge from process technology and instrumentation, readers are encouraged
to utilize their library, Internet, and self-study skills to investigate issues raised
in these exercises. The references at the end of this appendix provide good initial
sources of information and an introduction to the literature on distillation towers
and their control.

The exercises in this appendix cover the topics in the same order as in the body
of the book. To assist the readers, the exercises are organized according to the six

V

A menu-driven, tray-by-tray dynamic distillation simulation is available in the Software Laboratory,
Version 3.0 (Marlin, 1999), which runs within the MATLAB™ language (MathWorks, 1998). In
addition, commercial flowsheeting programs have the capability to simulate distillation dynamics using
standard models and rigorous physical properties; examples are Aspen Dynamics™ (Aspen, 1999)
and HYSYS (Hyprotech, 1998).
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major parts of the book. The best manner for using this appendix is as "capstone"
exercises at the completion of each part of the book. The student should have the
opportunity to review solutions to each part before proceeding to the next, so that
prior learning provides a solid foundation for future challenges.

PART I: INTRODUCTION
In Part I of the book, control terminology, concepts, and objectives are introduced.
The exercises in this section of the appendix enable you to apply these topics to
prepare for the study of distillation control. The example two-product distillation
tower used in this appendix is shown in Figure J.l.

J.1. Distillation Process Principles
Before beginning control design and implementation, we should always be sure to
understand the process technology. The questions in Table J.l provide this check
for the distillation tower.

J.2. Objectives
Present typical process control objectives grouped into the seven objective cat
egories presented in Chapter 2. You should be as specific as possible, not just
saying that 'The process should remain safe" or "Profit should be maximized."
Remember that these objectives must be clear enough to direct the control design
and implementation.

F
XF

Base-Case Data

Feed rate 8.00 kmole/min
Feed composition, XF 0.45 mol fract L.K.
Feed liquid 1.00 fraction
Feed tray 10
Relative vol. 2.20
Trays 21 + reboiler
Distillate, XD 0.975 mol fract L.K.
FD 3.625 kmole/min
FR 7.487 kmole/min
Bottoms, XB 0.015 mol tract L.K.
FB 4.375 kmole/min
FV 11.11 kmole/min
FRB 6.945 kmole/min
Reflux drum 7.2 min.

[Volume/(FR + FD)]
Bottoms holdup 5.3 min

rVolume/(Fv/ + FB)]

FIGURE J.1

Two-product distillation tower separating a binary mixture, with base-case data.
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Part I: Introduction
Answer the following questions for a simple, two-product distillation tower like
the one in Figure J.l that is separating a binary mixture.

1. Explain input variables and equipment performance factors that are likely
to affect the profit of an operating distillation tower; do not include design
decisions like the number of trays that cannot be changed during normal
operation.

2. What information is required to determine the costs for the energy used in
condensing and reboiling?

3. Some data is provided for the distillation tower in Figure J.2. For this question,
assume that the light key in the bottoms should never exceed 0.016 mole

TABLE J.l

Questions on distillation process principles

1. Sketch the design for two heat exchangers that can be used as condensers.
For each design, explain how the heat transfer can be changed and
indicate a valve or other element of the design that could be manipulated
to change the heat transferred. What fluid medium is normally used for heat
exchange in the condenser and why?

2. Repeat question 1 for a reboiler.
3. Discuss the purpose of the overhead accumulator. How much liquid should

be contained in the overhead accumulator.
4. Repeat (3) for the bottoms accumulator.
5. What determines the amount of liquid on each tray? Is level control needed?
6. Define constant relative volatility and give an example of components for

which this is a good approximation.
7. For what conditions is constant molal overflow a valid approximation?
8. How would you define the best feed tray? How is the best feed tray

determined?
9. (a) What factors are considered when determining a "good" pressure

for a distillation tower during design?
(b)What determines the maximum pressure for an operating distillation
tower?
(c) What determines the minimum pressure for an operating distillation
tower?
(d) What physical device should be provided to prevent excessive
pressures?

10 (a) What determines the maximum vapor boilup in an operating distillation
tower?
(b) What determines the minimum vapor boilup in an operating distillation
tower?

11. Describe likely disturbances that would influence product compositions and
would be compensated by feedback control.
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Summary of Historical Data
Fraction of xB

Time (mole fraction L.K.)
0.10 0.013
0.12 0.011
0.23 0.009
0.20 0.007
0.27 0.005
0.08 0.003
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FIGURE J.2

Operating data for the distillation tower.

0 . 0 0 5 0 . 0 1 0 . 0 1 5 0 . 0 2
Light key in bottoms, XB (mole fraction L.K.)

0.025

FIGURE J.3

Distillation tower with typical pressure
and level controls.

fraction. From this data, determine the following values for the reboiler energy
consumption: id) the average over the period of the data and ib) the absolute
minimum. (For this question, assume that the heavy key is butane.)

4. With perfect separation, all light key material could have been recovered in the
overhead product. Using the tabular data in Figure J.2, determine the amount
of light key material in the bottoms that ideally could have been recovered in
the top product.

PART II: PROCESS DYNAMICS
Process control requires an excellent understanding of the dynamic behavior of
the plant. This knowledge is used to

1. Build plants that are easy to control
2. Design control systems
3. Determine the effects of operations changes (production rate, product quality,

etc.) on control performance to decide, for example, when adjustments in the
computer control calculations are required

Here, questions are presented to help the reader understand the dynamics of a
distillation tower. It would be helpful if the reader would review Section 5.6 on
distillation modelling before proceeding with these exercises. Some further mate
rial on multicomponent distillation dynamic modelling and numerical simulation
is available from Tyreus et al. (1975).

J.4. Process Reaction Curves
The tower in Figure J.3 is considered for this exercise with controllers maintaining
the pressure and accumulator levels essentially constant. Process reaction curves
are presented in Figure J.4.
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causing a reboiled vapor (Fv) step of 0.20 kmole/min occurring at 6 minutes.
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1. What can you conclude about the linearity of the process?
2. Based on your understanding of distillation, confirm the directions of the

changes in the distillate and bottoms compositions in Figure J.4.
3. Discuss the causal relationships between inputs (F/? and Frb or Fy) and

outputs iXo and Xb). Looking ahead, what important features in these the
responses would make feedback control potentially easy or difficult?

J.5. Distillation Dynamics
The following questions provide thought exercises on the effects of equipment and
operating parameters on distillation dynamics.
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FIGURE J.5

Dynamic response for a feed
composition (XF) step of 0.03 fraction
light key occurring at 6 minutes.

1. The responses in Figure J.4 are for a distillation tower with the pressure and
accumulator levels (controlled) to constant values. Is the distillation tower sta
ble or unstable when no controllers are in operation? Explain for all important
variables.

2. The dynamic response of the compositions for a change in reboil takes many
minutes to reach steady state in spite of the very fast change in vapor flow
rate. Why?

J.6. Disturbance Responses
Disturbance responses are presented in Figure J.5 for the tower in Figure J.3 with
controllers maintaining the pressure and accumulator levels essentially constant.

1. The experiments in Figures J.4 and J.5 both present input-output results. What
is the major difference between the input variables in these two figures?

2. Based on your understanding of distillation, confirm the directions of the
changes in the distillate and bottoms compositions in Figure J.5.

3. Discuss the causal relationships between disturbance inputs and composition
outputs. Looking ahead, what important features in these responses would
make feedback control potentially easy or difficult?

PART III: FEEDBACK CONTROL
The process dynamics and disturbance characteristics determine the best possible
control performance, but the actual performance is strongly influenced by the con
trol design and implementation. A good design often results in safe and profitable
operation providing consistently high product quality. The exercises in this part
provide the opportunity to combine the process understanding acquired in Part II
with control technology to provide good single-loop feedback control.

J.7. Sensor Selection
Review and enhance the control objectives for the distillation tower you developed
in Exercise J.2. For each objective identify one or more sensors required to achieve
the objective. Indicate the location of each sensor on a process schematic and
indicate the variable range and physical principle. For analyzers, discuss the sample
system needed and determine the locations for the "fast loop" withdrawal and
return.
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Process control requires manipulated variables, which are most often valves that
affect flow rates. Indicate the location of all automated control valves on a process Enhancements to
schematic. Determine the maximum flow rating, failure position, and body type. Single-Loop Control
Feedback control tends to transfer variation from the controlled to the manipulated
variables; explain briefly why the variation is less costly in the flows affected by
these valves than in the controlled variables identified in Exercise J.7.

J.9. Control Performance

Suggest quantitative control performance measures that could be calculated from
plant data on the controlled and manipulated variables identified in Exercises J.7
and J.8.

J.10. Single-Loop Design
For each of the controlled variables identified in Exercise J.7, select a manipulated
variable to adjust from the valves identified in Exercise J.8. Select modes for each
controller.

J.11. Controller Tuning
Tune each single-loop PID composition controller, Xd and XB, using models
based on the data in Figure J.4. Estimate the longest digital controller execution
periods that would not degrade control performance for each controller.

J.l 2. Display
Sketch a real-time screen to be displayed by a digital control system to be used by
a plant operator to monitor and intervene in the operation of the distillation tower.
Indicate what data should be displayed and how (numbers, bar charts, trend plots,
etc.) and what parameters could be changed by the plant personnel.

PART IV: ENHANCEMENTS TO SINGLE-LOOP CONTROL
The performance of feedback is limited by the process dynamics in the feedback
and disturbance paths. Substantial improvements to control performance are pos
sible through single-loop enhancements that utilize additional sensors and models.
The exercises in this part of the appendix enable the reader to apply these enhance
ments to distillation.

J.13. Cascade Control
List disturbances that will affect the distillation tower. For each, determine whether
cascade control would improve the performance of the control design you devel
oped in Exercise J. 10. Sketch the cascade controls you recommend on a process
schematic.
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J. 14. Feedforward Control
Consider the control of the distillate purity, Xd, with the pressure and accumulator
levels controlled by separate PI controllers. List disturbances that affect Xd, and
for each, determine whether feedforward control would improve the performance
provided by the feedback controller of Xd. Sketch the feedback-feedforward con
troller design for a feed composition disturbance on a process schematic, and
design the controller based on the data in Figures J.4 and J.5.

J.15. Ratio Control
A colleague suggests that the reflux flow and reboiler heating medium flow should
be adjusted so that they are ratios of the feed flow rate, e.g., Fr/F = constant.
Discuss the advantages and disadvantages of this design and how distillate com
position iXo) analyzer feedback could be included in the design. Decide whether
you would agree to implement the design.

J.16. Operating Conditions
The distillate and product light key composition set points are changed from their
values in Figure J.l to Xd = 0.995 and Xb = 0.005. Does anything in the control
implementation have to be changed in response?

J.l 7. Inferential Control
You have learned that an analyzer to measure XB is very expensive. Discuss alter
native control designs and how you would evaluate their likely performance.

J.l 8. Level Control
Which PID controller modes would you recommend for the accumulator level
controllers? Should the levels be tuned for tight or averaging control?

J.l 9. Internal Model Control

Design and tune each single-loop IMC composition controller, XD and Xb, using
the data in Figure J.4. Estimate the longest digital controller execution periods that
would not degrade control performance for each controller.

PART V: MULTIVARIABLE CONTROL
The dynamic behavior of several single-loop controllers applied to a process differs
from the individual loop behavior because of interaction. Interaction affects the
controllability, operating window, stability and tuning, and dynamic behavior of
the controlled and manipulated variables. The exercises in this part provide the op
portunity to consider the effects of interaction on the control of a distillation tower.

J.20. Possible Designs
The control of pressure, two levels, and two compositions with five possible valves
provides many opportunities.
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J.21. Operating Window
For the distillation tower in Figure J.l, determine the operating window with the
composition (Xd and Xb) set points on the coordinates. For this exercise, the reflux
ratio and reboiled vapor are limited by the following values: 5.5 < Fr < 10.1
and 15 < Fy < 140 kmole/min. (You will need a steady-state simulator for this
exercise.)

J.22. Relative Gain

Using the results from the process reaction curve in Figure J.4, calculate the relative
gain array. Then, calculate the steady-state gains between the inputs (F/? and Fv)
and outputs iXo and XB) with sufficient accuracy to reliably evaluate the relative
gain array. (You will need a steady-state simulator for this exercise.)

J.23. Controller Tuning
Assume that the multiloop pressure and level control pairings are as shown in
Figure J.3. Using the process reaction curves in Figure J.4, calculate the tuning for
the two analyzer feedback controllers when implemented simultaneously.

J.24. Decoupling
For the tower in Figure J.3, answer the following questions:

1. Discuss when decoupling might be advantageous.
2. Design decouplers for two-way decoupling using the data in Figure J.4.
3. Discuss the likely errors in the decouplers and the effect of these errors on

dynamic performance of PI controllers with decoupling.

J.25. Variable Structure
Discuss why minimum and maximum bounds would exist on allowable reflux
flow rates. Design a control system that normally controls Xd to its set point but
maintains the reflux flow rate between its minimum and maximum bounds at all
times.

PART VI: PROCESS CONTROL DESIGN

Design enables the engineer to "bring it all together." In the design process, the
engineer applies analysis methods and guidelines to prepare a complete specifi
cation of the control structure, calculations, and equipment. The exercises in this
part provide the opportunity to complete the control design for a distillation tower.
Since design depends on the context, you will have to make various assumptions
when completing the exercises. In contrast the practicing engineer would have
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to determine these factors from market analysis, quality control specifications,
ancillary plant equipment layout, and so forth.

J.26. Control Design Form

Prepare a control design form (CDF) for the distillation tower described in Figure
J.l. You might prepare a preliminary version, and complete the CDF after preparing
answers for the following exercises in this part.

J.27. Sensors

Specify the sensors required for each control objective for the distillation tower.
For each sensor, define the physical principle, range, accuracy, and reproducibility,
and indicate the location of each sensor on a process schematic. For analyzers,
discuss the sample system needed and determine the locations for the "fast loop"
withdrawal and return.

J.28. Valves

Specify valves (final control elements) that are needed to control the distillation
tower. For each valve, define the capacity (maximum flow), body type, failure
position, and the need for block and bypass "hand valves" that can be opened and
closed by a plant operator, but not remotely.

J.29. Control Design

Design a closed-loop control system that will achieve the control objectives you
specified in Exercise J.26.

J.30. Control for Safety
Perform a safety review of the process with your control design and add control
and equipment to ensure safe operation. Your answer should include automated
control and provision for operator monitoring of safety-related issues.

J.31. Optimization
Discuss opportunities for optimizing a distillation tower. Define factors that would
appear in a calculation of profit for a distillation tower and how these would be
measured. Identify variables that can be changed during normal operation that
influence profit and what tradeoffs exist that would lead to an optimum, i.e., a
maximum when profit is plotted against the variable. Finally, describe a method
for optimizing a distillation tower in real time.

J.32. Monitoring

Identify process equipment and operations factors that should be monitored by
plant personnel to ensure proper plant operation. For each factor, define the sen
sors or laboratory data required, the analysis performed by the personnel, the



decision and threshold value that would indicate a change is required, and the time
frame for this monitoring, i.e., every half hour, once a month, etc. Discuss the use
of statistical monitoring methods in the plant monitoring.

Congratulations! You have now completed an analysis and control design for
one distillation tower. Hopefully, these exercises have reinforced the importance of
learning the material in the book and improved your ability to apply the principles
to realistic challenges. You should not interpret the large number of exercises
as an indication of the documentation typically developed in designing controls
for a single distillation tower. Here, many exercises have been provided to help
you learn. After gaining experience through university education and industrial
practice, you will be performing this analysis rapidly, although perhaps on different
unit operations.

The exercises in this appendix follow the organization in the book, which
introduces topics gradually. Now that you have learned the material, you can apply
process control principles and guidelines more directly.
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when you apply control engineering to real industrial challenges.
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Process Control
Case Study:

Fired Heater
Short examples of many process control designs are presented in the solved ex
amples in the book. In this appendix, the control of a fired heater is considered
in detail. A fired heater is chosen because it is one of the most important unit
operations in the chemical industry. Also, fired heaters provide excellent learning
experiences for nonlinear, multivariable processes with significant interactions.
The exercises in this appendix can be completed without the aid of a simula
tor. However, complementary simulation exercises will substantially enhance the
learning experience.'

This appendix enables readers to apply their process and control skills to the
control of a fired heater by performing a series of exercises of increasing complex
ity. Many of the exercises involve open-ended questions to give you experience in
defining and solving realistic problems. Since successful process control relies on
knowledge from process technology and instrumentation, readers are encouraged
to utilize their library, Internet, and self-study skills to investigate issues raised
in these exercises. The references at the end of this appendix provide good initial
sources of information and an introduction to the literature on fired heaters and
their control.

The exercises in this appendix cover the topics in the same order as in the body
of the book. To assist the readers, the exercises are organized according to the six

*A menu-driven, fired heater simulation is available in the Software Laboratory, Version 3.0 (Marlin,
1999), which runs within the MATLAB™ language (Mathworks, 1998). In addition, commercial
flowsheeting programs have the capability to simulate process dynamics using standard models and
rigorous physical properties; examples are Aspen Dynamics™ (Aspen, 1999) and HYSIS (Hyprotech,
1998).
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major parts of the book. The best manner for using this appendix is as "capstone"
exercises at the completion of each part of the book. The student should have the
opportunity to review solutions to each part before proceeding to the next, so that
prior learning provides a solid foundation for future challenges.

PART I: INTRODUCTION
In Part I of the book, control terminology, concepts, and objectives are introduced.
The exercises in this section of the appendix enable you to apply these topics to
prepare for the study of fired heater control. The example fired heater used in this
appendix is shown in Figure K.l with base-case data.

K.1. Fired Heater Process Principles
Before beginning control design and implementation, we should always be sure to
understand the process technology. The questions in Table K.l provide this check
for the fired heater.

K.2. Objectives
Present typical process control objectives grouped into the seven objective cat
egories presented in Chapter 2. You should be as specific as possible, not just
saying that "The process should remain safe" or "Profit should be maximized."
Remember, these objectives must be clear enough to direct the control design and
implementation.

K.3. Potential Benefits from Control
Answer the following questions for a simple fired heater like the one shown in
Figure K.l.

flue gas

t
/

feed
oil

\

/ \

f f
^

air
FIGURE K.1

fuel gas

Base-Case Data

Feed flow rate 0.121 m3/s
Feed temperature
Fuel flow rate

214° C
0.51 Sm3/s

Fuel composition
Air flow rate

100% methane
4.72 Sm3/s

Oil outlet temperature
Box pressure
Flue gas oxygen
Flue gas temperature

285° C
-177 Pa, gauge
2.00 mole%
460° C

Fired heater with base-case data. Note that the exit oil remains 100% liquid.



TABLE K.1

Questions on fired heater process principles

1. Describe two applications for a fired heater.
2. Why/when is a fired heater used rather than a steam heat exchanger?
3. Why does the pipe (coil) enter the heater above the radiant section?
4. Define energy efficiency and describe how it is calculated using

process measurements.
5. The pressure inside the firebox is lower than outside; why does flue gas exit

without compression?
6. How is the best value of the air flow rate determined?
7. Describe potential unsafe operating situations and how they are avoided.
8. A fired heater may have more than one burner. Discuss why.
9. A coil in a fired heater may be split into several pipes that pass through the

heater and are combined at the exit of the heater. Discuss why this design
might be used. Do you expect challenges with this design?

10. Flue gas exits to the environment via the stack at a high temperature. How
might more energy be recovered from the flue gas by heat transfer, with the
effect of reducing fuel consumption?

11. Discuss factors that determine the minimum allowable temperature of the
flue gas as it leaves the fired heater convection section.

963

Part I: Introduction

Summary of Historical Data
Fraction of Oxygen

Time mole %
0.10 1.0
0.12 2.0
0.23 3.0
0.20 4.0
0.27 5.0
0.08 6.0

2 3 4 5
Flue gas oxygen (mole %)

FIGURE K.2

Operating data for the fired heater with a feed flow rate of 0.121 m3/s.

1. Explain input variables and equipment performance factors that are likely to
affect the profit of an operating fired heater; do not include design decisions
like the heat transfer area in the radiant section that cannot be changed during
normal operation.

2. What information is required to determine the costs for the energy used as fuel?
3. Some data is provided for the fired heater in Figure K.2. From this data, ia)

estimate the average energy consumption per m3 of feed and ib) the absolute
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minimum energy consumption per m3 of feed. Recall that the fuel is pure
methane. For this question, you can use the value of 2200 J/(kg K) for the heat
capacity of the oil.

PART II: PROCESS DYNAMICS
Process control requires an excellent understanding of the dynamic behavior of
the plant. This knowledge is used to

1. Build plants that are easy to control
2. Design control systems
3. Determine the effects of operations changes (production rate, product quality,

etc.) on control performance to decide, for example, when adjustments in the
computer control calculations are required

Here, questions are presented to help the reader understand the dynamics of a fired
heater. Some further material on fired heater modelling and numerical simulation
is available in Roffel and Rijnsdorp (1974).

K.4. Process Reaction Curves
The fired heater in Figure K.l is considered here. Process reaction curves are
presented in Figure K.3.

1. What can you conclude about the linearity of the process?
2. Based on your understanding of the fired heater, confirm the directions of the

changes in the plotted dependent variables for the specified input changes.
3. Discuss the causal relationships between inputs (air and fuel flow) and out

puts (all plotted variables). Looking ahead, what important features in these
responses would make feedback control potentially easy or difficult?

K.5. Open-Loop Feedback Dynamics
The following questions provide thought exercises on the effects of equipment and
operating parameters on fired heater dynamics.

1. How would the approximate steady-state gain, time constant(s), and dead time
depend on the oil feed flow rate for the response between the input fuel valve
change and the output oil exit temperature?

2. The dynamic response of the oil outlet temperature for a change in fuel takes
many minutes to reach steady state in spite of the very short residence time
of oil in the pipe. Why?

K.6. Disturbance Responses
The fired heater in Figure K.l is considered here. Disturbance responses are pre
sented in Figure K.4.
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(a) Dynamic response for a step from 46.95 to 49% opening of air valve. All plotted
variables are dependent variables, ib) Dynamic response for a step from 20.95 to 23%

opening of fuel valve. All plotted variables are dependent variables.
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FIGURE K.4

Dynamic response for a step change in fuel composition from 100% methane to 90%
methane and 10% ethane at time = 50 minutes.

1. The experimental data in Figures K.3 and K.4 both present input-output re
sults. What is the major difference between the input variables in these two
figures?

2. Based on your understanding of the fired heater, confirm the directions of the
changes in the plotted dependent variables for various input changes.

3. Discuss the causal relationships between disturbance input and process out
puts. Looking ahead, what important features in these responses would make
feedback control potentially easy or difficult?

PART III: FEEDBACK CONTROL
The process dynamics and disturbance characteristics determine the best possible
control performance, but the actual performance is strongly influenced by the con
trol design and implementation. A good design often results in safe and profitable
operation providing consistently high product quality. The exercises in this part
provide the opportunity to combine the process understanding acquired in Part II
with control technology to provide good single-loop feedback control.

K.7. Sensor Selection
Review and enhance the control objectives for the fired heater that you developed
in Exercise K.2. For each objective identify one or more sensors required to achieve
the objective. Indicate the location of the sensor on a process schematic and indicate



the variable range and physical principle. For analyzers, discuss the sample system 967
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Part IV:
K . 8 . C o n t r o l V a l v e s c l E n h a n c e ™ e n t f * °

Single-Loop Control
Process control requires manipulated variables, which are most often valves that
affect flow rates. Locate all automated control valves on a process schematic.
Determine the maximum flow rating, failure position, and body type. Feedback
control tends to transfer variation from the controlled to the manipulated variables;
explain briefly why the variation is less costly in the flows affected by these valves
than in the controlled variables identified in Exercise K.7.

K.9. Control Performance

Suggest quantitative control performance measures that could be calculated from
plant data on the controlled and manipulated variables identified in Exercises K.7
and K.8.

K.10. Single-Loop Design
For each of the controlled variables identified in Exercise K.7, select a manipulated
variable to adjust from the valves identified in Exercise K.8. Select modes for each
controller.

K.11. Controller Tuning
Tune each single-loop PID controller you designed in Exercise K. 10 using models
based on the data in Figure K.3. Estimate the longest digital controller execution
periods that would not degrade control performance for each controller.

K.12. Display
Sketch a real-time screen to be displayed by a digital control system to be used
by a plant operator to monitor and intervene in the operation of the fired heater.
Indicate what data should be displayed and how (numbers, bar charts, trend plots,
etc.) and what parameters could be changed by the plant personnel.

PART IV: ENHANCEMENTS TO SINGLE-LOOP CONTROL
The performance of feedback is limited by the process dynamics in the feedback
and disturbance paths. Substantial improvements to control performance are pos
sible through single-loop enhancements that utilize additional sensors and models.
The exercises in this part of the appendix enable the reader to apply these enhance
ments to a fired heater.

K.13. Cascade Control
List disturbances that will affect the fired heater. For each, determine whether
cascade control would improve the performance of the control design you devel
oped in Exercise K.10. Sketch the cascade controls you recommend on a process
schematic.
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K.l 4. Feedforward Control
Consider the control of the outlet temperature of the oil in the pipe. List distur
bances that affect this temperature, and for each, determine whether feedforward
control would improve the performance provided by the feedback controller of
the temperature. Sketch one of the feedback-feedforward controller designs on a
process schematic. Design the feedforward controller using the data in Figures K.3
and K.4.

K.l 5. Ratio Control
A colleague suggests that the fuel flow should be adjusted so that it is a constant
ratio of the feed flow rate, e.g., fuel/feed = constant. Discuss the advantages and
disadvantages of this design and how oil outlet temperature feedback could be
included in the design. Decide whether you would agree to implement the design.

K.l 6. Operating Conditions
The set point of the temperature of the oil leaving the fired heater is increased by 10
K. Does anything in the control implementation have to be changed in response?

K.17. Inferential Control
You would like to maintain the efficiency of the fired heater as high as possi
ble; however, all measurements to calculate efficiency are not available. Discuss
alternative control designs to maintain high efficiency.

K.18. Performance Monitoring
What affects the long-term heat transfer coefficients of the convective heat transfer
in the convection section of the heater? What can be done to recover a high heat
transfer coefficient?

K.19. Internal Model Control

Replace one or more of the single-loop controllers in Exercise K.ll with IMC or
Smith predictor controllers, and calculate the tuning. Estimate the longest digital
controller execution periods that would not degrade control performance for each
controller.

PART V. MULTIVARIABLE CONTROL
The dynamic behavior of several single-loop controllers applied to a process differs
from the individual loop behavior because of interaction. Interaction affects the
controllability, operating window, stability and tuning, and dynamic behavior of
the controlled and manipulated variables. The exercises in this part provide the
opportunity to consider the effects of interaction on the control of a fired heater.
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Consider the following controlled variables: ia) coil outlet temperature, ib) fire
box pressure, (c) feed flow rate, and id) combustion excess oxygen. First, provide
four control valves for this process.

1. Determine the maximum number of possible loop pairings for this situation.
2. Determine some of these pairings which can be quickly eliminated from con

sideration and explain why.

K.21. Operating Window
For the fired heater in Figure K.l, determine the operating window with set points
of the feed flow and the oil outlet temperature on the coordinates. For this exercise,
the air flow and fuel flow are limited by the following values: 2.0 < Fajr < 6.3
Sm3/s and 0.30 < Ffuei < 0.60 Sm3/s. (You will need a steady-state simulator for
this exercise.)

K.22. Relative Gain
Calculate the steady-state gains between the inputs (valves affecting the air flow,
fuel flow, feed flow, and flue gas flow) and outputs with sufficient accuracy to
reliably evaluate the relative gain array. (You will need a steady-state simulator for
this exercise.)

K.23. Controller Tuning
Based on quantitative and qualitative information, select the control loop pairings
for the fired heater. Using the process reaction curves in Figure K.3, calculate the
tuning for all feedback controllers.

K.24. Decoupling
For the fired heater in Figure K.l, answer the following questions.

1. Discuss when decoupling might be advantageous.
2. Design explicit decouplers for two-way decoupling using the data in Figure

K.3.
3. Discuss the likely errors in the decouplers and the effect of these errors on

dynamic performance of PI controllers with decoupling.

K.25. Variable Structure

1. Discuss why minimum and maximum bounds exist on the fuel flow rate.
Design a control system that normally controls the oil outlet temperature to
its set point but maintains the fuel flow within bounds, even if the temperature
decreases below its set point.

Part V: Multivariable
Control
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2. Discuss why minimum and maximum bounds would exist on the air flow rate.
Design a control system that normally controls the oil outlet temperature to
its set point but maintains the air flow within bounds, even if the temperature
decreases below its set point.

PART VI. PROCESS CONTROL DESIGN

Design enables the engineer to "bring it all together." In the design process, the
engineer applies analysis methods and guidelines to prepare a complete specifi
cation of the control structure, calculations, and equipment. The exercises in this
part provide the opportunity to complete the control design for a fired heater. Since
design depends on the context, you will have to make various assumptions when
completing the exercises. In contrast, the practicing engineer would have to deter
mine these factors from market analysis, quality control specifications, ancillary
plant equipment layout, and so forth.

K.26. Control Design Form

Prepare a control design form (CDF) for the fired heater described in Figure K.1.
You might prepare a preliminary version, and complete the CDF after preparing
answers for the following exercises in this part.

K.27. Sensors

Specify the sensors required for safety, control, optimization, and monitoring of
the fired heater. For each sensor, define the physical principle, range, accuracy and
reproducibility, and indicate the location of each sensor on a process schematic.
For analyzers, discuss whether a sample system is needed.

K.28. Valves

Specify all valves (final control elements) that are needed to control the fired heater.
For each valve, define the capacity (maximum flow), failure position, and the need
for block and bypass "hand valves" that can be opened and closed by a plant
operator, but not remotely.

K.29. Control Design

Design a closed-loop control system that will achieve the control objectives you
specified in Exercise K.26.

K.30. Control for Safety
Perform a safety review of the process with your control design and add control
and equipment to ensure safe operation. Your answer should include automated
control and provision for operator monitoring of safety-related issues.



K.31. Optimization
Discuss opportunities for optimizing a fired heater. Define factors that would appear
in a calculation of profit and how these would be measured. Identify variables that
can be changed during normal operation that influence profit and what tradeoffs
exist that would lead to an optimum, i.e., a maximum when profit is plotted against
the variable. Finally, describe a method for optimizing a fired heater in real time.
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K.32. Monitoring

Identify process equipment and operations factors that should be monitored by
plant personnel to ensure proper plant operation. For each factor, define the sen
sors or laboratory data required, the analysis performed by the personnel, the
decision and threshold value that would indicate a change is required, and the time
frame for this monitoring, i.e., every half hour, once a month, etc. Discuss the use
of statistical monitoring methods in the plant monitoring.

Congratulations! You have now completed an analysis and control design
for one fired heater. Hopefully, these exercises have reinforced the importance of
learning the material in the book and improved your ability to apply the principles
to realistic challenges. You should not interpret the large number of exercises as
an indication of the documentation typically developed in designing controls for a
single fired heater. Here, many exercises have been provided to help you learn. After
gaining experience through university education and industrial practice, you will
be performing this analysis rapidly, although perhaps on different unit operations.

The exercises in this appendix follow the organization in the book, which
introduces topics gradually. Now that you have learned the material, you can apply
process control principles and guidelines more directly.

Therefore, the control design approaches in Chapters 24 and 25 are recommended
when you apply control engineering to real industrial challenges.
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Analysis
of Digital

Control Systems
L.1 n INTRODUCTION
Most feedback control in the chemical process industries is currently implemented
using digital computers. While most key features of control engineering are the
same for continuous and digital control, some unique features of digital control
should be considered. Therefore, the basic concepts of digital control were intro
duced in Chapter 11, and digital forms of common control algorithms are provided
in Chapters 11 (PID), 12 (filtering and windup), 15 (feedforward), 21 (decoupling),
and 23 (DMC). The reader is encouraged to review this material, especially the
introductory material in Chapter 11, before proceeding to study this appendix.

In this appendix, we present rigorous methods, based on the z-transform,
for analyzing a digital control system. As shown in Figure L.l, the z-transform
enables the engineer to combine a continuous process and digital controller into
one transfer function model. As with continuous systems, we can use the transfer
function model to determine important properties of the system, such as its stability,
final value, and frequency response. This appendix begins with an introduction
to z-transforms for digital systems, which are analogous to Laplace transforms
for continuous systems. Then, the application of z-transforms for control system
analysis is presented. Finally, these analysis methods are applied to determine key
results for PID and IMC closed-loop systems.

L.2 Q THE Z-TRANSFORM
The digital controller has no information on the continuous controlled variable;
it has only sampled values of the controlled variable. Therefore, our analysis
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FIGURE L.1

Schematic of how z-transforms are used to combine sampled
values from a continuous process and digital calculations.

approach should represent this situation. The z-transform is defined for a series of
values as follows:

z-transform: Z(F0. Yx, Y2,...) = J^YnZ-n (L.1)
n=0

The capital "Z" denotes the z-transform, and Y„ indicates the values of the sampled
variable "Y". When we consider the z-transform of a continuous variable (such as
flow or temperature), we will mean the z-transform of the sampled values of the
variable.

Important properties and conventions for the z-transform are summarized in
the following.

1. The sampled values for a variable are assumed zero for n < 0.
2. The "z" variable can take complex values.
3. In this presentation, the z-transform of the sampled variable Yn is designated

by its argument, as in F(z).
4. The z-transform is a linear operator, because it satisfies the additivity and

proportionality criteria
Z{aYx+bY2) = aZ{Yx} + bZ{Y2)

5. A table of z-transforms and their inverses is provided in Table L. 1. These pairs
are unique.



6. The z-transform carries no explicit information about its sample period, al
though the period is known from the data collection procedure.

We assume that the sample period (Af) is constant for a set of sampled variables.

This assumption is valid for the vast majority of process control systems. To
achieve a constant execution period, the control computer must have excess
computing capacity. One method for ensuring excess capacity is to limit the
number of algorithms executed per second by one processor. Also, the soft
ware must ensure that a user-written program does not exceed a maximum

TABLE L.1

Table of z-transform pairs.

No. Gis) Giz)
1 1 (impulse)

2 - (step or constant)
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- « ( A / ) - - l

(1 - e-a(At)z-\)2

1
b - a
1

(«o - a) ia0 - b)
1 _ e-a(6.t)z-\ \ _ e-b(bt)z-\

z~] sin(aAr)
a 11 - 2z"' sin (a At) + z~2 _

1 1+ + 1
abi\-z~x) aia - b)i\ - e-a^'h~l) bib - a)(l - *-*<*'>z~l)

a Q , ( a 0 - a ) , ( a 0 - b )+ +
abi\-z~[) aia - b)i\ - e-«A'h-]) bib - a)i\ - e-h^z~l)

1 1 i a / a 0 ) i a 0 - a ) i A t ) e - a ( A , ) z - 1 1fo r i
fl 2 L i - z - \ ( j _ e - a ( A , ) z - l ) ( 1 _ 0 - « ( A f ) z - 1 ) 2

G(z)z~' where / = 0/Af = integer

Notes: Constants a, b, and «o are real and distinct.
Ar is the sample period.
s is the Laplace variable.
The z-transform does not include a zero-order hold.
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allowable computing time; limited computing times are enforced by a moni
toring program that interrupts a program exceeding the maximum time.

With a constant sample period, the sampled data can be represented as

Yn = Yin At)
where n is the sample number and At is the sample period.

7. To reiterate, no information on intersample values is available from the
z-transform.

EXAMPLE L.1.
Sampled values of a temperature are provided. Determine the first few terms in
the z-transform of this sampled variable. The sample period, At = 10 seconds.

TiO) = 310

TiAt) = 312

T(2At) = 315

Ti3At) = 318

The sampled values can be substituted directly into equation (L.1) to give the
following:

. - 2ZiTinAt)) = 310 + 312z_1 + 315z~z + 318z~J +
m

EXAMPLE L.2.
Use the data given in Example L.1 to develop the z-transform of the temperature
with a sample period of 5 seconds.

The data has no information about intersample behavior. Therefore, we cannot
determine the sampled values at 5, 15 seconds. We cannot determine the
z-transform for 5-second samples from the data provided.

Next, we will evaluate the z-transforms for the sampled values of several
common variables.

UNIT STEP INPUT. U in At) = 1 for all n > 0

ZiUinAt)) = Z(l, 1,1,1,...) = J^iDz-" = XV"
M=0 «=o

(L.2)

Using the relationship that YlT=oz~" = 1/(1 - z"1) for |z| > 1, we obtain for
following result:

ZiUinAt)) =
1

1-z-1 (L.3)

UNIT IMPULSE, y (0) = 1 and Y in At) = 0 for n > 0

Z(l, 0,0,0,...) = (l)z-° -I- Oz"1 + Oz"2 • • • + = 1 (L.4)



RAMP. Yit) = at so that Yin At) = an At
0 0

Z(0, a At, 2a At, ...) = ^ianAt)z~"
/1=0

= 0 + ia At)z~{ + i2aAt)z~2 + i3aAt)z~3 +

= iaAt)z-li\+2Z-l+3Z-l + '--)

iaAt)z~lZ iO,aAt ,2aAt , . .<) = ± ^(1 -z-1)2
The last step relied on the following relationship:

1

(L.5)

1-T-2Z-1+3z_2+4z-3 + ---+ =
(1-z-1)2

for \z\ > 1

TRANSLATION (DEAD TIME). yinAt-iAt) where/ = integer number
of samples in the dead time

oo

ZiYinAt - iAt) = J^ Yin At - iAt)z~" substituting k = n-i
00

= ]T y(*A/)z"(*+/) with YikAt) = 0 for k > 0

oo

= Y,YikAt)z-'z

oo

= z"' D YikAt)z

.-/ ~-k

, -k

)t=0

ZiyinAt-iAt) = z~'Yiz) (L.6)

Therefore, the z-transform of a variable with dead time is the product of z to
the power of —/, (where / is the number of samples in the dead time) and the
z-transform of the function without dead time. Note that this development relied
on the dead time being an integer value.

In this appendix, we will assume that the dead time is an integer multiple of the
sample time, i.e., i = 0/At — integer.

For extensions when the dead time is not an integer, see material on modified
z-transforms in Smith (1972).

DIFFERENCE EQUATIONS. Calculations performed for control (including
controller, filter, and models) take the form of difference equations in digital com
puters; therefore, we need to take the z-transform of such equations. The control
equation uses current and past sampled values of variables; naturally, future values

977

The z-transform



978

APPENDIX L
Analysis of Digital
Control Systems

are not available. The following expressions give the z-transform for current Yin)
and past (!«_/) values of a sampled variable:

ZiYn) = ZiYinAt), YUn - \)At), Y«n - 2)At),...) = Yiz) ih.la)

ZiYn-i) = ZiYHn-i)At), YUn-i - \)At), YUn-i-2)At),...) = z~lYiz)
iL.lb)

We will be deriving controller calculations in the form of z-transforms and would
like to implement these controllers in a digital computer as difference equations.
Therefore, we will be applying the inverse of equations (L.la) and (L.lb), for
example,

Z",(7(z)) = Yn Z-\z-lYiz)) = Yn.t
From the above expressions we see why z"1 is similar to the backward shift oper
ator, because z~' indicates that the variable in a difference equation is i samples
"back" from the current variable.

INTEGRAL. The integral mode in the PID controller is calculated in the digital
computer using a numerical approximation based on sampled values. As described
in Chapter 11, the discrete form of the integral mode using rectangular integration
is given by the following expression, with E representing the error between the
set point and measured controlled variable,

f Eit)dt*y\iAt)E
J q / = o

We can take the z-transform of the expression, applying the expressions for the
difference equations to give

Z (^0£; ) = (AO£(z) |>-''
k/=o /=o

For large values of n, X^"=0z ' % 1/(1 — z l) giving the expression for the z-
transform of rectangular integration.

i * ™ - ^i&t)Eiz2
i (L.8)

DERIVATIVE. The derivative mode in the PID controller is calculated in the
digital computer using a numerical approximation based on sampled values. As
described in Chapter 11, a common discrete approximation of the derivative mode
is given by the backward difference, with CV representing the measured controlled
variable

cv„-cv„_,(dCV\
\ dt A=«Ar At

The z-transform can be evaluated to yield the z-transform of the derivative.

z(ĉ -cv̂ __i.(Cva)_z.,CVW) = ,1-gjCV(j) (L9)



FIRST-ORDER DIGITAL FILTER. A first-order filter can be used to reduce
noise in a measurement prior to the control calculation. The digital filter discussed
in Chapter 12 is a discrete form of the continuous filter and is repeated below for
X as the input and Y as the output, with the filter time constant, xp.

Yn = aYn-x + (1 - a)Xn with a = e~At/T
The z-transform of this difference equation gives

Yiz)=aZ-lYiz) + i\-a)Xiz)
d - « )

( 1 - Q f z - ' )
Xiz)

(L.10)
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FINAL VALUE THEOREM. The final value of the error is important, because
if it is zero, the control system returns the controlled variable to its set point after
a disturbance or set point change. Thus, we introduce the final value theorem
that provides a direct manner for evaluating the final value of a sampled variable
from its z-transform. We begin by stating the theorem and proceed to prove the
expression.

lim YinAt) = lim (1 - z_1)r*(z) (L.11)

= lim(l -z~l)Y^YinAt)z~n
z ~ * « = o

oo

= lim J^iYinAt) - z~]YinAt))z~"
«=o

00

= lim T Y<(0) + iYX'At) - Y(6))z~l + iYi2At) - Y^kt))z~2 +7 — * I ■ * . .z->\ n=6
= lim YinAt)

n-rOQ

The last step results from the cancellation of all but the last term in the series.
Note that this expression is valid only when the system in stable, so that the terms
Yin At) approach the same value as the sample number n becomes large.

INVERSE z-TRANSFORM. We would like to evaluate the inverse of the z-
transform to determine the sampled, time-domain values of the variable. We will
present two methods in this appendix: (1) long division to reinforce the principles
and (2) partial fractions to provide the basis for important generalizations.

Before covering these methods, we note the following important feature of
z-transforms:

The z-transform is always a ratio of two polynomials in z.



980

APPENDIX L
Analysis of Digital
Control Systems

The structure of the Laplace transform was more complex because of the dead
time ie~9s)', however, the dead time in digital systems (z-/) simply increases the
order of polynomials. Also, because real processes involve differential equations,
the order of the denominator is greater than that of the numerator (after the dead
time is factored out). The methods of inversion take advantage of the polynomial
structure of the z-transforms.

One method of inverting a z-transform is long division, which provides a series
expression in powers of z-1. The sampled values can be evaluated by comparing
the terms in the series with the definition of the z-transform.

EXAMPLE L.3.
Evaluate the inverse z-transform for the following expression, and evaluate the
final value.

y W = ^w l - 1 .8z - ' +0 .8z -2

The expression can be expanded by long division to give

0.6Z"1 + 1.08z"2 + 1.46z~3 + 1.77z-4
1 -l.Sz^+O.SOz-2 - i0.6z

The first few sampled values can be determined by comparing this result with the
definition of the z-transform as shown in the following:

00

Yiz) = ]T YinAt)z~n = Oz"0 + 0.6z"' + 1.08z"2 + 1.46z"3 + 1.77z-4 + • • •

Therefore, F(0) = 0, YiAt) = 0.60, Yi2At) = 1.08, Yi3At) = 1.46, and Yi4At) =
1.77. The final value can be determined by applying the final value theorem.

lim(l-z_1)z-*\ ( -
0.60z- l

l.Sz-'+O.SOz- 2 ) = i ™ ( i - , r ' ) (
0.60z- l

(1-r *-•)(!-0.8znj) = 3.o

The second method for inverting z-transforms uses partial fractions to rep
resent a complex expression by the sum of several simpler expressions. Each of
the simpler expressions can be inverted using Table L.1 or by long division. Thus,
we can invert essentially any z-transform of a realistic process variable using this
approach. In addition, we can easily determine the stability of a variable.

The partial fraction method is summarized in the following:

Yiz) =
Niz) + C2
D i z ) 0 - p x z - 1 ) i \ - p 2 z ~ x )

+ (L.12)

where Y{z) = z-transform of the output variable
Niz) = numerator polynomial in z of order m
Diz) = denominator polynomial in z or order n

Pi = roots of the equation Diz) = 0, also called the poles
(distinct roots assumed here)



The partial fractions method requires that the order of the denominator be
greater than the order of the numerator, i.e., n > m, after the dead time is factored
out. This requirement will be satisfied by models encountered in process control,
after the dead time is temporarily removed. Initially, the C/'s are unknowns in
equation (L.11) and must be determined so that the equation is satisfied. The partial
fraction expansions and the resulting Heaviside expansion formula are presented
in Appendix H for evaluating the constants, so the details are not repeated here.
Suffice to say that the same procedures can be applied to evaluate the constants C,
here as well.

One important stability result can now be presented, because equation (L.12)
shows that all z-transforms can be represented as a sum of simpler expressions.
Let us expand one of the terms in Equation (L.12) by long division.

YinAt) = C{Z' U-P/r-7 C/Z-'O +ptz~l +p;2z-*+p;\-x + •)
(L.13)

By comparing the equation above with the definition of the z-transform, the sam
pled valued can be determined to be

7(0) = Ch YiAt) = CiPi, Yi2At) = CiPl Yi3At) = dp],...
Clearly, the sampled variables will be stable if p-t < 1.0 and will be unstable
(increase toward ±oo) if p, > 1.0. We generalize this result to a test for stability
of a sampled data variable in the following:
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• Determining the stability for a z-transform with distinct roots

Stable \pi\ < 1.0.
Unstable |p,| > 1.0

• For repeated and complex roots, the result is similar:

Stable |/7/| < 1.0
Unstable \p{\ > 1.0

The roots of higher-order polynomials are difficult to evaluate by hand calcu
lation, but numerical methods are available and standard algorithms can be used
in software such as MATLAB™.
EXAMPLE L.4.
Determine whether the following variable is stable:

0.6z"'
T(z) =

0.6z"
1 - 1.8z"' +0.8z"2 (1 -z",)(l -0.8z-')

The roots of the denominator are 1.0 and 0.80. Since they are distinct and less
than or equal to 1.0, the variable is stable. Note that this is the variable considered
in Example L.3, where the final value was determined. The application of the final
value theorem is valid only for stable variables.
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In continuous systems, the roots of the polynomial in the denominator of the
Laplace transform provided information about the damping of the variable in the
time domain. This is true for the roots of the denominator of the z-transform as
well. Let us evaluate the first few sampled values for some example z-transforms,
and then we will generalize the results.

Root

First six sampled \ral l ies

z- t ransform O 1 2 3 4 5 C o m m e n t s

1 / ( 1 - l . l z - ' ) 1.1 1.0 1.1 1.21 1.33 1.46 1.61 Overdamped,
unstable!

1/(1 -0.9z"') 0.90 1.0 0.90 0.82 0.73 0.66 0.59 Overdamped, slow
response

1/(1-O.Sz"1) 0.50 1.0 0.50 0.25 0.125 0.063 0.032 Overdamped, faster
response

1/(1+ 0.9Z"1) -0.90 1.0 -0.90 0.81 -0.73 0.66 -0.59 Highly oscillatory,
ringing

1/(1 +l.lz-1) -1.1 1.0 -1.1 1.21 -1.33 1.46 -1.61 Oscillatory, unstable!

Note that the real pole greater than +1.0 is unstable. Also, the positive real poles
with magnitudes less than 1.0 give stable, overdamped responses. Finally, poles
with real parts near —1.0 result in highly oscillatory responses. If the magnitude
is less than 1.0, the oscillations damp out; this is behavior is termed ringing. If the
magnitude of the pole is greater than 1.0, the response is unstable.

The results on stability and damping are often summarized in graphical dis
plays of the roots of the denominator in which the real and complex parts of the
roots are plotted as shown in Figure L.2. Therefore, the unit circle is plotted for
easy reference, since roots inside the unit circle yield stable performance. The
following guidelines are often used:

• Stable systems have all roots of the denominator (the poles) within the unit
circle. Any root outside of the unit circle results in instability.

• Roots near the origin represent faster dynamics than roots far from the origin,
i.e., near the unit circle.

• Roots with real parts near —1.0 result in highly oscillatory, ringing behavior.

Rules regarding "good" pole locations have been suggested (e.g., Franklin
et al., 1990), but these rules are limited to second-order systems with a constant
numerator term. As we complete the presentation in this appendix, we will see
that realistic systems have terms (powers of z) in the numerator as well as the
denominator, and systems can be of much higher than second-order. Therefore,
analysis of the dynamic behavior of digital control (beyond the general guidelines
above) should be performed using dynamic simulation, which is straightforward
for linear systems.
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Poles with negative
real parts lead to
ringing

Real

Poles with magnitude
greater than 1.0 (outside
the unit circle) lead
to instability

FIGURE L.2

The roots of the z-transform denominator plotted in the complex plane. If all roots
are inside the unit circle, the sampled values are stable.

L.3 m METHODS FOR ANALYZING DIGITAL CONTROL
SYSTEMS
In this section, we introduce methods for analyzing linear, closed-loop digital
control systems. As with continuous systems, the analysis is based on transfer
function models and block diagrams, and the results are the three key features of
a linear system that can be determined without complete solution of the transient
response, stability, final value, and frequency response. We begin by defining the
transfer function for input X and output Y.

Methods for
Analyzing Digital
Control Systems

Transfer function: Giz) = Yjz)
Xiz) (L.14)

The following assumptions are associated with the transfer function:

1. The initial conditions for X and Y are zero. Building models in deviation
variables from an initial steady state easily satisfies this condition.

2. The samples of both variables are at the same period, are synchronized, and
are instantaneous. These assumptions are valid for essentially all chemical
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processes, because electronic analog-digital conversion and signal sampling
devices are very fast in comparison to the dynamics of the process equipment.

Some properties of the transfer function are stated here.
id) The transfer function is a linear operator.
ib) The roots of the denominator are the poles and indicate the stability of the

variable,
(c) The steady-state gain of the transfer function is K = lim Giz), when Giz) is

s t a b l e . z - >
id) Let us set the input variable to a unit impulse. From equation (L.4), X(z) =

1.0, so that Yiz) = Giz) = output response to a unit impulse input. Thus,
the transfer function is equivalent to the z-transform of the sampled output
responding to a unit impulse.
The next example shows how the transfer function for a digital calculation is

found by taking the z-transform of its difference equation.

EXAMPLE L.5.
Determine the transfer function for the digital PID controller. The discrete equation
executed in the digital computer was derived in Chapter 11 and is repeated here.

Note that the equation is in deviation variables. The z-transform of the equation
can be taken using the relationships in equations (L.7) and (L.8).

mv'« = *<(1+£t̂ )£' iz)

This can be rearranged to form the transfer function, with the prime dropped by
convention, because the transfer function is always in terms of deviation variables.

MVfc)PI controller: <»*-!g--(-+h±) (L15)

The transfer functions for the following controllers can be derived by similar de
velopment:

MVfc)
P-only controller: Gcfc) = -^- = Kc

PID controller: Gdz) =

Eiz)

MVfc)
Eiz)

= Kc[l + ^-±- + ^(1
r, l - z -1 a /u

(L16)

-z-1)] (L17)

FIGURE L.3
Dynamic response of a zero-order hold
to an input of magnitude 1.0.

Now we turn to modelling the sampled values from a continuous process.
As explained in Chapter 11, the signal from a digital controller is converted to
a continuous signal in a digital-to-analog (D/A) converter, and the analog signal
is held constant between samples by a zero-order hold. The time behavior of a
zero-order hold is shown in Figure L.3, which shows that the value is unchanged
over the first At after the digital controller has calculated the output value, and
then the zero-order hold decreases to zero for the past controller output. Recall



that the digital controller produces an updated controller output, so that the signal
to the valve changes immediately to the new value of the controller output. The
dynamic behavior of a sampled system is given in Figure L.4 to clearly show the
sampled and continuous variables.

The zero-order hold has the time behavior of a pulse function. The Laplace
transform of a pulse function is derived in equation (4.9) and is repeated in the
following, with C = At so that the integral is 1.0, as shown in Figure L.3.

Zero-order hold: His) =
1 - e-iAt)s
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The symbol His) is used for consistency with other publications.
Next, we proceed to determine the transfer function model of the system

in Figure L.4, which represents the continuous components of a digital control
system, along with the interfacing components (A/D, D/A, and hold). The Laplace
transform of the zero-order hold with a series process is given in the following:

His)Gis) - i^=) Gis) = (1 - e~iAt)s) (m
The term e~iAt)s is the Laplace transform of a dead time of duration At. Thus, the
z-transform of e~{At)s is the unit dead time z_l, that is, Z(e~(A')A) = z"1. Taking
the z-transform of the equation above gives

Thus, the z-transform of the series hold and process can be evaluated and using
equation (L.18). The term ZiGis)/s) can be determined using Table L.1. It is
important to note that in general, HGiz) ^ Hiz)Giz)! Now, let us consider a few
examples.

From
digital sampler
computer

Zero order
hold

Continuous
process

sampler
To
digital
computer

\ His) Gpis)

FH

oooo
0 0 o o

oooo _r o°°ooo

V ^ j . , _
V

Discrete
signals

Continuous signals Discrete
signals

SURE L.4

Schematic of continuous and discrete (digital) signals for digital
control of a continuous process.
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EXAMPLE L.6.
Determine the transfer function for the sampled heat exchanger in Example 3.7
with a sample period of 15 seconds (0.25 minute).

The model for the heat exchanger temperature as a function of the coolant
flow rate is derived in Example 3.7 and repeated here.

™_cw_ -33-9 with time in minutes
F d s ) v " ' \ \ . 9 s + \

The transfer function for the sampled system with zero-hold is given in the following:

The z-transform is evaluated using entry 5 in Table L.1 (with K = 33.9, a = 0, b -
1/t) to give

^ - - i >HGiz) = (1 -'z-l)K?'- (1 - e-L"x)z-1 -0.705z- l

,<'bi\ t'z-')0 -e-"lxz-x) (1 -0.979Z"1) (L.19)

We can determine that the system is stable because the denominator of the transfer
function has a root at 0.979 < 1.0.

^

£ = L

CD ~ ^

FB»FA

EXAMPLE L.7.
Determine the z-transform for the sampled mixing process with dead time in Chap
ter 9 with a sample period of 1 minute. Here, we will consider the process and hold
without control.

The process model is repeated here

A i s ) \ . 0 e ~ 5 *= Gis) = with time in minutes
v i s ) i 5 s + 1 )

The transfer function for the sampled system with zero-order hold is given in the
following:

m = „-,.,; (32) = „-,-,* (J£L). a-.-V.z^)
The dead time is 5 sample periods; i = 9/At = 5/1 =5. The z-transform is
evaluated using entry 5 in Table L.1 (with K - 1, a = 0, and b = 1/t) to give

1 ( 1 _ e - * ' / r ) z - l 0 . 1 8 U " 6
HGiz) = (1 ^'-,)^5(wvl)(1_e_A,/T2_1) - j.o.Slfc-' (L20)

Now that we can determine transfer function models for the digital calculations
and the continuous process with hold, we can combine these transfer functions
to describe the closed-loop behavior. As with continuous systems, we will use
block diagrams to derive the overall model, and we will apply the same rules
and procedures in block diagram manipulation. We consider the block diagram in
Figure L.1, in which the final element and sensor have been combined with the
process in Gpis). The closed-loop transfer function for the system is given in the
following:



CVfc) HGPiz)Gdz)
SPfc) 1 + HGpiz)Gdz) (L.21)

EXAMPLE L.8.
Determine the transfer function for digital PI control of the stirred-tank heat ex
changer in Example L.6 and evaluate key aspects of the performance. (Note that
this is the same closed-loop system considered in Example 8.7 for continuous
control.)

The closed-loop transfer function is determined by substituting for HGpiz)
and Gciz) in equation (L.21). The general forms of the transfer functions are given
in the following:

First-order process
KPi\ -e-A'/r)z-'

»G>«> = "\-e-Wz-'

PI controller

c'w-*<(,+£t^f)
Substituting the individual transfer function models into equation (L.21) gives the
following transfer function, with B = e~*'/T used to simplify the notation:

^ ( l - 5 ) z - ( l + ^ T - l F T )
CVfc)
SPfc)

1 - Bz~l

K p K d X - B f c - i ^ j J - )
1 +

\ - B z - l

The stability of the system can be determined by evaluating the roots of the char
acteristic equation, which can be set equal to zero and rearranged to give the
following:

- i0=1 + (-(1 + B) + KpKci\ - B)i\ + Af/77))z- +[B- KpKc0 - B)]z~*

This equation can be multiplied by z2 to give the following quadratic equation to
be solved for the roots:

0 = z2 + (-(1 + B) + KpKd\ -B)i\+ At/Ti))z + [B- kpKci\ - B)] (L.22)

The parameters for this problem are (with the tuning from Example 8.7)

Kp = -33.9 K/(m3/min) Kc = -0.059 (m3/min)/K
r = 11.9 min T, = 0.95 min At = 0.25 min

For the parameters in this example, the roots of the characteristic equation are
0.98±0.06y, which have a magnitude less than 1.0; therefore, the system is stable.

EXAMPLE L.9.
Evaluate the stability of the digital heat exchanger control system with PI controller
and tuning from Example L.8 with different execution periods.

The stability can be determined by evaluating the roots of the characteristic
equation; all roots within the unit circle, i.e., having magnitudes less then 1.0,
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988 indicate stabi l i ty for step-type inputs. The character ist ic equat ion was determined
^mmm^dmm^^m in Example L .8 and is repeated be low.
APPENDIXL 0 = z2 + ( - ( 1 + B ) + KpKc i \ - B )U + A t /T, ) ) z + [B - KpKcH - B ) ]
Analysis of Digital
Control Systems The parameters At and B — e~A,/T appear in the equation, so that changing the

execution period (AO changes the roots of the equation. Numerical results are
summarized below for the parameters in this example.

Execution period,
At (min)

Roots of the characteristic
equation (min-1)

Maximum magnitude
of root Stability

0.25 0.98 ±0.06./ 0.98 Stable
1.0 0.19 ± 0.36 j 0.87 Stable
2.0 0.44 ±0.587 0.73 Stable
3.0 -0.38 ±0.57./

0.156,-1.009
0.68 Stable

3.925 I 1 . 009 > 1.0 Unstable |

The pole location begins in the stable and well-damped region, and as the
execution period increases (with tuning unchanged), the poles move toward the
ringing region (negative real parts) and ultimately to instability (outside of the unit
circle). This rigorous analysis is consistent with the simulation studies and guide
lines presented in Chapter 11.

Finally, we would like to evaluate the frequency response of a linear, digital
system. Recall that the frequency response is the behavior of the output for a sine
input after sufficient time for initial transients to damp out. For a linear system,
the output behavior will be a sine with the same period as the input. The frequency
response of a digital system can be determined by using the relationship that
both z_l and e~(At)s represent a unit dead time. Therefore, z_1 can be replaced
with e~iAt)s and the Laplace variable is) can be set to jco, with co being the sine
frequency (Franklin et al., 1990). This approach is now applied to a digital system.
EXAMPLE L.10.
Determine the frequency responses for two first-order filters; (a) a continuous and
ib) a digital. For this example, let the filter time constant (t/) be 0.50 second and
the sample period (Ar) be 0.25 second.

The first-order filter is a first-order lag without dead time and with a steady-
state gain of 1.0.
(a) The transfer function for the continuous filter is Gfis) = l/irfs + 1). The

frequency response can be evaluated using methods presented in Chapters
4 and 10.

Cont inuous fi l ter : Gfis) = Gficoj ) = ," + 1 / r + ^ ?
ib) The transfer function for the digital filter is given in equation (L.10), with a =

e-At/xF Tne freqUenCy response can be evaluated by replacing z"1 with e~iAl)(0J
to give the following:

Digital f i l ter: Gfiz) = , 1~" Gfie<"™) = —-—J 1 - a z - 1 ' \ - c t e - u o o j
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FIGURE L.5

Frequency responses for continuous and digital (At = 0.25 second)
first-order filters. The filter time constant is 0.50 second.
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The amplitude ratios, \Y\/\X\, for both filters are plotted in the Bode diagram
in Figure L.5. One important use of the first-order filter is to attenuate higher-
frequency noise from a measurement. Note that the continuous filter is ef
fective at very high frequencies. The digital filter performs similarly to the
continuous filter at low frequencies. At higher frequencies, the digital filter is
not effective. Since many measurement signals contain very high frequency
noise from electrical interference, each measurement signal to digital control
equipment has a continuous (analog) filter with a small time constant before
the measurement is converted to a digital signal.

The frequency beyond which the digital filter deviates from the continu
ous filter can be estimated using Shannon's sampling theorem; "A continuous
function with all frequency components at or below co' can be represented
uniquely by values sampled at a frequency equal to or greater than 2a/." Ap
plying this approach, the highest frequency at which the digital signal closely
estimates the continuous signal is (using a)sampxe = n/At).

(*>' - Sample/2 = n/i2At) = 3.14/2(0.25) = 6.28 radians/second

This frequency is a reasonable estimate of the maximum frequency at which
the digital filter provides a reasonable estimate of the desired continuous
signal.

L.4 m DIGITAL CONTROL PERFORMANCE

The ultimate goal is always good control performance. Digital control systems can
perform as well as equivalent continuous control systems under certain situations,
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but they have potential difficulties that should be considered in algorithm design.
In this section, we apply the results of previous sections to evaluate digital control
performance. We will begin with the standard PID feedback controller and proceed
to IMC controllers.

PID CONTROL. The PID algorithm is easily implemented via either contin
uous (analog) or digital computation, with most new control equipment using
digital. In general, better digital control performance results from faster execution,
i.e., short execution periods. Guidance on PID performance is provided through
the consideration of the following four examples.
EXAMPLE L.11.
Tune the PI controller controlling the heat exchanger and evaluate the dynamic
response using simulation. For this example, we select the execution period as 2
minutes, although a commercial control system would typically execute the digital
controller several times per second.

The dynamics for the process are known from previous examples. We will use
the Ciancone PI disturbance correlation (Figure 9.9) modified as recommended in
Chapter 11 for digital control, i.e., 0' = 0 + At/2. The calculations are summarized
below.

Kp = -33.9 K/(m3/min)
r = 11.9 min
0 = Omin
0' = 0 + At/2 = 0 + 2/2 = 1.0 min

07(0' + r) = 1/(1 + 11.9) = 0.078
KpKc — 1 .J
77/(0' + t) = 0.23
Kc = 1.3/(-33.9) = -0.038 (m3/min)/K
Tj= 0.23(12.9) = 3.0min

The dynamic response for a step change in the set point is reported in Figure
L.6 for the controller applied to the nonlinear heat exchanger model (given in
Example 3.7). Note that the manipulated flow changes only every 2 minutes when
the controller calculation is executed; between executions, the flow is maintained
constant by the zero-order hold. The variables are well behaved, with the controlled
variable returning to its set point and the controlled and manipulated variables
experiencing smooth transitions, without undue oscillation or overshoot. Naturally,
the performance of the digital control system with the long execution period is not
as good as would be achieved by a continuous controller or a digital controller
with short execution period.

By the way, the linearized, closed-loop system stability can be evaluated us
ing equation (L.22). The roots of the characteristic equation are 0.76 ±0.27;'. Since
the magnitudes of the poles are 0.80 < 1.0, the poles are within the unit circle,
and the system is stable. The poles for this tuning are farther from the unit cir
cle than the poles for Example L.8. Thus, the Ciancone tuning in this example is
more robust to model errors because it has a greater margin from the stability
boundary.

The digital PI controller can be tuned using modified tuning correlations
to provide well-behaved dynamic responses; however, the control perfor
mance will degrade as the execution period is increased.
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FIGURE L.6

Dynamic response for a set point change to a digital PI control of the
stirred heat exchanger exit temperature determined in Example L.ll.

EXAMPLE L.12.
Determine the final value of the heat exchanger control system for a step change
in the set point of A SP

The solution can be found (for stable tuning) by applying the final value the
orem.

• ' . ASP
limCV(z) = limi(l-7^-1)-^—-z - » l z - > 1 , 1 - Z ~ '

\ - B Z-1

* ,* ,( , -B)r ' ( i + ^TJF)1 +
1-Bz '

l imCV(Q = ASP^^(1-g)(A//^)
KpKci\-B)iAt/Tt)

= ASP

Therefore, the digital control system with an integral mode returns the con
trolled variable to its set point, achieving zero steady-state offset.

Note that this important feature is achieved with a rectangular approximation
to the integral calculation; a perfect, continuous integral is not required!
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While the rectangular estimate is not exact, it provides a "persistent" adjust
ment of the controller output until the error returns to zero. Mathematically,
this appears as a term 1/(1 -z"1) in the controller, which is required for zero
offset at steady state.
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EXAMPLE L.13.
Determine the performance of proportional-only feedback control for the stirred-
tank heat exchanger. The controller execution period is increased to 15 minutes,
which would occur when a sensor can provide a new measurement very infre
quently. Use the value of the controller gain from Example L.11.

First, let us simulate the system and observe the performance. The dynamic
response of the stirred heat exchanger with P-only control is given in Figure L.7.
Both controlled and manipulated variables experience unacceptable oscillations.
This poor performance might be unexpected, since this is the same value for the
controller gain used in the PI controller, which gave acceptable performance in
Figure L.6; only the integral mode has been removed.

Let us investigate the cause by determining the poles of the closed-loop
system. The transfer functions for the process, equation (L.19), and the controller,
Gdz) = Kc, are substituted into the closed-loop transfer function, equation (L.21).
Recall that B = e-^t)lx with Ar = 15.

KpKcj\ - B)z~]
1 - Bz~l

- l
CVfc)
SPfc) ' KpKcj\ - B)z

\ - B z ~ l
The denominator of this equation, the characteristic equation, is set equal to zero
to evaluate the pole(s) of the system.

, - i0 = i\-Bz-l) + KpKd\-B)z- l (L.23)

Substituting the values for this example [B = 0.284, Kp = -33.9 K/(m3/min), and
Kc = -0.038 (m3/min)/K]. we find the value of the pole to be z = -0.64. This pole
is not close to instability, i.e., the boundary of the unit circle. However, this pole
is located in the region near where the unit circle crosses the negative real axis

2 0 4 0 60 80 100 120 140 160 180 200
Time

60 80 100 120 140 160 180 200
Time

FIGURE L.7
Dynamic response for digital P-only control of the stirred heat
exchanger exit temperature determined in Example L.13. The poor
performance is due to ringing.



(-1,0), which indicates that the sampled values will have a ringing behavior. This
is exactly the behavior that we see in Figure L.7.

Generally, a slowly sampled control system with proportional mode will tend
to ring.
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Tuning should be selected to reduce ringing while maintaining acceptable per
formance. One procedure is to lower the proportional gain and simultaneously
decrease the integral time. When the sampling is so infrequent that the process
essentially attains steady state between samples, the feedback controller should
be changed to integral-only with iKc)/Ti = [iAt)Kp]~l, which reduces the error
to zero in one execution (if Kp is known exactly).

EXAMPLE L.14.
Determine the maximum controller gain that achieves stable behavior for a first-
order process with proportional-only control and a 15 minute execution period.

We determine the answer to this question by using the characteristic equation
of the closed-loop system, which was derived in the previous example as equation
(L.23) and is repeated below.

, - i ' - i0 = il-Bz-l) + KpKd\-B)z

We solve for the pole fc) to give

z = KpKci\-B)-B
We want to find the limiting value when |z| = 1. For negative feedback, KPKC > 1,
and B = <r(A')/T > 0. Therefore,

Maximum Kc = Ku =
11 + 5 1 l+<rA'/r

K p i - B Kp 1 - e-^'x
Recall that no stability limit to the controller gain exists for continuous, P-only con
trol of a first-order system. The digital system is more restricted, but this result
is consistent with our interpretation of the sample time as a type of dead time.
Substituting the values for this example, the ultimate controller gain, Ku = -0.0529
(m3/min)/K.

U
do
mm
w % ~

A proportional-only feedback controller applied to a first-order process has
an ultimate gain.

IMC CONTROL. The other major single-loop controller algorithm presented
in this book is the IMC controller explained in Chapter 19. The IMC controller
structure is repeated in Figure L.8. The following design criteria were determined
for the IMC controller in Chapter 19 for an open-loop stable plant.
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FIGURE L.8

Block diagram of digital IMC feedback control system.
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1. The controller algorithm is an approximate inverse of the process model.

Gcpiz) * [HGmiz)r]
The approximation is required to ensure that the controller is physically realiz
able. The design approach involves factoring the process model into invertible
[HG~iz)] andnoninvertible [i/Gj(z)].

HGmiz) = HGliz)HG-miz)
By convention, the steady-state gain of the noninvertible factor is selected to
be 1.0. The controller is the inverse of the invertible factor.

Gcpiz) = [HG-miz)Tx
2. The controller gain is the inverse of the process gain; lim Gcpiz) =

l i m [ / / G - ( z ) ] - 1 * " * '
z-* l

3. The controller must be stable.
4. A filter is included in the feedback path to modulate adjustments in the ma

nipulated variable and to increase robustness to model error.

Here, the process transfer function includes dynamics of the final element (valve)
and the sensor. We will design IMC controllers in the next three examples.

Here, the process transfer function includes dynamics of the final element
(valve) and the sensor. We will design IMC controllers in the next three examples.
EXAMPLE L.15.
Design an IMC controller for the mixing process with dead time. Select the exe
cution period (Ar) to be 1 minute.

The transfer function for this first-order-with-dead time process was derived
in Example L.7 and is repeated in the following:

_ Kpj\ - g-A'/r)z-' _5 _ 0.181z-6pKZ} " 1 - e-*"rz-1 Z ~ 1 - 0.819Z"1HGPiz) =

Let us try to design the controller as the exact inverse of the process model above.

Controller from inverse of HGdz), transfer function:

GcPiz) =
MVfc) = [HGdz)}~1 = l-0.819z

.-6

-1

T p i z ) 0 . 1 8 1 * -
For the moment, we will assume that no filter is included, which is satisfied with
Gfis) = l. The digital controller would be implemented as a difference equation.



We apply equations (L.7) to convert the transfer function above to a difference
equation, with sample V representing the current time.
Controller from inverse of HGdz) difference equation:

MV„= 5.52iTp)n+6 -4.52(r„)„+5
The controller equation requires future values of Tp (the set point corrected by the
model error feedback); therefore, this control calculation is not possible. As in the
design of the continuous IMC controller, the approximate inverse must not invert
the dead time. Factoring out the dead time and the zero-order hold (combined to
give z-6) from the numerator of HGdz) and taking the inverse yields the following
control algorithm:
Controller from inverse of HG~Miz), transfer equation:

r n M V ( z ) r H r - , v r i 1 - 0 . 8 1 9 Z " 1Gcpiz) = -zr-rr = [HGdz)] =
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TPiz) 0.181
Controller from inverse of HG~Miz), difference equation:

MV„ = 5.52(7,),, - 4.52(y/;)„_,
This calculation requires only current and past values and can be implemented;
i.e., it is physically realizable.

Although the difference equation is realizable, the design can lead to a very
aggressive feedback controller. The dynamic response for a set point change
with a perfect model is given in Figure L.9. The variation in the manipulated vari
able is large and would not be acceptable for many chemical processes, e.g.,
manipulating distillation reboiler heating medium flow. Just as serious is the lack

co
U
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FIGURE L.9

Dynamic response for a set point change to a digital IMC controller
without filter controlling the mixing process with dead time (no model
mismatch). This controller is too aggressive for most applications. The

results are from Example L.15 plotted in deviation variables.
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of robustness; this controller would become unstable with modest modelling
errors.

We can add a filter to the control loop to moderate the manipulation and
increase robustness. Typically, one goal of the filter is to ensure that the power of
z_1 in the denominator is at least as high as the power in the numerator. For this
example, the natural choice is a first-order filter to give the following:

1-a l -0.819z_I
Gfiz)GCpiz) = -^ = Gfiz)[HG-iz)]-> = 0.181T p i z ) ~ J W , W J 1 - a z " 1

We can use the tuning correlation for continuous IMC controllers provided in Figure
19.6 as a first estimate. The calculations are summarized in the following:

0 = 5min r = 5min 0/(0 + t) = 5/10 = 0.50
TP/i& + t) = 0.35 (from Figure 19.6)
T/ = (0.35) 10 = 3.5 min
a = e-<A'/r/) = £-(1/3.5) = 0 75

The controller in deviation variables using these variables is

Controller from inverse of HG'iz) and filter, difference equation

MV„ = 0.75MV„_, + 1.38(7-/,),, - 1.13(TP)„_1
The closed-loop performance of the digital controller and filter is shown in Fig
ure L.10a for a perfect model. While the approach of the controlled variable to
its set point is slowed somewhat, the adjustment in the manipulated variable is
more moderate and would be acceptable in most processes. The added robust
ness is demonstrated by the performance with model error (all plant parameters
+25% from their estimated values) shown in Figure L.10b. Some degradation in
performance is evident, but while not ideal, this performance would normally be
acceptable.

This example demonstrates that the IMC design procedures presented in
Chapter 19 can lead to acceptable controller performance. Recall that the
noninvertlble factor includes the dead time and the zero-order hold.

-tk—i
Fs

, GAQ
i i

i ' j

FA
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EXAMPLE L.16.
Design an IMC controller for the series of chemical reactors in Example 1.2. The
concentration of the reactant leaving the second reactor iCA2) is controlled by ad
justing the solvent flow rate (F5). Recall that this dynamic response experiences
an inverse response due to two parallel paths: (1) the faster residence time ef
fect and (2) the slower and stronger inlet concentration effect. The continuous,
linearized model between the manipulated and controlled variables is derived in
Example 1.2. The transfer function model is second-order with numerator zero and
is repeated in the following equation:

G is) = Ca2(s) = *p(t"*"J+1) = ^^(,y + 1/riead)p K S ) F d s ) i z s + l ) 2 ( 5 + 1 / r ) 2

The first step is to determine the z-transform of the process with a zero-order hold.
The term ZiGpis)/s) can be evaluated using entry 11 in Table L.1 (with a0 = l/nead
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FIGURE L.10

Dynamic response for a set point change to a digital IMC controller
with filter controlling the mixing process with dead time. The results

are from Example L.15 plotted in deviation variables: ia) no
model mismatch; ib) plant parameters 25% larger than the

controller model.
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and a = 1/r). The values for the parameters are

Kp = -1.66 (mole/m3)/(m3/min) a = 1/r = 0.121 min-1
a0 = 1/̂ iead = 0.125 min-1t = 8.25 min

Tiead = -8.0 min At = 1.0 min
When these values are substituted into the z-transform and terms with like powers
of z_1 are combined, the following discrete process model with zero-order hold is
determined:

HGdz) =
bxz~x +b2z- 2CA2jZ) =

Fsiz) \ + axz~x + a2z~2

where a\ = -1.7717
a2 = 0.7847

bx =0.1616
Z?2 = —0.1832

Poles are 0.8858 (repeated) Zero is 1.1339
In the previous example, we found that the controller could be derived by inverting
the process model without the dead time and zero-order hold; this process has
no dead time and has a zero-order hold fc"1). By taking the inverse of the model
with the zero-order hold factored out, the following controller equation results:

C A 2 i z ) b x + h z - 1HG±iz)=z- i HGZAz) =

Controller from inverse HG'iz)

Gcpiz) =

Fsiz)
transfer function:

1 +aiz~] +a2z~2

Fsiz) l+axz-l+a2z~2
TPiz) bx + b2z- i

Recall that the input to the controller is the target, Tp> which is the set point minus
the model error, Em = (C^W - (C^W

Before considering closed-loop performance, we evaluate the stability of the
controller algorithm, Gcpiz). We know that the stability of the transfer function de
pends on the poles of the transfer function. From the expression for the controller
above, we see that the numerator zero in the process model becomes a pole in
the controller. For this example,

The controller pole = -b2/b\ = 1.1339, which has a magnitude greater than
1.0.

The controller is unstable, which is clearly not acceptable! Recall that the plant
was stable, as indicated by poles of the process being located inside the unit
circle. A zero outside the unit circle does not affect the plant stability, although it
certainly affects the dynamic behavior, in this case giving an inverse response. To
reiterate,

The inverse of a stable plant can lead to an unstable controller, because
the zeros of the plant are the poles of the controller.

To yield a stable controller, we must include in the HG+iz) all zeros that are outside
the unit circle. If we were to simply factor out these zeros, we would change the



gain of the remain ing process model , HG' iz) . Therefore, i f we factor any zeros, 999
we must compensate the gain of the remainder of the model. The procedure is mmmmmmmmmm
d e m o n s t r a t e d a s w e c o n t i n u e w i t h t h e e x e r c i s e . D i e i t a i C o n t r o l
C o n t r o l l e r f r o m i n v e r s e H G ~ i z ) w i t h t h e u n s t a b l e p o l e r e m o v e d , P e r f o r m a n c e
transfer function:

r c \ - Fs^ - 1 +fliz~' +fl2Z~2cp{z) ~fdT)- bx~+T2
Note that when the unstable controller pole is removed, the contribution of the pole
to the final value is retained, so that the controller gain is unchanged, as shown in
the following expression:

Wmibx + b2z~l) = bx +b2z-*\

Now, we have achieved a controller that is stable. Also the controller is causal
because the current manipulated variable (Fs) depends on only current and past
values. However, the controller would likely be too aggressive, so we want to add
a filter that ensures that the orders of the numerator and denominator are equal.
This will require a second-order filter, which we choose to be two first-order filters.
The resulting controller is given in the following:
Controller from inverse HG~iz) with the unstable pole removed
and a filter added, transfer function:

T p i z ) b x + b 2 V 1 - c t z ~ x /
We have designed a stable, causal controller that can provide robustness and
moderate variation in the manipulated variable, with the proper choice of the filter
time constant. No general studies are available to select the filter for this process
model structure, so some trial-and-error tuning leads to the selection of 5 min
utes for the filter time constant, to give a = e-(*')/Tf = 0.819, With this value, the
controller algorithm becomes the following, which is clearly causal:
Controller from inverse HG~iz) with the unstable pole removed
and filter added, difference equation:

(F,)„ = 1.64(F,)„_, - 0.67(F,)„_2 + 8.38(7/,),, - 14.85(T/,)„_1 + 6.58(T/,)„_2
where iTp)„ = (SP)„ - [iCA2meas)„ - iCA2pKd)n]
Recall that all variables in the difference equations are deviations from initial con
ditions. To calculate the actual flow, the initial condition of the solvent flow must be
added to the value calculated above.

A sample set point response of the digital control system applied to the non
linear series reactor process is given in Figure L.11. While the dynamic response is
well behaved, no feedback controller can remove the poor performance resulting
from the unfavorable process dynamics—specifically the inverse response. The
performance achieved with the IMC controller is equivalent to the performance
achieved with a proportional-integral controller, shown in Figure 13.15.

EXAMPLE L.17.
Reconsider the series reactors just analyzed in the previous example. Here, eval
uate the effect of different sampling periods on the IMC controller design.

Naturally, the continuous process does not change when the sampling period
changes; therefore, the continuous transfer function and the parameters Kp, r, and
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FIGURE L.11

Dynamic response for a set point change to a digital IMC controller with
the unstable pole removed and with a filter. The process is a series of
chemical reactors with an inverse response. The results are from Example
L.16.

ijcad do not change. Only the sample period (AO changes. However, because the
sample period appears in most terms in entry 11 of Table L.1, all coefficients in
the z-transform change. The general form of the z-transform is repeated in the
following equation:

HGdz) = CA2jz) = bxz-l+b2z~2
Fsiz) 1 +axz~l +a2z~2

We recall that the zero in the process model, -b2/bx becomes the pole for the
IMC controller. If this pole has a magnitude greater than 1.0, the controller will
be unstable, which is not acceptable. The results below summarize the coeffi
cients in the z-transform and the poles and zero for several values of the sample
period.

At « i a2 h b2
Poles
(repeated) Zero

0.10 -1.9759 0.9760 0.0192 -0.1940 0.9880 1.013
1.0 -1.7717 0.7847 0.1616 -0.1832 0.8858 1.134
3.0 -1.390 0.4830 0.3205 -0.475 0.6950 1.480

10.0 -0.595 0.0885 0.0133 -0.8324 0.2976 63.63
15.0 -0.3246 0.0263 -0.4256 -0.7390 0.1623 -1.740
20.0 -0.1771 0.0078 -0.8110 -0.5680 0.0885 -,

) less than 1 ^
(g).70(jjj)

Magnitude



First, we see that the poles of the process always remain in the unit circle.
The conclusion that the stability of an open-loop process does not depend on the
sampling period certainly conforms to our expectation.

Second, we note that the magnitude of the zero becomes less than 1.0 for
large sampling periods. We can understand this result by recognizing that the
sampled values do not experience an inverse response if the period is sufficiently
long; naturally, the inverse response occurs during intersample behavior. These
results show that an IMC controller algorithm including the inverse of the zero
would be stable for a period of 20 minutes.

However, we must evaluate the potential design further for a third important
point. We note that the zero of the process becomes a pole of the controller, and a
pole with a large negative real part will cause undesirable ringing. Therefore, this
design with a pole at (-0.7,0) will not be acceptable. One method suggested by
Morari and Zafiriou (1989) for achieving reasonable performance is to "remove"
the ringing pole using the same method as used for removing the unstable pole,
remembering to include the constant to maintain the controller gain unchanged.
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Conclusions

Digital IMC controller design must remove ringing poles to achieve accept
able performance.

We have applied IMC design to digital control in this section and have found
that the design method, summarized in the four steps in the beginning of this
section, is generally the same as for continuous systems. We have found one
major difference; the design method must include a check for ringing pole in the
controller. In addition, using z-transforms will enable us to apply the IMC design to
more complex process models, not simply first-order-with-dead-time as in Chapter
19 on continuous processes. Finally, we have a direct manner of determining the
difference equations for the controller and model calculations to be implemented
in a digital computer.

L.5 □ CONCLUSIONS
In this appendix, we have developed a rigorous method for analyzing linear dy
namic systems involving continuous processes and digital controllers. The z-
transform of each component was derived and the individual transfer functions
were combined using block diagram algebra to form an overall model. This model
was applied to determine the stability, final value, and frequency response of digital
systems.

Many of the results in this appendix were previously established through less
rigorous studies in several chapters of the book. As we expect, delaying feed
back control by increasing the execution period (1) requires tuning adjustments
to maintain proper stability margins, and (2) degrades the control performance. In
addition, we have learned about the new behavior of ringing, how ringing occurs
in PID and IMC controllers, and how ringing can be avoided. Finally, we have
learned how to derive difference equations for implementing digital calculations,
and this method is easily implemented beyond the simple lead/lag described in
Appendix F.
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Accuracy:

numerical integration, 83-84
sensor, 383, 772-773

Adaptive tuning:
expert system, 528
gain scheduling, 518, 529, 709, 715
input conversion, 519
reasons for, 512-517
relay auto-tuning, 527
selection of method, 529
valve characteristic, 520-525

Alarms, 795, 890
Aliasing:

antialiasing filter, 393
due to sampling, 362, 989

Amplitude:
amplitude ratio, 121-123, 316,412,

988-989
response to sine, 121
iSee also Frequency response)

Analog:
computation, 257
signals, 212-215, 358-359

Anti-reset windup, 399-402, 604-605,
715

Array isee Relative gain array)
Averaging filter, 394
Averaging level control, 563-564,

569-570

B

Bandwidth, 419
Benefits, control, 28-35,423^125
Blending:

controllability, 627, 637
gasoline, 866
interaction, 632
loop pairing, 663
model, 621
operating window, 625
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Blending—Cont.
optimum, 866-870
tuning for, 646-648

Block diagrams:
algebra, 116,118,143,244
cascade, 463
definition of, 115
feed forward, 489
multiloop, 630
IMC, 592,994
reduction to transfer function, 116,244
series, 143
single-loop, 243,974
Smith predictor, 600

Bode:
cascade, 468
closed-loop, 412-415
generalized plots, 323-326
key aspects of plots, 328
plot, 123
stability criterion, 313-317

limitations of, 316
Boiler:

control of, 27,474
efficiency of, 32-34
optimization of, 861-865
iSee also Steam system)

Bounded input-output stability, 304,
307-308

Cascade:
block diagram, 463
degrees of freedom, 460-461
design criteria for, 461
examples:

chemical reactor, 471-473
distillation, 690-691
fired heater, 473
heat exchanger, 458-460

levels of, 473
performance, 462-468
primary variable, 460
secondary variable, 460
terminology, 460
transfer functions, 462
tuning, 469

Cause-effect relationship, 6-7,114, 651
Centralized control, 617,727

Characteristic, valve:
examples, 520-525
inherent, 520
specifying for linearizing loopgain, 524

Characteristic equation:
definition, 309, 630
relation to stability, 309-310,316,643,

987
Characteristic polynomial:

definition of, 108,932
relation to stability, 109
roots of, 109,932

Checklist, for design, 820-822
Chemical reactor, packed bed:

cascade, 471-473
feedforward, 495-497
inferential, 549-552
variable structure, 713-714

Chemical reactor, stirred tank, 62,72,
84-86

isothermal, 62,72
nonisothermal:

cascade design, 475-476
control design, 835
control performance, 438-440
linearized, 900
model for, 85, 897-901
multiple input-output, 163-165
operating window, 781-783
recycle, with, 785
selecting variables, 216-218
signal select, 710-712
transfer function, 902

series:
block diagram, 944
inverse response, 944-945
model, 64-67,943-944
transfer function, 944

stability, without control, 902-906
steady-states:

calculating, 902-904
multiple, 905
stabilizing via control, 905

Combustion:
benefits for, 32-34
excess oxygen control, 27
fuel control, 500-501
iSee also Fired heater)

Complex numbers:
magnitude, 122,316-317,936-937
phase angle, 122, 316-317,936-937
polar form, 122, 316-317,936-937



Composition control:
blending and mixing, 270,282,

512-519,646-648
chemical reactor, 37,216,438,475,835
flash, 23,537-544,768, 802-803
iSee also Distillation)

Computation:
analog, 257-258
digital, 358-362

Computer:
analog, 257-258
digital, 358-362

control implementation, 365-367,
974,983-989

simulation, 82-84,422-425
iSee also Digital control)

Computer-aided calculations, 82-84,
421-422

Conservation
component, 53
energy, 53, 898
material, 53

Constitutive relationships, 54
Constraints, 26

control, 715-720
hard or soft, 767-770
valve position control, 718-719
iSee also Operating window)

Continual improvement, 859
Continuous cycling, 342-343
Continuous-flow stirred tank (CST):

chemical reactor:
heat-integrated, 785
with recycle, 155-157
iSee also, Chemical reactor, stirred

tank)
heater, 76-80, 253-257,458-461,

483̂ 186
mixer, 186-187, 223-225, 270, 512

Continuous-time variables, 98,212
Control:

algorithms:
DMC, 735-748
IMC, 590-600
lead/lag, 485^86
PID, 252
Smith predictor, 600-603

approaches, 228
automated vs. manual, 228-231
benefits, 28-35,425
definition, 6
design, 216-218, 823, 834
feedback, 6-7,212,243

Control—Cont.
feedforward, 488
objectives, seven categories, 20-25,

768, 838
iSee also Model predictive control)

Control design form, 768, 838
Control objectives, 20,216, 269, 768
Control performance:

best possible, 426-427,490
control system factors, 433-440
economic analysis, isee Benefits,

control)
faction dead time, 279,426-429
factors affecting, 444
by frequency response, 412-415
measures, 219-223, 240-241
multivariable systems:

disturbance type, 667,677-679
interaction, 616
iSee also Relative disturbance gain)

process factors, 425-432
robust, 268-269,411
by simulation, 422

Control system:
hierarchy, 829
layout, 9-10, 212-213, 359-361

Control valve:
characteristic, 520
dynamics, 776
failure position, 777
range, 776
selection, 217

Controlled variable:
selection of, 7-8, 225,536,771-773,

775, 787, 840
Controller:

dimensionless gain, 397
error, 242-243
execution frequency, 370, 373
flowchart, 403
frequency response of, 325-326
location, 9-10
manipulated variable, 217
measured variable, 216
nonlinear, 517, 567
performance isee Control performance)
sense switch, 396-397
tuning:

Ciacone, 278-286
comparison, 347
dynamic matrix, 750
fine, 289-293
goals, 268-269
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Controller—Cont.
tuning—Cont.

IMC, 598
Lopez, 287
multiloop, 638-646
robustness, 268-269,338-341
Ziegler-Nichols, 329-330,347

Corner frequency, 323
Critical frequency, 315
Crossover frequency, 315
CST isee Continuous-flow stirred tank)

D

Damping:
coefficient, 138-139
critically, 139
overdamped, 139
underdamped, 139

Dead time:
Bode plot, 324
compensation, 600
computer programming, 922
definition, 103
discrete, 977
effect on performance, 426-427
effect on stability, 334-337
frequency response, 318
Pade* approximation, 913

Decay ratio, 220
Decentralized control, 616-617
Decoupling:

application criteria, 690
designs:

calculated controlled variables,
685-686

calculated manipulated variables,
684-685

explicit controller calculations,
686-689

performance, 689-690
sensitivity to errors, 689-690
iSee also Interaction)

Degrees of freedom:
in control design, 217,460-461,708,

711,778
effect of control, 254,778
in modelling, 54-55

Derivative:
approximation, 366
definition of, 56
filter, 402

Derivative—Cont.
Laplace transform of, 101
mode:

behavior, 249-252
frequency response, 326
noise transmission, 252, 292-293

time, 250
z-transform, 978

Design, control:
control design form (CDF), 768-769,

838-839
controllability, 780-781
degrees of freedom, 778
dynamics:

disturbance, 444
feedback, 444

loop pairing, 695
operating window, 624-626,681,781,

788-789
procedure, integrated, 834
process decomposition, 831
sequence of steps, 823
temporal hierarchy, 825

Detuning factor, 678
Deviation variables, 71,111
Diagnostic:

model, 183
tuning, 290

Difference equations:
controllers, 367,493,595,994-995
discrete models:

approximate, 923
empirical, 188
exact, 923,986

Differential equations:
discrete form, 188,923,986
linearization of, 70-72
numerical solution:

error control, 84
Euler, 83,423
Runge-Kutta, 84

solution by:
integrating factor, 895
Laplace transforms, 102

Digital control:
computing network, 359
dynamic matrix control, 735
internal model control, 595
lead/lag, 493
performance of PID, 367-369
ringing, 370-371,982,992
sampling:

hold, types of, 364-366
period selection, 369



Digital control—Cont.
sampling—Cont.

simulation, 423
tuning modifications for, 370

Dimensional analysis, tuning, 278-286
Direct-acting feedback, 396
Distillation:

cascade control, 690
composition control of:

inferential, 545-549
interaction in, 637
operating window, 625-626
relative disturbance gain (RDG),

679-680
tuning for, 648

decoupling control, 689
dynamic matrix control of, 746-747,

754-756
feedforward control of, 500-501
industrial case study, 949-960
modelling of:

empirical, 62,622-623
fundamental, 157-163

regulatory control of:
energy balance, 664
material balance, 665

Distributed control system:
advantages of, 361
structure of, 359

Disturbance:
causes, 7
interaction effects isee Relative

disturbance gain)
models, 220,224,415,444,496,666
response, closed-loop:

frequency response, 412-418
simulation, 422-425

Dominant variable, 779, 827
Draining tank, 75-77,106-107
Drawings, 12-13

instrument symbols, 889-892
process equipment, 892-894
valve symbols, 892

Dynamic compensation, 551
Dynamic matrix control (DMC):

approximate inverse for, 729
controller formulation, 737-738
discrete step process model, 730-734
feedback signal, 740-742
future prediction, 735
horizon, 737
model, step-weight, 730
move suppression, 743

Dynamic matrix control (DMC)—Cont.
multivariable formulation, 744—748
predictive structure, 728
single-variable formulation, 738
tuning, 750

Dynamics:
dead time, 103, 140, 324, 328
first-order systems, 57,137, 323, 328
integrating process, 140-141, 564-566,

325,328
recycle systems, 155, 840
second-order systems, 138-140, 324,

328
series systems, 143,328
staged systems, 157
iSee also Modelling procedure)
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Economic value of control, 28-35
Electrical circuit, 137, 138
Emergency control systems, 20, 230-231,

794-799
Empirical modelling:

dead time, 144,179-181,190
diagnostics, 61, 183, 194
experimental design for, 181, 188
multivariable systems:

open-loop, 197,622
partial closed-loop, 629, 670

process reaction curve, 179
signal-to-noise, 182
six-step procedure, 176
statistical method, 188
use in control analysis, 280, 338-343

Energy balance:
in modelling, 53-54, 898
strategy in distillation, 664

Energy reduction, control systems for, 23,
716-717,791,861-866

Environmental protection, 21, 768, 797
Equal-percentage characteristic, 521
Equilibrium, ideal stage, 159
Equilibrium, phase, 159, 538
Error:

measures of control performance, 219
in sensor measurement, 383, 773
variable used by controller:

model predictive, 585, 741
proportional-integral-derivative,

242-243
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Euler:
identity, 934
numerical integration, 83

Evaporator, 676
Evolutionary operation, 871
Experimental modelling isee Empirical

modelling)
Exponential filter:

analog, 390,393
digital, 392,988
predictive control, 593
principle, 389

External feedback, 399
External variable, 54,

Factor, partial fractions, 107,931
Factorization, model, 590
Feasible region isee Operating window)
Feedback control:

block diagram for, 243,463,586,630
components of loop, 212-213
compared with feedforward, 488
definition, 6
negative, 6
performance isee Control performance)
pluses and minuses, 229
positive, 142
selecting variables in, 216-218,438,

536, 775, 779, 828
iSee also PID; IMC; DMC)

Feedforward control:
algorithms for:

digital, 492-493
general derivation, 485
lead/lag, 485-486
transfer function, 488

block diagram for, 489
design criteria for, 487

goal, 484
digital implementation, 492
examples:

chemical reactor, 495
distillation, 501
fired heater, 499-500
heat exchanger, 497-498

feedback:
combined with, 486,497
comparison with, 488

Feedforward control—Cont.
perfect, 484
performance guidelines:

dynamic behavior, 491
model error, 490

stability, effect on, 488,502
tuning, 493

Fieldbus, 375
Filtering:

algorithms:
continuous, 390
discrete, 392,988

aliasing in, 393
low-pass, 390
perfect, 390
performance, effect on, 391
reasons for, 389
z-transform, 979

Final control element, 5,10,212-213,
226, 438, 776-777

Final value theorem, 104,979
Fine tuning, 289-293
Finite difference, 366-367,493,923
Fired heater:

cascade control, 494
feedforward, 522-524
industrial case study, 961-972
loop pairing, 694-695
outlet temperature control, 29

First-order system:
continuous, 137
discrete approximation, 922
dynamic behavior, 59,137-138

Bode diagram, 323
example systems, 137
frequency response, 328
time-domain responses, 136

series of:
interacting, 145-148
noninteracting, 143-145
transfer function for, 144

Flash process:
alarms for, 795-796
control design for, 802
control objectives for, 20-25,768-769
controllability of, 787-788
degrees of freedom, 787-788
dynamic response of, 803
inferential control of, 537-541
operating window, 788-789
safety control, 794-799



Flow:
control, 13
measurement, 387
ratio, 499,684
value, 80

Forcing function, 895
Frequency distribution, 31-35
Frequency response, 121

amplitude ratio, 121-122
of basic systems, 323-326, 328
Bode plot, 123
closed-loop control performance,

412^20
computer program for, 317,421
direct evaluation, 122
phase angle, 121,123
of series systems, 144, 316-317
shortcut from transfer function, 122
in stability analysis:

Bode stability, 314-316
transient, complete, 119-120

Furnace isee Fired heater)

Heat exchanger—Conf.
cascade, 458
dynamic model, 76-80
feedback control transient, 256
feedforward, 486
linearizing characteristic, 523-524
refrigeration, 475, 884-885
steam condensing, 777
stirred tank, 76-80

Heaviside, 932
Hierarchy, 476, 826, 829
High signal select, 713
Histogram, 29-31
Hold:

first order, 364
zero-order, 364

Holdup time, 562
Horizon:

input, 749
output, 749

Hydrocracker control, 753
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G

Gain:
controller:

feedback, 245,587
feedforward, 485
nonlinear, 567

frequency dependent, 315
margin, 338
process, 87

disturbance, 224
feedback, 224,254
multivariable process, 627

steady-state, 58
Gain scheduling, 518,529

H

Heat exchanger:
with bypass:

feedback control, 784
model, 76-80, 939-942
numerator zero, 941
recycle systems, 785
transient response, 942

Identification isee Empirical modelling)
IMC isee Internal model control)
Impulse function, 101
Inferential control:

block diagram, 537
design criteria, 542
design procedure, 543
examples:

chemical reactor, 549-552
combustion, 552-554
distillation, 545-549
flash process, 537-541

goal, 536
multiple correlated measurements, 554

Initialization:
controller, 245,402
filtering, 392

Input:
terminology for control, 6
terminology for modelling, 53
typical time functions, 220-222

Input-output isee Cause-effect
relationship)

Input processing:
conversion, 212-213, 387
filtering, 389
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Input processing—Cont.
units, 388
validity, 387

Integral:
Laplace transform of, 102
numerical approximation, 366
z-transform, 978

Integral stabilizability, 692
Integral error measures:

IAE, integral of absolute value, 219
IE, integral of error, 219,677
ISE, integral of squared, 219
ITAE, integral of product of time and

absolute, 219
Integral mode:

advantage/disadvantage, 249
equation for explicit mode, 248
implicit isee Model predictive control)
tuning constant, 248
iSee also Anti-reset windup)

Integral windup isee Anti-reset windup)
Integrating factor, 58, 895
Integrating process:

dynamic behavior, 136
general form, 140-141
levels, 564
stability, 307-308
iSee also Level control)

Integrity, 637,672,692
Interacting series, 145-148
Interaction:

block diagram, 624
controllability, effect on, 627,651

iSee also Decoupling)
definition, 620
integrity, effect on, 672-674,692, 850
measure of isee Relative gain array)
modelling:

empirical, 622
fundamental, 621

operating window, effect on, 624-626,
789

performance, feedback control:
loop pairing, 671-681
tuning, 682-683

stability, effect on, 638
transfer function, 629-630
tuning, 641-646
iSee also DMC)

Internal model control (IMC):
digital form, 595,994
filter for, 593
model inverse, approximate, 590,994
performance, 597

Internal model control (IMC)—Cont.
structure, 592
tuning:

for IMC controller, 598
for PID controller, 609

Inventories:
control of isee Level)
models for, 564-565
reasons for and against, 562-563
sizing, 562,572-574

Inverse:
approximate, 590
exact model, 588,729-730
feedback as, 588

Inverse Laplace transform, 99
Inverse response:

control performance, 430-431,444,
996-1000

multivariable systems, 669-671
open-loop, 152-155,943-946

ISE isee Integral error measures)
ITAE isee Integral error measures)

Jacketed reactor, 476

Lag isee First-order system)
Laplace transform:

applications:
solving ODE, 102
transfer function, 111

of common functions, 100
definition of, 98
of derivatives, 101
of integrals, 102
partial fractions, 107,931-935
properties, 98-99

Lead:
lead/lag algorithm, 485-486,595,687,

923
time constant, 152

Least squares:
as approximate inverse, 737
assumptions in, 191



Least squares—Cont.
in design of dynamic matrix control,

737-738
empirical modelling, 188-190
solution of linear problem, 191

Level:
control of:

linear PI, 566
nonlinear PI, 567

control objectives, averaging and tight,
563-564

controller tuning, 568
draining tank, 75-77
inventory size, 572
process model for:

non-self-regulating, 140, 565
self-regulating, 75-77

sensors, 577
series processes, 574-576

Limit cycle, 906
Linear operator, 70
Linear programming, 866-868
Linearity, definition of, 70
Linearization, 71-72

control loop, 517-529
effect on stability analysis, 275, 284,

513-517
Taylor's series, 71

Load isee Disturbance)
Long-time behavior, 109, 119-121, 306,

936-937
Low-pass filter, 390
Low signal select, 710-713
Lumped-parameter model, 47,53

M

Manipulated variable, 207,212, 218,226,
243,276

Manual operation, 228
Mass, conservation of, 53
Master controller isee Cascade)
Material, conservation of, 53
Maximum deviation, 221
Maximum overshoot, 220
Measured variable:

accuracy, 383 iSee also Filtering)
linearity, 387
range, 383-384
reproducibility, 383
sensor dynamics, 212-216, 773

MIMO isee Interaction, Multiloop
control; Multivariable control)

Mixing process, with dead time:
control of, 270-277,413-415
model of, 271

Mixing process, three-tank:
adaptive tuning for, 517-519
control of:

derivative-only, 249-251
integral-only, 248
internal model, 595
proportional-integral-derivative,

282-285, 330-332
proportional-only, 245-248

mismatch from true process:
due to nonlinearity, 283-285,

512-517
effect on control performance,

431̂ *32
effect on stability, 345-346

model of:
empirical, 186
fundamental, 223-224
input-output, 223

Model predictive control (MPC):
for cascade control, 606
dead time, 606
error, feedback, 585
with feedforward control, 607
filter for robustness, 592-593
internal model control (IMC), 590
perfect control, 587-588
process inverse:

approximate, 590
exact, 587-588

saturation of final element, 604
Smith predictors, 600
structure, 586
transfer function, 592
two-degree-of-freedom, 594
zero-offset requirements, 587, 593, 601
iSee also DMC)

Modelling procedure, 50
approximate, 909
empirical, 175
fundamental, 53
linearized, 71

Moments:
definition, 909
for impulse response, 910
use in correlations, 281,286-287, 336,

598
use in modelling, 912

Monitoring, 23, 799
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Move suppression factor, 743,749
Multiloop control:

block diagram for, 624,630
comparison with single-loop, 616
control performance:

input forcing, 663-669
interaction, 628
interactive dynamics, 669-671
operating condition, 663

controllability, 626,651,780-781
decoupling:

lead/lag, 687
model sensitivity, 689

loop pairing, 671
relative disturbance gain (RDG),

677-681
tuning, 646-649,682
iSee also Control design, Interaction)

Multivariable control:
centralized:

model inverse for, 729,738
structure, 728

iSee also Dynamic matrix control;
Multiloop control)

N

Negative feedback, 6,141-142,207,242
Niederlinski criterion, 692,694-695
Noise:

effect on tuning, 275-276,292,
915-920

frequency content, 423-425
signal-to-noise ratio, 182
iSee also Filtering)

Noninteracting series systems, 143
Nonlinear:

control, 517, 520,570
process, effect on operating window,

625-626,782,789
process, effect on performance,

283-285,512
saturation, 399-402,604,707,717
iSee also Linearization)

Normal distribution, 30
Numerical solution methods:

for algebraic equations, 902-903
for differential equations, 82-84

Numerical solution methods—Cont.
frequency response, 317,421
for integrals, 366,917

Nyquist, 314

O

Objective function, 271, 736, 743, 864,
866,917

Objectives, control, 20,268, 768, 838
Offset, steady-state:

definition, 218, 240
with feedback control, 246,249, 251
with feedforward control, 488
integral mode, 249,587
level control, 571

On-off control:
heating, 5,230
model, 67-69

One-way decoupling, 690
One-way interaction, 631, 636-637
Open-loop operation, 228
Open-loop transfer function:

G0lCs),316
terminology, 328

Operability, 778
Operating window, 26-27,226,440,

625-626,720-721,789
Optimization:

constraints, 868
control methods for:

control design, 861
direct search, 870
model-based, 866

in controller tuning:
control objectives, 268,917
correlations from, 281,284,598

plant economics:
effect of variance, 31,33
profit contours, 31,43

Order of system, 112
Ordinary differential equations, 47,56,

102
Output:

meaning for control, 6
meaning for modelling, 53

Overdamped, 138-139
Overshoot, 219-220



Packed bed:
cascade control, 471-473
empirical model, 202
feedforward control, 495-497

Pade* approximation, 913
Pairing, loop, 671
Partial control, 779, 827
Partial fraction expansion, 107,932-935

980
Performance, isee Control performance)
Period of oscillation, 121, 222, 315, 330

343
Periodic behavior, 5, 67, 343, 906
pH control, 527, 776
Phase angle, 121-123
Phase equilibrium:

in distillation, 159
in flash process, 538
K values for, 538
relative volatility, 159

Phase margin, 340
Physical realizability, 496,588
PI, PID isee

Proportional-integral-derivative
controller)

Pneumatic:
control valve, 213
controller, 257
signal transmission, 212-213, 891

Polar form:
complex numbers, 122, 316-318,421
frequency response for series systems,

317
Poles:

definition of, 113
effect of control on, 247, 254-256, 259,

313
effect on dynamic response, 109, 113,

310
effect of process design on, 141-142,

151,155,157,425,
440,564, 785,902,906

effect on stability, 109, 310
Position (full) form of digital controller,

367
Predictive control isee Model-predictive

control)
Primary controller isee Cascade control)

Process dynamics:
effect on control performance, 415,

426,438, 440, 663, 694
effect on stability, 334
effect of zeros, 152,939
empirical modelling of, 196
fundamental modelling of, 53
linearized models, 74
recycle process structures, 155
series process structures, 152,939
staged process structures, 157

Process examples, guide, 925-929
Process reaction curve, 179, 187
Product quality, 23, 768
Profit function isee Objective function)
Proportional:

controller mode, 245
tuning constant, 245

Proportional band, 398
Proportional-integral-derivative (PID)

controller:
in adaptive control, 517
in cascade control, 458,468̂ 169
derivative mode, 250

effect on offset, 251
effect on stability, 326

digital form of controller, 367-369
frequency response, of controller,

366-367
initialization, 245,402
integral mode:

effect on dynamic response, 249
effect on offset, 249
effect on stability, 325, 336-337
windup, 399

mode selection, 436
output limits, 403
proportional mode:

effect of dynamic response, 245,272
effect on offset, 245
effect on stability, 246

tuning:
Ciancone, 281,286
IMC, 609
Lopez, 287
multiloop, 641-646
selection, 347
Ziegler-Nichols, 329, 347

Proportional-only control, 245, 571
Pulse, input function, 64, 101
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Index Quadratic dynamic matrix control, 751
Quick-opening valve, 521

R

Ramp:
input function, 93
output response, 93

Random variable, normal distribution, 30
Ratio control:

effect on stability, 519
as feedforward, 499
flow ratio, 499
reset by feedback, 519,684

Reactor isee Chemical reactor)
Realizable, 496,588
Real-time operating system, 360
Real-time optimization isee Optimization)
Reconstruction of signal, 362
Recycle:

advantages of, 155-157,785
alternative source/sink, 832
control of systems with, 785,832,

845-846
effect of dynamic response, 156-157
effect on stability, 156

Refrigeration, 475,885
Regression isee Least squares)
Relative disturbance gain (RDG):

integral error measure, 677
loop pairing, 678-679
tuning factor, 678

Relative gain array (RGA):
calculation, 634
control integrity, 637,672
definition:

dynamic, 637
steady-state, 633-634

interpretations, 636
loop pairing, 672-674,695
properties, 633-636
stability, 637

Relative volatility, 159
Reproducibility, sensor, 383,773
Reset isee Integral)
Reset time, 398

Reset windup isee Anti-reset windup)
Resonant frequency, 414
Reverse-acting feedback, 396
Ringing controller, 368,992
Rise time, 219
Robustness:

importance, 241,512
performance, 268-269,919
stability, 338,345
tuning, 268,919

Root locus, 312
Runge-Kutta numerical integration, 83

Safety, 20-21
alarms, 795
basic process control, 794
failure position of final elements, 386
good practices, 797
safety interlock system (SIS), 796
safety valves, 797

Sampling isee Digital control)
Saturation of controller output, 398,604,

707, 717
Second-order system, 138-139
Secondary controller isee Cascade)
Select, signal:

degrees of freedom, 710
design criteria, 715
tuning, 714
iSee also Constraints, control)

Selection of variables:
controlled variables, 216,773,827-828
manipulated variables, 216,226,438
measured disturbances, 487
secondary cascade, 461

Self-regulation, 141
Sense isee Controller sense switch)
Sensor:

accuracy, 383
cost, 772-773
dynamics, 215,773
flow, 387
identification symbols, 889
level, 892
noise, 276, 389,424, 879
range or span, 383
reliability, 387



Sensor—Cont.
reproducibility, 383,773
signal transmission, 890
temperature, 388,536

Separable differential equation, 58, 895
Set point, 218,242-243,458, 586
Settling time, 220
Shannon's sampling theorem, 362
Signal:

conversion, 212
analog to digital (A/D), 359
digital to analog (D/A), 359
electronic to pneumatic, 212

digital transmission, 373
dynamics, 213
electrical transmission, 212
pneumatic transmission, 212
ranges, 213

Signal-to-noise, 182
Signal select, 710
Simulation:

closed-loop system, 423,916
performance measures, 917
process dynamics, 83-84
iSee also Digital control)

Sine input:
amplitude ratio, 121-123
first order, 123
flow attenuation, 572
typical input forcing, 136
iSee also Frequency response)

Single-input single-output (SISO) isee
Single-loop control)

Single-loop control, 5-6,208,218,243
SIS isee Safety)
Slave controller, 460
Smith predictor:

system structure, 600
tuning, 602
zero offset, 601
iSee also Model predictive control)

Snowball effect, 847
Split range:

degrees of freedom, 706
design criteria, 709
tuning, 708
iSee also Constraints, control)

Spring and dashpot, 137-138
Stability:

analysis:
Bode, 314-317
complex plane plots isee Root locus)

Stability—Cont.
analysis—Cont.

Nyquist, 314
pole calculation, 308-313
root locus, 312-313
simulation, 248

chemical reactor, 902-906
definition, bounded input-output,

303-304
effect of controller tuning, 312
effect of process dynamics, 334
effect of sampling period, 367-370
feedforward, 488
of linearized system, 305-308
margin, 338-340
multiloop, 630,638

Staged systems isee Distillation)
Standard deviation:

of averages, 394
of data set, 30
from set point, 221,466

Statistical modelling, 189
Statistical process control:

capability index, 880-881
goal of preventing disturbances, 876
Shewart chart, 876
specification limit, 881

Steady state:
error (offset), 240
feedforward control, 488
operating window, 625-626

Steam heat exchanger:
bypass, 784
condensing, 777

Steam system:
boiler, 27, 862
header, 862
turbines, 885

Steam trap, 777
Step:

input function, 58, 136-138,162
Laplace transform, 99
test isee Process reaction curve)

Stiffness, 84
Stirred tank (CST):

chemical reactor, 62,72, 85,438, 835,
897

heat exchanger, 76-80,458,486, 523,
939-943

mixer:
one-tank, 52, 270,415
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Stirred tank (CST)—Cont.
mixer—Cont.

three-tank, 186,223,282,422-424,
512,595-596

series reactors, 64,430,943
typical assumptions, 52,899

Stochastic control performance, 293,424,
879

Superposition, 70
Surge tank, 119,562,572
System definition, 52
Systems analysis, 135

Tuning, feedback controller:
digital PID control, 370
dynamic matrix control, 750
effect of process on, 281, 334,564-566,

645
internal model control, 598
multiloop PID, 645,682
objectives isee Control, objectives)
Smith predictor, 602
stability margin:

gain margin, 338
phase margin, 340
iSee also Proportional-integral-

derivative, tuning)
Tuning, feedforward controller, 496

Target, 585-586
Taylor series approximation, 71
Temperature control:

distillation, 545
fired heater, 26,31,473,500,552,961
flash drum, 21,538, 802
stirred tank, 252-523

Three-mode controller isee
Proportional-integral-derivative
controller)

Time constant:
empirical estimation, 179-180
relation to process, 74,137,271,900,

942,944
series of, 143-145

Time delay isee Dead time)
Thermocouple, 388, 526
Thermowell, 940
Transfer function:

closed-loop, 244,462,488,586,
629-630

controller, 252-253
definition, 111, 118,983
disturbance process, 224,415,666
feedback process, 224,270-271, 622,

666
instrument, 213
matrix of, 624
poles of, 113,255,259,312-313
zeros of, 113,152

Transient isee Dynamics)
Transmission interaction, 629
Transportation delay, 103-104
Tray, distillation, general balances, 159

u
Ultimate controller gain, 330,993
Ultimate period, 330
Underdamped process, 85,138-139,

253-256, 899-903
Unstable systems:

closed-loop system, 308-317
process without control, 307-308,

899-907
Unsteady-state isee Dynamics)
Utility systems:

fuel gas system, 501,810-811
hot oil, 885
steam system, 862
iSee also Refrigeration)

v
Validation, model, 60-61
Valve:

automated control:
capacity, 217,226, 385,438^141,

625-626
characteristic, 520
dynamic response, 213
failure position, 386
pneumatic power, 212-213
range, 385

manual, 228, 892
positioner, 474



Valve—Cont.
safety relief, 797
stem, 81, 213,474,520

Valve position controller, 718
Variable:

continuous, 98
dependent, 56,254
deviation,71, 111
discrete, 188-189, 365, 973
external, 56,254
manipulated, 5,208, 213,217

Variable structure:
constraint control, 715
multiple controllers, 716
signal select, 710
split range, 706
valve position control, 718

Variance:
definition, 30
measure of performance, 221-222

Velocity form, controller, 367

w
Weir, 159
Wild stream, 499, 684
Windup, reset isee Anti-reset windup)
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z-transform, 973-975
table, 975

Zero, sensor signal, 388
Zero-order hold, 364,985
Zeros of transfer function:

cancellation of pole and zero, 113
effect on dynamic response, 152,943
effect on stability, 113

Ziegler-Nichols:
closed-loop tuning, 329, 342-343
open-loop tuning, 347
process reaction curve, 179-180




